
Alcatraz: Secure Remote Computation
via Sequestered Encryption in
Hardware Security Module

Albert Lu

Mentors:
Jules Drean and Sacha Servan-Schreiber

October 19th, 2025
MIT PRIMES October Conference

Attacker can observe “SECRETS”

Shared Resources
(e.g. Cache)

access

accessAttacker

Code

One program can exploit shared resources to spy on another

Side-Channels Attacks

2

Shared Resources
Wifi

access

accessYou watching
a movie

Family using
the internet

Example of Side Channels

You observe “movie lags a lot” “family is also using wifi”

3

Importance of Side-Channel Attacks

● Side-channel attackers

○ Attack hardware, not just software

○ Extract cryptographic keys

● Growing number of vulnerabilities

4Data Source: Common Vulnerabilities and Exposures (https://cve.org).

Timing Based Side Channel Attacks

5

Secure Remote Computation

6

Ideal Solution:
Fully Homomorphic
Encryption (FHE)

More Practical:
Trusted Execution
Environment (TEE)

Our Solution:
Alcatraz
(inspired by both)

Security Based on strong
cryptographic
assumption

Based on empirical
hardware security;
Vulnerable to
side-channel attacks

Minimal trusted
hardware;
Protected against
side-channels

Efficiency Slow Fast Fast

want to
privately

search for
…

Encrypted
query

Encrypted
results

Sensitive
query x

Sensitive
results f(x)

FHE
Computation

Fully Homomorphic Encryption (FHE)

FHE:
● Computes directly on encrypted data (ciphertext c) → Slow
● Never exposes sensitive data

Database

7

c

c’

🔒

🔒

want to
privately

search for
…

Database

Trusted Execution Environment (TEE)

Encrypted
query

Encrypted
results

TEE
● Trusts TEE so operation is done on unencrypted data → Fast
● Problem: leads to large attack surface, subject to side-channel attacks

🔒 TEE

Private Information
Retrieval Protocol

8

x

f(x)

c

c’ 🔒

Sensitive
query x

Sensitive
results f(x)

Our Solution to Secure Remote Computation

● Take inspiration from Fully Homomorphic Encryption (FHE) and

Trusted Execution Environment (TEE)

● Based on trusted hardware

● BUT reduce our “trusted area” as much as possible

● Result: mitigate side channel attacks

9

Our Objective:
Reducing Area of Trust

10

TEE

Apps

OS

Main CPU

Shared Resources (e.g. Cache)

Untrusted

Trusted Execution Environment and Shared Resources

11

Trusted Apps

Trusted OS

d
eco

d
e

execu
te

w
rite

fetch

CPU

Apps

OS

Main CPU

Shared Resources (e.g. Cache)

Untrusted

Minimize Trusted Hardware within Execute Stage

12

d
eco

d
e

execu
te

w
rite

fetch

Untrusted
Apps

OS

CPU

Research Questions

● RQ1: How to create an architecture that minimizes the attack surface?

○ Design Alcatraz, an encrypted Arithmetic Logic Unit (ALU) gated

by Sequestered Encryption

● RQ2: How to verify our architecture is correct and secure?

○ Apply the Knox framework to prove security

● RQ3: Apply Alcatraz to PIR and compare with existing state-of-the-art

FHE approaches

○ 7-21x faster
13

Our Design (Alcatraz): an Encrypted ALU

Our Design (Alcatraz): an Encrypted ALU

15

decode execute writefetch

Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks

16

Verification Overview

17

Formal Verification

● Goal: prove our hardware module is secure against all possible inputs

● Challenge: Infeasible to try all types of input signals one by one

● Solution: Knox Framework

Input signal Output signal

… …

Hardware
Implementation
of EncALUinput output

18

Knox Framework: Prove “f(x) ≠ g(x)” is Unsatisfiable

Ideal world (correct and secure)

Real world

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● Use “symbols” to represent the input signals

● f(x): symbolic execution result following the functional specification
● g(x): symbolic execution result following the hardware implementation

Functional
Specification outputinput

x f(x)

Hardware
Implementation outputinput

x g(x)

19

Use Satisfiability Modulo Theories (SMT) solvers to prove the formula

We want to prove these
two are indistinguishable

Applying Alcatraz to Private
Information Retrieval

20

Overview of Implementation

● We implemented our encrypted ALU in Verilog to extend an open

source RISC-V core (Ibex) and vector coprocessor (Vicuna)

● Simulated using Verilator

● Encoded the customized instructions using inline assembly

● Compared performance of Private Information Retrieval

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/ 21

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

Pipelining Stages: fetch, decode, execute, write

22

Instruction 1

Instruction 2

d e wf

No Pipeline

Time

d e wf

Pipelined

Time

Superpipelining Execute Stage

● The execute stage of Alcatraz takes many cycles.

● With basic pipelining, it is still not efficient.

● Our solution: superpipelining execute stage

23

decode execute writefetch

decode execute (many cycles) writefetch

decode writefetch

Superpipelining execute stage

Utilize Data Parallelism

● Private Information Retrieval:

○ Remote server hosts a database of n entries

○ Client sends a query: “retrieve the k-th entry”

○ Computation on Server:

24

X1 X2 X3 Xn-1

b1 b2 b3 bn-1

✕ ✕ ✕ ✕

…

…

result
＋ ＋

X4

b4

✕

＋

Xn

bn

✕

＋

Utilize Data Parallelism

● Private Information Retrieval:

○ Remote server hosts a database of n entries

○ Client sends a query: “retrieve the k-th entry”

○ Computation on Server:

25

X1 X2 X3 Xn-1

b1 b2 b3 bn-1

✕ ✕ ✕ ✕

…

…

result
＋ ＋

X4

b4

✕

＋

Xn

bn

✕

＋

Utilize Data Parallelism via SIMD

● We take advantage

of data parallelism

to process multiple

encrypted data

blocks

simultaneously in

one instruction

(“Single Instruction

Multiple Data”)

26

Performance Comparison: Single Query PIR

● Compared with one of the SOTA methods (SpiralPIR), Alcatraz is

estimated to be 7-21 times faster.

● Alcatraz’s query size is 16 Bytes while that of Spiral is 8-15 MB.

S. J. Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition," 2022

IEEE Symposium on Security and Privacy (SP)

Database
Size

(entries)

Entry Size Computation Time (s) Speedup

SpiralPIR Alcatraz (Estimated)

Dataset 1 220 256B 0.85 0.040 21.3✕

Dataset 2 218 30KB 8.99 1.174 7.66✕

Dataset 3 214 100KB 2.38 0.245 9.71✕

27

Acknowledgements

28

Prof. Srini Devadas, Dr. Slava Gerovitch, and
MIT PRIMES for making this possible!

My Mentors Author of Knox (PRIMES Alum)

Dr, Jules Drean Dr. Sacha Servan-Schreiber Dr. Anish Athalye

● Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI
2022)

● S. J. Menon and D. J. Wu, "SPIRAL: Fast, High-Rate Single-Server PIR via FHE Composition," 2022

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2022, pp. 930-947, doi:

10.1109/SP46214.2022.9833700.

● Biernacki, et. al. “Sequestered Encryption: A Hardware Technique for Comprehensive Data

Privacy”, 2022

References

29

Thank you!

30

