Alcatraz: Secure Remote Computation
via Sequestered Encryption in
Hardware Security Module

Albert Lu IIII-

1l
Mentors: ~RBHITH
Jules Drean and Sacha Servan-Schreiber I I'II I'J
October 19th, 2025 MIT

MIT PRIMES October Conference

Side-Channels Attacks

Code [> — —
| Shared Resources
(e.g. Cache)
Attacker
Attacker canobserve | AAA- m “SECRETS”

One program can exploit shared resources to spy on another

Example of Side Channels

Family using [/
the internet

I Shared Resources
Wifi
You watching
a movie

You observe “movie lags a lot” “family is also using wifi”

d

Importance of Side-Channel Attacks

e Side-channel attackers
o Attack hardware, not just software
o Extract cryptographic keys

e Growing number of vulnerabilities

Increasing Number of Vulnerabilities
Related to Side-Channel Attacks

80
60

40
0 _-..-.I

2007 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Data Source: Common Vulnerabilities and Exposures (https://cve.org).

Timing Based Side Channel Attacks

i S

Time

input | output
—> —

Secret Data

i,
wx ML aoa

Secure Remote Computation

Security

Efficiency

|deal Solution:
Fully Homomorphic
Encryption (FHE)

Based on strong

cryptographic
assumption

Slow

More Practical:
Trusted Execution
Environment (TEE)

Based on empirical
hardware security;
Vulnerable to
side-channel attacks

Fast

Our Solution:
Alcatraz
(inspired by both)

Minimal trusted
hardware;
Protected against
side-channels

Fast

Fully Homomorphic Encryption (FHE)

Sensitive [} Encrypted
query x query

want to
privately
search for

O e
%O Sensitive { Encrypted

—

FHE

Computation

results f(x) results

FHE:
e Computesdirectly on encrypted data (ciphertext c) — Slow
e Never exposes sensitive data

Trusted Execution Environment (TEE)

Sensitive 4 Encrypted
query X query

want to
privately
search for

O e
%O Sensitive & Encrypted

Private Information
Retrieval Protocol

£ F(x)

results f(x) results

TEE
e Trusts TEE so operation is done on unencrypted data — Fast
e Problem: leads to large attack surface, subject to side-channel attacks

Our Solution to Secure Remote Computation

e Take inspiration from Fully Homomorphic Encryption (FHE) and
Trusted Execution Environment (TEE)

e Based on trusted hardware

e BUT reduce our “trusted area” as much as possible

e Result: mitigate side channel attacks

Our Objective:
Reducing Area of Trust

Trusted Execution Environment and Shared Resources

))

Shared Resources (e.g. Cache)

11

Minimize Trusted Hardware within Execute Stage

))

Shared Resources (e.g. Cache)

12

Research Questions

e RQ1:How to create an architecture that minimizes the attack surface?
o Design Alcatraz, an encrypted Arithmetic Logic Unit (ALU) gated
by Sequestered Encryption

e RQ2:How to verify our architecture is correct and secure?
o Apply the Knox framework to prove security

e RQ3: Apply Alcatraz to PIR and compare with existing state-of-the-art
FHE approaches
o /-21xfaster

13

Our Design (Alcatraz): an Encrypted ALU

Provide new instructions

“| EncALU

execute in

Alcatraz

wauaydin

1xa1ule|d

uonesadp

Common

1Xa1uie|d ndino

auaydin

1ndinQ

Secret

Our Design (Alcatraz): an Encrypted ALU

fetch = decode

wauaydin

execute write
Provide new instructions execute in
_--""| EncALU | ~~
_ - Alcatraz o
o
S
S o o
> 3 3
S > o > T
D = =
< S 3
D
o

Common

Secret

auaydin

1ndinQ

15

Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks

Verification Overview

@ Implement

Hardware

Description

O
Verilog SMT

~4.700 lines of
Verilog

and Proofs

® Create Specs
/ !

