Measures on Oligomorphic Groups

Thanh Can Mentor: Dr. Thomas Rüd

Jackson-Reed High School

October 18-19, 2025 MIT PRIMES Conference

Oligomorphic Groups

Definition (Oligomorphic group)

An oligomorphic group is a group G acting on a set Ω such that G has finitely many orbits on Ω^n for all $n \geq 0$.

Example

Let G be a group and Ω be a finite set. For $n \geq 0$, the action of G on Ω^n induces at most $|\Omega|^n$ orbits, where $|\Omega|^n$ is finite. Thus, G is an oligomorphic group with its respective action on Ω .

Non-example

Consider the action of $(\mathbb{R},+)$ on \mathbb{R} given by $r \cdot x = r + x$ for reals r,x. The action has one orbit on \mathbb{R} , yet uncountably many orbits on \mathbb{R}^2 .

Oligomorphic Groups

Example (S_{∞})

Let S_{∞} be the infinite symmetric group acting on $\Omega = \{1, 2, ...\}$. Each orbit on Ω^n corresponds to a partition of $\{1, ..., n\}$ where each subset contains indices whose corresponding elements are equal. Below is an example for n = 5, where equal entries have the same color:

$$(\omega_1,\ \omega_2,\ \omega_3,\ \omega_4,\ \omega_5) \qquad \xrightarrow{\sigma \in S_\infty} \qquad (\omega_1',\ \omega_2',\ \omega_3',\ \omega_4',\ \omega_5')$$

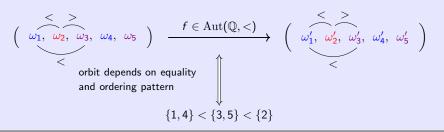
$$\qquad \qquad \qquad \qquad \qquad \downarrow \\ \text{orbit only depends on equality pattern}$$

$$\{\{1,4\},\{2\},\{3,5\}\}$$

Oligomorphic Groups

Example $(Aut(\mathbb{Q},<))$

Let $\operatorname{Aut}(\mathbb{Q},<)$ denote the group of order-preserving bijections $f:\mathbb{Q}\to\mathbb{Q}$ acting on $\Omega=\mathbb{Q}$. Below is an example of an orbit for n=5:



Combinatorial Interpretation

- Fix an oligomorphic group G and a set Ω .
- For each $n \ge 0$, consider each orbit $R \subseteq \Omega^n$ as an n-ary relation on Ω i.e. R takes input elements $x_1, \ldots, x_n \in \Omega$ and outputs true if $(x_1, \ldots, x_n) \in R$ and false otherwise.
- The finite subsets of Ω equipped with the relations induced by the orbits form a class of finite relational structures.

Example $(Aut(\mathbb{Q},<))$

The action of $\operatorname{Aut}(\mathbb{Q},<)$ induces three 2-ary relations on \mathbb{Q} : $R_>$, $R_<$, and $R_=$. If a>b, then $R_>(a,b)$ is true while $R_<(a,b)$ and $R_=(a,b)$ are false.

Remark

The 2-ary relations on \mathbb{Q} determine all *n*-ary relations for all $n \geq 2$.

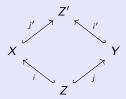
"Gluing" Finite Relational Structures

Example (Finite sets with a total order) $\begin{cases} a' < b' < c < c' \\ a' < b' < c' < c \\ a' < b' < c = c' \end{cases}$ a' < b' < ca < b

Amalgamations

Definition (Amalgamation)

Let $i: Z \to X$ and $j: Z \to Y$ be embeddings. An amalgamation of X and Y over Z is a triple (Z', i', j') such that $i': Y \to Z'$ and $j': X \to Z'$ are jointly surjective embeddings into Z' and the following diagram commutes:



Treelike Structures

Definition (Tree structure)

A tree structure is a set of leaves of a tree T (denoted L(T)) along with a quartic relation R such that R(a, b; c, d) is true iff a, b, c, d are distinct leaves and the simple path from a to b does not intersect the simple path from c to d.

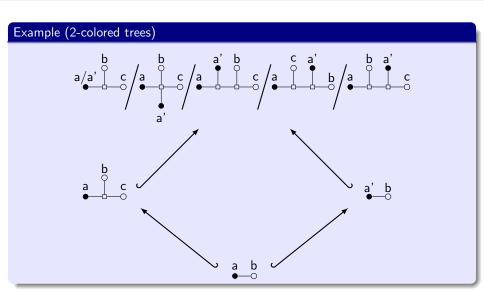
R(a, b; c, d) is true

R(a, b; c, d) is false

Definition (*n*-coloring)

Let T be a tree and L(T) be the set of the leaves of T. We define an n-coloring of T to be a function $\sigma: L(T) \to \{1, \ldots, n\}$.

