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Side-Channels Attacks
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One program can exploit shared resources to spy on another



Example of Side Channels
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Importance of Side-Channel Attacks

e Side-channel attackers
o Attack hardware, not just software
o Extract cryptographic keys

e Growing number of vulnerabilities
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Data Source: Common Vulnerabilities and Exposures (https://cve.org).



Timing Based Side Channel Attacks

i S

Time

input | output
—> —

Secret Data

i,
wx ML aoa



Secure Remote Computation
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Fully Homomorphic Encryption (FHE)
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FHE:
e Computesdirectly on encrypted data (ciphertext c) — Slow
e Never exposes sensitive data



Trusted Execution Environment (TEE)
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TEE
e Trusts TEE so operation is done on unencrypted data — Fast
e Problem: leads to large attack surface, subject to side-channel attacks



Our Solution to Secure Remote Computation

e Take inspiration from Fully Homomorphic Encryption (FHE) and
Trusted Execution Environment (TEE)

e Based on trusted hardware

e BUT reduce our “trusted area” as much as possible

e Result: mitigate side channel attacks



Our Objective:
Reducing Area of Trust



Trusted Execution Environment and Shared Resources
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Minimize Trusted Hardware within Execute Stage
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Research Questions

e RQ1:How to create an architecture that minimizes the attack surface?
o Design Alcatraz, an encrypted Arithmetic Logic Unit (ALU) gated
by Sequestered Encryption

e RQ2:How to verify our architecture is correct and secure?
o Apply the Knox framework to prove security

e RQ3: Apply Alcatraz to PIR and compare with existing state-of-the-art
FHE approaches
o /-21xfaster
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Our Design (Alcatraz): an Encrypted ALU
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Our Design (Alcatraz): an Encrypted ALU
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Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks



Verification Overview
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Formal Verification

e Goal: prove our hardware module is secure against all possible inputs
e Challenge: Infeasible to try all types of input signals one by one

Hardware Input signal Output signal
—> Implementation —>» —
input of EncALU output | T

e Solution: Knox Framework
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Knox Framework: Prove “f(x) # g(x)” is Unsatisfiable

e Use “symbols” to represent the input signals
e f(x): symbolic execution result following the functional specification
e g(x): symbolic execution result following the hardware implementation

X : f(x)
Functional
|deal Id t and . . —
eal world (correct and secure) — Specification ot
We want to prove these
two are indistinguishable
X g(x)
Real world —_— AETETENE

input Implementation output

Use Satisfiability Modulo Theories (SMT) solvers to prove the formula
Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)
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Applying Alcatraz to Private
Information Retrieval



Overview of Implementation

e Weimplemented our encrypted ALU in Verilog to extend an open
source RISC-V core (Ibex) and vector coprocessor (Vicuna)

e Simulated using Verilator

e Encoded the customized instructions using inline assembly

e Compared performance of Private Information Retrieval

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/
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Pipelining Stages: fetch, decode, execute, write
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Superpipelining Execute Stage
fetch = decode = execute = write

fetch & decode &  execute (many cycles)

fetch = decode —>-

—» Write

-—> write

Superpipelining execute stage

e The execute stage of Alcatraz takes many cycles.
e With basic pipelining, it is still not efficient.
e Our solution: superpipelining execute stage
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Utilize Data Parallelism

e Private Information Retrieval:
o Remote server hosts a database of n entries
LX [ X | X | | X |
o Client sends a query: “retrieve the k-th entry”
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o Computation on Server:
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X X X

= result
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Utilize Data Parallelism via SIMD
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Performance Comparison: Single Query PIR

e Compared with one of the SOTA methods (SpiralPIR), Alcatraz is
estimated to be 7-21 times faster.
e Alcatraz’s querysizeis 16 Bytes while that of Spiral is 8-15 MB.

Date.abase Entry Size Computation Time (s) Speedup
(er?giees) SpiralPIR Alcatraz (Estimated)
Dataset 1 220 256B 0.85 0.040 21.3X
Dataset 2 218 30KB 8.99 1.174 7.66 X
Dataset 3 214 100KB 2.38 0.245 9.71X

S.J.Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition,' 2022
|[EEE Symposium on Security and Privacy (SP) 27
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