Classifying Yetter-Drinfeld Modules over the Pansera Algebras H_{2n^2}

Karthik Prasad¹ Dr. Hector Pena Pollastri², Dr. Julia Plavnik², Benjamin Spencer²

October 17, 2025

MIT PRIMES-USA Fifteenth Annual Conference

¹ Illinois Mathematics and Science Academy ² IU-Bloomington

Table of Contents

1. Crash Course in Hopf Algebras

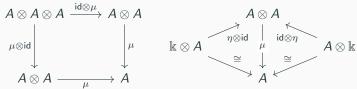
2. Modules, Comodules, Yetter-Drinfeld Modules

3. Problem and Results

Crash Course in Hopf Algebras

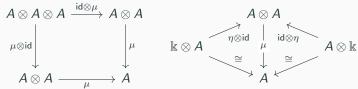
Algebras and Coalgebras

- An algebra is a vector space A with a ring structure:
 - Has multiplication $\mu: A \otimes A \to A$, unit $\eta: \mathbb{k} \to A$ satisfying:

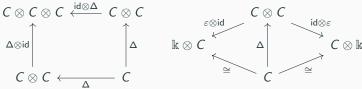


Algebras and Coalgebras

- An algebra is a vector space A with a ring structure:
 - Has multiplication $\mu: A \otimes A \to A$, unit $\eta: \mathbb{k} \to A$ satisfying:



- A coalgebra is "dual" to an algebra, reversing the maps:
 - Has comultiplication $\Delta: A \to A \otimes A$, counit $\varepsilon: A \to \mathbb{k}$ satisfying:

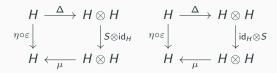


ullet Think of Δ as a splitting map, ε as a "projection" map.

• When we have a v.s H with an algebra structure μ, η and a coalgebra structure Δ, ε , we want some compatibility between them.

- When we have a v.s H with an algebra structure μ, η and a coalgebra structure Δ, ε , we want some compatibility between them.
- When the maps Δ, ε are algebra maps, we say H is a **bialgebra**.

- When we have a v.s H with an algebra structure μ, η and a coalgebra structure Δ, ε , we want some compatibility between them.
- When the maps Δ , ε are algebra maps, we say H is a **bialgebra**.
- An antipode map $S: H \rightarrow H$ is a map satisfying:



• Kind of an inverse map!

- When we have a v.s H with an algebra structure μ, η and a coalgebra structure Δ, ε , we want some compatibility between them.
- When the maps Δ , ε are algebra maps, we say H is a **bialgebra**.
- An antipode map $S: H \rightarrow H$ is a map satisfying:

- Kind of an inverse map!
- When a bialgebra *H* has an antipode *S*, we say *H* is a **Hopf algebra**.

3

Examples of Hopf Algebras

- Let *G* be a finite group.
- Group Algebra: Take $\mathbb{k}G = \{\sum k_i g_i \mid k_i \in \mathbb{k}, g_i \in G\}.$
 - Multiplication by $\mu(g_1, g_2) = g_1g_2$, extended linearly.
 - Comultiplication by $\Delta(g) = g \otimes g$, extended linearly.
 - Unit by $\eta(1) = e$, counit by $\varepsilon(g) = 1$, both extended linearly.
 - Antipode by $S(g) = g^{-1}$.

Examples of Hopf Algebras

- Let G be a finite group.
- Group Algebra: Take $\mathbb{k}G = \{\sum k_i g_i \mid k_i \in \mathbb{k}, g_i \in G\}.$
 - Multiplication by $\mu(g_1, g_2) = g_1g_2$, extended linearly.
 - Comultiplication by $\Delta(g) = g \otimes g$, extended linearly.
 - Unit by $\eta(1) = e$, counit by $\varepsilon(g) = 1$, both extended linearly.
 - Antipode by $S(g) = g^{-1}$.
- Dual of a Group Algebra: Take: $(\Bbbk G)^* = \{f : \Bbbk G \to \Bbbk \mid \text{ is linear}\}.$
 - This has a basis by $f_g : \Bbbk G$ defined by $f_g(h) = \delta_{gh}$.
 - Multiplication by $\mu(f_{g_1}, f_{g_2})(h) = f_{g_1}(h)f_{g_2}(h)$.
 - Comultiplication by $\Delta(f_g)(h) = \sum_{g_1,g_2 \in G} f_{g_1} \otimes f_{g_2}$.
 - Unit by $1 \to \text{id}$, counit by $f_g \to \delta_{ge}$, both extended linearly.
 - ullet Antipode by $f_g o f_{g^{-1}}$.

