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e Has multiplication p: A® A — A, unit n : k — A satisfying:
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e A coalgebra is "dual” to an algebra, reversing the maps:

e Has comultiplication A : A— A® A, counit ¢ : A — k satisfying:
id®A
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e Think of A as a splitting map, € as a " projection” map.
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e When we have a v.s H with an algebra structure p,n and a
coalgebra structure A, e, we want some compatibility between them.

e When the maps A, ¢ are algebra maps, we say H is a bialgebra.

e An antipode map S : H — H is a map satisfying:

H-—25 HoH H-—25 HeoH
WOE\L lS®IdH UOE\L lldH®s
H o H® H H — H® H

e Kind of an inverse map!

e When a bialgebra H has an antipode S, we say H is a Hopf algebra.



Examples of Hopf Algebras

e Let G be a finite group.

e Group Algebra: Take kG = {>_kigi | ki € k, g € G}.
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Examples of Hopf Algebras

Let G be a finite group.

Group Algebra: Take kG = {>"kigi | ki €k, g € G}.
e Multiplication by (g1, 82) = g182, extended linearly.
e Comultiplication by A(g) = g ® g, extended linearly.

e Unit by (1) = e, counit by €(g) = 1, both extended linearly.
e Antipode by S(g) = g~*
e Dual of a Group Algebra: Take: (kG)* = {f : kG — k| is linear}.
This has a basis by f, : kG defined by fz(h) = 0gn.
Multiplication by u(fg,, fs,)(h) = fg (h)fs, (h).
Comultiplication by A(fy)(h) = Zgl 266 fg ® T, .
e Unit by 1 — id, counit by f; — 6ge, both extended linearly.
e Antipode by f; — f,—1.

Key idea: Dual of a Group Algebra has a commutative multiplication
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e Small enough to work with easily.
o Still exhibits lots of interesting behavior.
e Good "toy” example to understand general phenomena.
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Pansera Algebras H,,.

e The Pansera algebras H,,> are a very interesting Hopf algebra.

e Small enough to work with easily.
o Still exhibits lots of interesting behavior.
e Good "toy” example to understand general phenomena.

e Generated by x, y,z, g a primitive n root of unity with:

X"=y"=1,xy = yx,zx = yz,2y = x2,2° = lnzfnziq_ijxiyj.
M=o =0
e Comultiplication is given by:
M) = x8 % A0) =y 83, 8(2) = 55 i) 0 412
’ ) =0 =0 '

o {x'y/} forms a copy of k[Z, x Z,], {x'y/z} is a "twisted” copy.
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Modules and Comodules

e An A-module is a v.s V with a action p: A® V — V satisfying:

AARV 2% Aoy ko V™AgV

ida®p| 0z & 1r
B Vv

ARV ——— V

e We dualized algebras to get coalgebras.
e Similarly, dualize modules to get comodules.

e A C-comodule is a v.s V with coaction § : V — C ® V satisfying:

v—2 cCceV v cev
8l lazidy O Jewidy
CoV —CacaV k® V

e We can think of a coaction as a factoring map, sending
vV — Z’- Ci Qv



Yetter-Drinfeld Modules

e What happens when we have V both a module and a comodule?

e When these satisfy a certain compatibility condition, we say we have
a Yetter-Drinfeld module.



Yetter-Drinfeld Modules

e What happens when we have V both a module and a comodule?

e When these satisfy a certain compatibility condition, we say we have
a Yetter-Drinfeld module.

e Why do we care about these?
e Encodes "combinatorial” information about the Hopf algebra.
e The Andruskiewitsch—Schneider program provides a method for
classifying finite-dimensional Hopf algebras over H,,..
e Analogue of classifying groups with a given quotient group.
e First ingredient in above method is the Yetter-Drinfeld Modules.
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Research Question + Motivation

’Question: What are the simple Hopf algebras over H2,,2?‘

Why ask this?

e Hopf algebras are important tools.
e In quantum mechanics, operators X, p do not commute.
e Hopf algebras encode this non-commutative multiplication of
functions.
e Concrete applications in quantum computing, TQFTs.

e Classification of Hopf algebras is a fundamental question.

e Unfortunately, little is known.
e Classifying Hopf algebras over H,,» already advances classification.
e Insights gained could be used in more general classification programs.



Our Results

Theorem (2025, Prasad, Pollastri, Plavnik, Spencer)
The following is a complete list of simple comodules over H,:
2

1. There are n= one-dimensional simple comodules.
2. There is one n-dimensional simple comodule.

In particular, the category of comodules over H,,» can be realized as a
Tambara-Yamagami category.

Theorem (2025, Prasad, Pollastri, Plavnik, Spencer)
The following is a complete list of simple Yetter-Drinfeld modules over
H2n2 o

1. There are 2n° 1-dimensional simple Yetter-Drinfeld modules.

2. There are =Y 2 dimensional simple Yetter-Drinfeld modules.
3. There are 2n® n-dimensional simple Yetter-Drinfeld modules.

In particular, the category of Yetter-Drinfeld modules over H,,> can be

realized as the center of a Tambara-Yamagami category.




Future work includes:

. . H,
e Computing the fusion rules of Hz”i YD

2n
e Applying this to determine quasitriangular structures over H,»

e Use this to find the Nichols algebras over Hj,.

e | Ultimately classify Hopf algebras over H,,> |.
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THANK YOU FOR LISTENING!

Questions?
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