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Attacker can observe                                                                    “SECRETS”

Shared Resources
(e.g. Cache)

access

accessAttacker

Code

One program can exploit shared resources to spy on another 

Side-Channels Attacks
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Shared Resources
Wifi

access

accessYou watching 
a movie

Family using 
the internet

Example of Side Channels

You observe             “movie lags a lot”                                    “family is also using wifi”
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Importance of Side-Channel Attacks

● Side-channel attackers

○ Attack hardware, not just software

○ Extract cryptographic keys

● Growing number of vulnerabilities

4Data Source: Common Vulnerabilities and Exposures (https://cve.org).



Timing Based Side Channel Attacks
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Secure Remote Computation
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Ideal Solution: 
Fully Homomorphic 
Encryption (FHE)

More Practical: 
Trusted Execution 
Environment (TEE)

Our Solution: 
Alcatraz
(inspired by both)

Security Based on strong 
cryptographic 
assumption

Based on empirical 
hardware security;
Vulnerable to 
side-channel attacks

Minimal trusted 
hardware;
Protected against 
side-channels

Efficiency Slow Fast Fast
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Computation

Fully Homomorphic Encryption (FHE)

FHE:
● Computes directly on encrypted data (ciphertext c) → Slow
● Never exposes sensitive data           

Database
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want to
privately

search for 
…

Database

Trusted Execution Environment (TEE)

Encrypted 
query 

Encrypted 
results

TEE
● Trusts TEE so operation is done on unencrypted data → Fast
● Problem: leads to large attack surface, subject to side-channel attacks

🔒 TEE

Private Information 
Retrieval Protocol 
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Our Solution to Secure Remote Computation

● Take inspiration from Fully Homomorphic Encryption (FHE) and 

Trusted Execution Environment (TEE)

● Based on trusted hardware 

● BUT reduce our “trusted area” as much as possible

● Result: mitigate side channel attacks
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Our Objective: 
Reducing Area of Trust
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Trusted Execution Environment and Shared Resources
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Minimize Trusted Hardware within Execute Stage
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Research Questions

● RQ1: How to create an architecture that minimizes the attack surface?

○ Design Alcatraz, an encrypted Arithmetic Logic Unit (ALU) gated 

by Sequestered Encryption

● RQ2: How to verify our architecture is correct and secure?  

○ Apply the Knox framework to prove security

● RQ3: Apply Alcatraz to PIR and compare with existing state-of-the-art 

FHE approaches

○ 7-21x faster
13



Our Design (Alcatraz): an Encrypted ALU



Our Design (Alcatraz): an Encrypted ALU
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Proving Security of Encrypted ALU 
Against Timing-Based Side Channel 
Attacks
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Verification Overview

17



Formal Verification

● Goal: prove our hardware module is secure against all possible inputs

● Challenge:  Infeasible to try all types of input signals one by one

● Solution: Knox Framework

Input signal Output signal

… …

Hardware 
Implementation 
of EncALUinput output
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Knox Framework: Prove “f(x) ≠ g(x)” is Unsatisfiable 

Ideal world (correct and secure)

Real world

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● Use “symbols” to represent the input signals

● f(x): symbolic execution result following the functional specification
● g(x): symbolic execution result following the hardware implementation

Functional 
Specification outputinput

x f(x)

Hardware 
Implementation outputinput

x g(x)

19

Use Satisfiability Modulo Theories (SMT) solvers to prove the formula

We want to prove these 
two are indistinguishable



Applying Alcatraz to Private 
Information Retrieval
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Overview of Implementation

● We implemented our encrypted ALU in Verilog to extend an open 

source RISC-V core (Ibex) and vector coprocessor (Vicuna)

● Simulated using Verilator

● Encoded the customized instructions using inline assembly

● Compared performance of Private Information Retrieval

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/ 21

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/


Pipelining Stages: fetch, decode, execute, write
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Superpipelining Execute Stage

● The execute stage of Alcatraz takes many cycles.

● With basic pipelining, it is still not efficient.

● Our solution: superpipelining execute stage
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decode execute writefetch

decode execute (many cycles) writefetch

decode writefetch

Superpipelining execute stage



Utilize Data Parallelism

● Private Information Retrieval:

○ Remote server hosts a database of n entries

○ Client sends a query: “retrieve the k-th entry”

○ Computation on Server: 
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Utilize Data Parallelism via SIMD

● We take advantage 

of data parallelism 

to process multiple 

encrypted data 

blocks 

simultaneously in 

one instruction 

(“Single Instruction 

Multiple Data”)
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Performance Comparison: Single Query PIR

● Compared with one of the SOTA methods (SpiralPIR), Alcatraz is 

estimated to be 7-21 times faster.

● Alcatraz’s query size is 16 Bytes while that of Spiral is  8-15 MB. 

S. J. Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition," 2022 

IEEE Symposium on Security and Privacy (SP)

Database 
Size 

(entries)

Entry Size Computation Time (s) Speedup

SpiralPIR Alcatraz (Estimated)

Dataset 1 220 256B 0.85 0.040 21.3✕

Dataset 2 218 30KB 8.99 1.174 7.66✕

Dataset 3 214 100KB 2.38 0.245 9.71✕

27



Acknowledgements

28

Prof. Srini Devadas, Dr. Slava Gerovitch, and
MIT PRIMES for making this possible!

My Mentors Author of Knox (PRIMES Alum)

Dr, Jules Drean   Dr. Sacha Servan-Schreiber Dr. Anish Athalye



● Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 
2022)

● S. J. Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition," 2022 

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2022, pp. 930-947, doi: 

10.1109/SP46214.2022.9833700. 

● Biernacki, et. al. “Sequestered Encryption: A Hardware Technique for Comprehensive Data 

Privacy”, 2022

References

29



Thank you!
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