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Machine Learning

@ Machine Learning is the process of training a model, typically by tuning
parameters, to make predictions
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Machine Unlearning

@ Machine Unlearning is the process of removing training data without retraining
the entire model

@ Gold Standard: Remove data to be unlearned and retrain the model
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Why Do Machine Unlearning?

Training data may be collected from individuals and be private/sensitive.

Model Maintenance
Model maintenance may be necessary to remove false data or bias within the model.
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© Document Classification
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Background

@ Document classification is the process of assigning documents to different
categories or classes
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@ Done through image classification or text classification

o Large task of NLP (Natural Language Processing), commonly done with word
embedding
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@ Classification label of a document may contain potential vulnerabilities

@ How do we remove the class label while reclassifying all documents with this label?
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@ Classification label of a document may contain potential vulnerabilities

@ How do we remove the class label while reclassifying all documents with this label?

Loan approval should not be dependent on the race of a person, though a model might
incorrectly consider it.
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Loan Approval Classification
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Decision Boundaries Pre-Unlearning
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Decision Boundaries Post-Unlearning

Age

60
50
40
30

20

Income
40k 60k 80k 100k 120k

Aadya Goel, Adam Ge

Unlearning Mechanisms for Document Classification and Fair Decision-Making



State of the A

@ Randomly distributes documents within the remaining classes
@ Overall accuracy drops from 94.03% to 83.57%, indicating loss of utility
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State of the A

@ Randomly distributes documents within the remaining classes

@ Overall accuracy drops from 94.03% to 83.57%, indicating loss of utility
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How can we map each document to its next-top class?
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Model Architecture

@ Baseline Model
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Model Architecture

@ Baseline Model

@ Unlearn documents within target class
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Model Architecture

@ Baseline Model
@ Unlearn documents within target class

@ Optimize unlearning algorithm to match retrain-equivalent solution
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Baseline Model

TF-IDF Least-Squares Class
— —

—
DS Vectorization SVM Label
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Motivation for Hessian

@ How do we remove the influence of the unlearned documents from the model?
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Hessian H is the matrix of second derivatives of the loss (i.e. curvature)

@ Measures how parameter changes affect loss

H(®) = V3L(0) = ZJTVZE(y,, )\z:fg(x_) Ji+ A, U= %(;").
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Hessian H is the matrix of second derivatives of the loss (i.e. curvature)

@ Measures how parameter changes affect loss
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How does this apply to our LS-SVM?
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Least-Squares Hessian

@ LS-SVM Objective:
1 Ao
L(O) = ;Zf(%,fb(xi)) + §||9|| :

i=1

@ Squared-Loss Hessian:

H=)\I+%XTX
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Hessian Downweight

e H~! maps gradient changes into a parameter change

@ Compute gradient contribution of removed data and take one-shot corrective step
when unlearning data

g = S Voli(6). (1)

ieS

Onew =~ 0° — H(0*) ! guel (2)
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L-BFGS

o L-BFGS is a numerical optimization algorithm used to approximate the inverse
Hessian matrix

Hir1 = (I — psiyi ) Hic (I = pryisi ) + Pk Sksi » Pk = s (3)
Kk 2k
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L-BFGS

@ L-BFGS is a numerical optimization algorithm used to approximate the inverse
Hessian matrix

1

His1 = (I — prskyi ) Hie (1 — pryesi ) + prsksi » Pk = o (4)
Kk 2k
@ Uses approximation to get a curvature-aware search direction
pc ~ —H g, gk = VL(6). (5)
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L-BFGS

@ L-BFGS is a numerical optimization algorithm used to approximate the inverse
Hessian matrix

—

Hivr = (I — prskyr ) Hi (1 — pryese ) + pr Sksi Pk = To (6)
@ Uses approximation to get a curvature-aware search direction
P ~ —H g, gk = VL(0k). (7)
o Updates the weights with a line-searched step
Ok+1 = Ok + 7k Pk, (8)
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L-BFGS

@ L-BFGS is a numerical optimization algorithm used to approximate the inverse
Hessian matrix

[y

Hirr = (1= prsiyi ) Hic (1 = piyesi ) + presksi s pe = o 9)
k 2k
@ Uses approximation to get a curvature-aware search direction
pe ~ —H g, g = VL(0k) (10)
o Updates the weights with a line-searched step
Ok+1 = Ok + 7k px; (11)
@ Running a short pass on the reduced objective settles to the retrain-equivalent

solution
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Regularization Optimization

Privacy vs regularization strength (1/C) Utility vs regularization strength (1/C)
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We choose an optimal value of regularization strength of 0.2.
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Model Accuracy

Model accuracy remains nearly unchanged after Hessian downweight on all benchmarks

Accuracy Before and After Unlearning

09834 0.9728

- pefore U
- fer Unl

09796 09852

1.0

0.9403 09373

0.8

Accuracy
°
>

o
IS

0.2

0.0

20Newsgroup DBPedia AGNews BBC News

Aadya Goel, Adam Ge

Unlearning Mechanisms for Document Classification and Fair Decision-Making



Privacy Guarantee
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Attackers lose ability to detect deleted data post-unlearning.