Amalgamations



Measures

Definition (Measure)

A measure on a class of finite structures \mathfrak{F} is a rule μ that assigns each embedding $i:Y\to X$ a quantity $\mu(i)$ valued in a commutative ring k such that the following conditions hold:

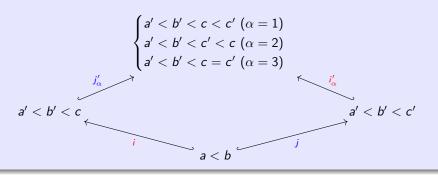
- **1** If *i* is an isomorphism then $\mu(i) = 1$.
- **②** If $i: X \to Y$ and $j: Y \to Z$ are embeddings, then $\mu(j \circ i) = \mu(j)\mu(i)$.
- ① Let $i: Z \to X$ and $j: Z \to Y$ be embeddings, and $i'_{\alpha}: Y \to Z'_{\alpha}$ be all amalgamations of X and Y over Z for $\alpha = 1, \ldots, n$. Then $\mu(i) = \sum_{\alpha=1}^{n} \mu(i'_{\alpha})$.

Remark

Measures are key for constructing new tensor categories out of classes of finite relational structures.

Measures

Example (Finite sets with a total order)



- $\mu(i) = \mu(i'_1) + \mu(i'_2) + \mu(i'_3)$
- $\mu(j) = \mu(j'_1) + \mu(j'_2) + \mu(j'_3)$

Results on Measures

Theorem (Harman-Snowden, 2022)

There is a unique family of \mathbb{C} -valued measures on the class of finite sets where if $i: Y \to X$ is an injection of sets with respective cardinalities m and n (where $m \le n$), then

$$\mu_t(i) = (t-m)(t-m-1)\cdots(t-n+1)$$

given any $t \in \mathbb{C}$.

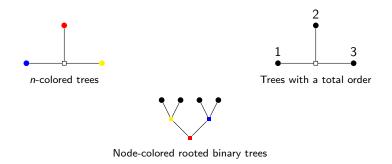
Remark

The measure on any embedding is determined by

$$\mu_t(\emptyset \to \bullet) = t.$$

Cameron's Treelike Objects

• Cameron proposed the following treelike objects, which become treelike structures by imposing the relation *R*:



 The goal of my project was to classify measures on these classes of treelike structures.

Results on Measures

Theorem (Harman–Nekrasov–Snowden, 2023)

There are two one-parameter \mathbb{C} -valued families of measures on the class of tree structures.

Theorem (C.)

There are no measures on the class of *n*-colored tree structures for all $n \ge 2$.

Theorem (C.)

There are no measures on the class of tree structures with a total order.

Results on Measures

Theorem (C.)

Given a directed rooted tree T with edges labeled by $\{1,\ldots,n\}$ and a distinguished vertex v (which could be the root), there is a corresponding $\mathbb{Z}\left[\frac{1}{2}\right]$ -valued measure $\mu_{T,v}$ on the class of node-colored rooted binary tree structures with n colors.

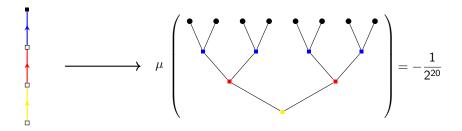
Corollary (C.)

There are $(2n+2)^n$ measures on the class of node-colored rooted binary tree structures with n colors for all n > 1.

Acknowledgements

- I would like to thank my mentor, Dr. Thomas Rüd, who has offered me continued support, guidance, and feedback, and Professor Andrew Snowden, who suggested this project.
- I would like to thank PRIMES-USA and its organizers for this opportunity.

Tree ← Measure



References

Cameron, Peter J. (1987). "Some treelike objects". In: Quart. J. Math. Oxford Ser. (2) 38.150, pp. 155–183. ISSN: 0033-5606,1464-3847. DOI: 10.1093/qmath/38.2.155. URL: https://doi.org/10.1093/qmath/38.2.155.

Harman, Nate, Ilia Nekrasov, and Andrew Snowden (2023). *Arboreal tensor categories*. arXiv: 2308.06660 [math.RT]. URL: https://arxiv.org/abs/2308.06660.

Harman, Nate and Andrew Snowden (2022). Oligomorphic groups and tensor categories. arXiv: 2204.04526 [math.RT]. URL: https://arxiv.org/abs/2204.04526.