Examples of Hopf Algebras

- Let G be a finite group.
- Group Algebra: Take $\mathbb{k}G = \{\sum k_i g_i \mid k_i \in \mathbb{k}, g_i \in G\}.$
 - Multiplication by $\mu(g_1, g_2) = g_1g_2$, extended linearly.
 - Comultiplication by $\Delta(g) = g \otimes g$, extended linearly.
 - Unit by $\eta(1) = e$, counit by $\varepsilon(g) = 1$, both extended linearly.
 - Antipode by $S(g) = g^{-1}$.
- Dual of a Group Algebra: Take: $(\Bbbk G)^* = \{f : \Bbbk G \to \Bbbk \mid \text{ is linear}\}.$
 - This has a basis by f_g : $\Bbbk G$ defined by $f_g(h) = \delta_{gh}$.
 - Multiplication by $\mu(f_{g_1}, f_{g_2})(h) = f_{g_1}(h)f_{g_2}(h)$.
 - Comultiplication by $\Delta(f_g)(h) = \sum_{g_1, g_2 \in G} f_{g_1} \otimes f_{g_2}$.
 - Unit by $1 \to \text{id}$, counit by $f_g \to \delta_{ge}$, both extended linearly.
 - ullet Antipode by $f_g o f_{g^{-1}}$.
- Key idea: Dual of a Group Algebra has a commutative multiplication

Pansera Algebras H_{2n^2}

- ullet The Pansera algebras H_{2n^2} are a very interesting Hopf algebra.
 - Small enough to work with easily.
 - Still exhibits lots of interesting behavior.
 - Good "toy" example to understand general phenomena.

Pansera Algebras H_{2n^2}

- The Pansera algebras H_{2n^2} are a very interesting Hopf algebra.
 - Small enough to work with easily.
 - Still exhibits lots of interesting behavior.
 - Good "toy" example to understand general phenomena.
- Generated by x, y, z, q a primitive n root of unity with:

$$x^{n} = y^{n} = 1, xy = yx, zx = yz, zy = xz, z^{2} = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} q^{-ij} x^{i} y^{j}.$$

• Comultiplication is given by:

$$\Delta(x) = x \otimes x, \Delta(y) = y \otimes y, \Delta(z) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} q^{-ij}(x^i z) \otimes (y^j z).$$

Pansera Algebras H_{2n^2}

- The Pansera algebras H_{2n^2} are a very interesting Hopf algebra.
 - Small enough to work with easily.
 - Still exhibits lots of interesting behavior.
 - Good "toy" example to understand general phenomena.
- Generated by x, y, z, q a primitive n root of unity with:

$$x^{n} = y^{n} = 1, xy = yx, zx = yz, zy = xz, z^{2} = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} q^{-ij} x^{i} y^{j}.$$

• Comultiplication is given by:

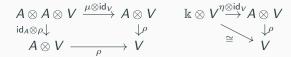
$$\Delta(x) = x \otimes x, \Delta(y) = y \otimes y, \Delta(z) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} q^{-ij}(x^i z) \otimes (y^j z).$$

• $\{x^i y^j\}$ forms a copy of $\mathbb{k}[\mathbb{Z}_n \times \mathbb{Z}_n]$, $\{x^i y^j z\}$ is a "twisted" copy.

Modules, Comodules,

Yetter-Drinfeld Modules

• An A-module is a v.s V with a action $\rho: A \otimes V \to V$ satisfying:

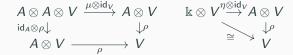


• An A-module is a v.s V with a action $\rho: A \otimes V \to V$ satisfying:



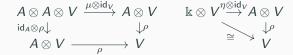
- We dualized algebras to get coalgebras.
 - Similarly, dualize modules to get *comodules*.

• An A-module is a v.s V with a action $\rho: A \otimes V \to V$ satisfying:



- We dualized algebras to get coalgebras.
 - Similarly, dualize modules to get comodules.
- A C-comodule is a v.s V with coaction $\delta: V \to C \otimes V$ satisfying:

• An A-module is a v.s V with a action $\rho: A \otimes V \to V$ satisfying:



- We dualized algebras to get coalgebras.
 - Similarly, dualize modules to get comodules.
- A C-comodule is a v.s V with coaction $\delta: V \to C \otimes V$ satisfying:

$$\begin{array}{cccc} V & \xrightarrow{\delta} & C \otimes V & & V \xrightarrow{\delta} & C \otimes V \\ \downarrow \delta \downarrow & & \downarrow \Delta \otimes \mathrm{id}_V & & \swarrow & \downarrow \varepsilon \otimes \mathrm{id}_V \\ C \otimes V & \xrightarrow{\mathrm{id}_C \otimes \delta} & C \otimes C \otimes V & & & \Bbbk \otimes V \end{array}$$

• We can think of a coaction as a factoring map, sending $v \to \sum_i c_i \otimes v_i$

6

Yetter-Drinfeld Modules

- What happens when we have V both a module and a comodule?
- When these satisfy a certain compatibility condition, we say we have a *Yetter-Drinfeld module*.