AUC for Unlearned Class Before and After Unlearning
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Time Effiency

Hessian downweight completes unlearning in only 2 seconds, demonstrating a roughly
25x speed-up.
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@ Hessian downweight + brief L-BFGS achieves retrain-equivalent models while
preserving accuracy and dropping membership-inference AUC on the unlearned

class to 0.5

@ Our algorithm runs faster than full retraining, and similarity-based reassignment
maintains utility—making class-level unlearning feasible for real text pipelines
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© Fair Decision-Making
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Background

@ Machine learning algorithms used to determine critical life opportunities (e.g. loan
approval, criminal justice outcomes)

@ Algorithms may amplify bias reflecting societal inequalities

Loan approval predictions may differ for two people of different races even if they share
the same qualifications.
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Sources of Bias

@ Bias from input data (historical inequality and selection bias)
o Over-representation of majority populations and under-representation of marginalized
groups
o Labels may reflect systemic discrimination through historical human decisions
@ Bias from model (subgroup inequality)
o Model may rely on features (proxies) that are spuriously correlated with sensitive

attributes
e Model error rates may vary across demographic group, causing unequal error

distribution
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Sparse Autoencoder (SAE)

@ Autoencoder with a wide, sparse hidden layer so that features are separated
e Can identify features representing a sensitive attribute, such as gender, by
o Use paired inputs differing only in the sensitive attribute (e.g. policeman and
policewoman)
o Identify which hidden neuron(s) change the most between the input words; these
neurons encode sensitive attribute

Hidden layer
(feature activations)
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Sparse Autoencoder (SAE)

@ Autoencoder with a wide, sparse hidden layer so that features are separated
e Can identify features representing a sensitive attribute, such as gender, by
o Use paired inputs differing only in the sensitive attribute (e.g. policeman and
policewoman)
o Identify which hidden neuron(s) change the most between the input words; these
neurons encode sensitive attribute

Hidden layer
(feature activations)
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Sensitive Feature Detection Pipeline

@ LLM is used to generate embeddings that are fed into the SAE

@ SAE is trained with a reconstruction loss (so that the output of the decoder and
the input embedding from LLM are close) and a sparsity penalty (limits number of
active features)

o ldentify which feature in the sparse coefficient vector encodes gender

o Used Gendered Words Dataset + lists of Wiktionary words that are either male or
female to train SAE.
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e Finetune the LLM (sentence transformer)
e Find mean of the average of the female words distribution and the average of the

male words distribution
o Define mean-squared loss (MSE) based on difference between the biased word’s

gender feature in the SAE and the mean described above, backpropagate
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ivation Values for Feature 2
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Engineer Feature Value Before Debiasing

Feature 218

male words 3
60 1 female words grandma grandpa
—— grandma |
***** grandpa
50 - engineer
I 40
c
]
=]
© 30+
=
20
10
0 T T T T T
0.46 0.48 0.50 0.52 0.54

Activation Value

Aadya Goel, Adam Ge

Unlearning Mechanisms for Document Classification and Fair Decisio!



Engineer Feature Value After Debiasing

Feature 218
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Babysitter Feature Value Before Debiasing

Feature 218
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Babysitter Feature Value After Debiasing

Feature 218
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Manager Feature Value Before Debiasing
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Manager Feature Value After Debiasing
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Intersectional Bias

@ Marginal fairness evaluates the fairness of a model one attribute at a time
@ Harm is amplified at the intersection of multiple attributes

o A model may be 90% accurate for a certain race and 90% accurate for a certain
gender, but only 55 % accurate for the group with both the race and the gender.

@ Intersectional groups grow exponentially, causing data sparsity and making
fairness harder to achieve
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lterative Sifting Debiasing Model

individual’s
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@ C denotes the neural codebook. There are 22 = 4 codes, denoting the 4
combinations of race (black/white) and gender (male/female).

@ Each code in the codespace is the center of all the projected embeddings with the
same sensitive attributes as the code.
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lterative Sifting Debiasing Algorithm

prediction head
produced by H'
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@ The projection network learns to map the projected embeddings closer to the
correct code in the codebook, which captures the sensitive information

@ The model then makes the projected embeddings equally distant from the codes,
which forces the embedding space to unlearn sensitive attribute information
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Qualification scores before and after
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True Positive Rates (TPR) and Max
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@ Our SAE successfully identified and mitigated the gender-encoding features in the
model's representations

@ Our lterative Sifting approach removed sensitive information and improved
fairness without retraining
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@ Conclusion
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Conclusion

@ We developed practical methods to do unlearning for both document classification
models and to remove bias
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e Extend method to deep learning architectures (beyond linear SVMs)
@ Apply unlearning metrics (e.g., certified unlearning bounds)
@ Work on more datasets (graph datasets, larger datasets)

@ Evaluate the task accuracy and semantic consistency of the LLM after unlearning
(for both SAE and lterative Sifting model)
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