Racket

@ Generate SMT

@ Run on Formal

\ Verification tools
r

Spec: ~1400 lines of Racket
Proof: ~600 lines of Racket

Symbolic
Exe. Engine

SMT Solver

I
I
I
| —>
I
I
I

Correct / Incorrect?
Secure / Insecure?

17

Formal Verification

e Goal: prove our hardware module is secure against all possible inputs
e Challenge: Infeasible to try all types of input signals one by one

Hardware Input signal Output signal
—> Implementation —>» —
input of EncALU output | T

e Solution: Knox Framework

18

Knox Framework: Prove “f(x) # g(x)” is Unsatisfiable

e Use “symbols” to represent the input signals
e f(x): symbolic execution result following the functional specification
e g(x): symbolic execution result following the hardware implementation

X : f(x)
Functional
|deal Id t and . . —
eal world (correct and secure) — Specification ot
We want to prove these
two are indistinguishable
X g(x)
Real world —_— AETETENE

input Implementation output

Use Satisfiability Modulo Theories (SMT) solvers to prove the formula
Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

19

Applying Alcatraz to Private
Information Retrieval

Overview of Implementation

e Weimplemented our encrypted ALU in Verilog to extend an open
source RISC-V core (Ibex) and vector coprocessor (Vicuna)

e Simulated using Verilator

e Encoded the customized instructions using inline assembly

e Compared performance of Private Information Retrieval

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

21

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

Pipelining Stages: fetch, decode, execute, write

No Pipeline Pipelined

f=>d=>e>w f>dP>e>w
[] []
[] []
[] []

Time . Time .

[] []
[]

. Instruction 1
Instruction 2

Superpipelining Execute Stage
fetch = decode = execute = write

fetch & decode & execute (many cycles)

fetch = decode —>-

—» Write

-—> write

Superpipelining execute stage

e The execute stage of Alcatraz takes many cycles.
e With basic pipelining, it is still not efficient.
e Our solution: superpipelining execute stage

23

Utilize Data Parallelism

e Private Information Retrieval:
o Remote server hosts a database of n entries
LX [X | X | | X |
o Client sends a query: “retrieve the k-th entry”

(b [[bs | [bn]

o Computation on Server:

X X, X Xy . X X
X X X

= result

Utilize Data Parallelism

e Private Information Retrieval:
o Remote server hosts a database of n entries
LX [X | X | | X |
o Client sends a query: “retrieve the k-th entry”

o [& [&]~ [

o Computation on Server:

X X, X Xy . X X
X X X

= result

Utilize Data Parallelism via SIMD

wauaydin
IndinQ

e We take advantage Provide new instructions | executeiin |
of data parallelism __--7 7 [EneAtU -l
to process multiple - Alcatraz T~
encrypted data
blocks g 2
simultaneously in % gk o §
one instruction ENE-R IR
(“Single Instruction | g - S %
Multiple Data”) g ”| 3 =

Performance Comparison: Single Query PIR

e Compared with one of the SOTA methods (SpiralPIR), Alcatraz is
estimated to be 7-21 times faster.
e Alcatraz’s querysizeis 16 Bytes while that of Spiral is 8-15 MB.

Date.abase Entry Size Computation Time (s) Speedup
(er?giees) SpiralPIR Alcatraz (Estimated)
Dataset 1 220 256B 0.85 0.040 21.3X
Dataset 2 218 30KB 8.99 1.174 7.66 X
Dataset 3 214 100KB 2.38 0.245 9.71X

S.J.Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition,' 2022
|[EEE Symposium on Security and Privacy (SP) 27

Acknowledgements

My Mentors Author of Knox (PRIMES Alum)

Prof. Srini Devadas, Dr. Slava Gerovitch, and
MIT PRIMES for making this possible! E y:

References

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI
2022)

S.J.Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition,' 2022

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2022, pp. 930-947, doi:
10.1109/5P46214.2022.9833700.

Biernacki, et. al. “Sequestered Encryption: A Hardware Technique for Comprehensive Data
Privacy”, 2022

29

Thank you!