Yetter-Drinfeld Modules

- ullet What happens when we have V both a module and a comodule?
- When these satisfy a certain compatibility condition, we say we have a Yetter-Drinfeld module.
- Why do we care about these?
 - Encodes "combinatorial" information about the Hopf algebra.
 - The Andruskiewitsch–Schneider program provides a method for classifying finite-dimensional Hopf algebras over H_{2n^2} .
 - Analogue of classifying groups with a given quotient group.
 - First ingredient in above method is the Yetter-Drinfeld Modules.

Problem and Results

Research Question + Motivation

Question: What are the simple Hopf algebras over H_{2n^2} ?

Why ask this?

Research Question + Motivation

Question: What are the simple Hopf algebras over H_{2n^2} ?

Why ask this?

- Hopf algebras are important tools.
 - In quantum mechanics, operators \hat{x} , \hat{p} do not commute.
 - Hopf algebras encode this non-commutative multiplication of functions.
 - Concrete applications in quantum computing, TQFTs.

Research Question + Motivation

Question: What are the simple Hopf algebras over H_{2n^2} ?

Why ask this?

- Hopf algebras are important tools.
 - In quantum mechanics, operators \hat{x} , \hat{p} do not commute.
 - Hopf algebras encode this non-commutative multiplication of functions
 - Concrete applications in quantum computing, TQFTs.
- Classification of Hopf algebras is a fundamental question.
 - Unfortunately, little is known.
 - Classifying Hopf algebras over H_{2n^2} already advances classification.
 - Insights gained could be used in more general classification programs.

Our Results

Theorem (2025, Prasad, Pollastri, Plavnik, Spencer)

The following is a complete list of simple comodules over H_{2n^2} :

- 1. There are n^2 one-dimensional simple comodules.
- 2. There is one n-dimensional simple comodule.

In particular, the category of comodules over H_{2n^2} can be realized as a Tambara-Yamagami category.

Theorem (2025, Prasad, Pollastri, Plavnik, Spencer)

The following is a complete list of simple Yetter-Drinfeld modules over H_{2n^2} :

- 1. There are $2n^2$ 1-dimensional simple Yetter-Drinfeld modules.
- 2. There are $\frac{n^2(n^2-1)}{2}$ 2-dimensional simple Yetter-Drinfeld modules.
- 3. There are $2n^2$ n-dimensional simple Yetter-Drinfeld modules.

In particular, the category of Yetter-Drinfeld modules over H_{2n^2} can be realized as the center of a Tambara-Yamagami category.

Future Work

Future work includes:

- Computing the fusion rules of $H_{2n^2}\mathcal{YD}$
- Applying this to determine quasitriangular structures over H_{2n^2}
- Use this to find the Nichols algebras over H_{2n^2}
- Ultimately classify Hopf algebras over H_{2n^2} .

Acknowledgements

- Many thanks to my mentors Dr. Julia Plavnik, Dr. Hector Pena Pollastri, and Benjamin Spencer at IU-Bloomington, without whom this project could never have happened.
 - Many thanks to the MIT-PRIMES Program for organizing this mentorship.
 - Many thanks to Dr. Anderson Trimm and Dr. Micah Fogel at the Illinois Mathematics and Science Academy for teaching me most of the foundational math I know.
 - Many thanks to my parents and friends for supporting me throughout the research process.

Questions

THANK YOU FOR LISTENING! Questions?

References i

N. Andruskiewitsch and H.-J. Schneider.

On the classification of finite-dimensional pointed hopf algebras.

Annals of Mathematics, 171(1):375–417, 2010.

N. Andruskiewitsch and C. Vay.

Finite dimensional hopf algebras over the dual group algebra of the symmetric group in three letters.

Communications in Algebra, 39(12):4507-4517, 2011.

I. Heckenberger and H.-J. Schneider.

Hopf Algebras and Root Systems, volume 247 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, 2020.

References ii

C. Lomp.

Generalized kac-paljutkin algebras, 2025.

D. Pansera.

A class of semisimple hopf algebras acting on quantum polynomial algebras, 2017.

Y. Shi.

Finite-dimensional hopf algebras over the kac–paljutkin algebra h_8 .

Revista de la Unión Matemática Argentina, 60(1):265–298, 2019.