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Fusion Categories

Categorical Structure:
® Objects
Finite dimensional vector spaces over field k
® Maps between objects with associative composition and identity map of each object
Linear maps between vector spaces, which we can compose
Abelian Structure:
® Direct sum of objects
Direct sum of vector spaces. e.g. k3 @ k> = k®
Monoidal Structure:
® Tensor product of objects, which distributes over direct sum
Tensor product of vector spaces, which distributes over direct sum
® Associators (V® U) @ W = V ® (U® W) and unit constraints 1 ® V = V and
V ® 12 V satisfying the triangle and pentagon axioms
Canonical associators ay,yw : (V@ U) @ W =2 V ® (U ® W) and unit constraints
koV=Vand Veok=Vk
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Fusion Categories

Rigidity
® Objects have left and right duals with evaluation and coevaluation morphisms
The dual of vector space V is the space of linear maps V — k
Semisimplicity
® An object X of an abelian category is simple if its only subobjects are 0 and X.
The only simple vector space is k

® Objects are semisimple if they factor as a direct sum of simple objects
Vector spaces can be factored as a direct sum of k

Definition
A fusion category is a semisimple rigid monoidal abelian category C. °.

?Also, it needs to be locally finite, k-linear, not equivalent to a direct sum of at least two nonzero
multitensor categories, End¢ (1) is the base field k, and is “finite”, which requires many more conditions...
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Braidings

Braidings
® braidings Vo U=ZU®V
canonical braidings VR U=ZURQV v uU—» u®v

naturality

X Y X Y X Y
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Braidings
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Graded Vector Spaces

A G-graded vector space is vector space V with decomposition
V=@V,
geaG
A linear map f between two G-graded vector spaces V' and W is the direct sum
=P~
geiG

where f; : Vg — W, for each g € G. Finally, a G-graded tensor product of two
G-graded vector spaces is given by

(Ve W)g= @ Ve @ Wy
x,yE€G,xy=g

for every g € G.

8/16



Graded Fusion Category

Let G be a group. A fusion category C is G-graded if there is a decomposition
c=@pc,
gei

of C into a direct sum of full abelian subcategories such that the tensor product maps
Cg xCphtoCgp forall g,he G.

Example
The category Vect¢ of graded vector spaces is a graded fusion category:

Vectg = @ Vect,
geG
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Associative Zesting

Let C be a G-graded braided fusion category. The data of an associative zesting over C
consists of

® )\: a map G2 — group of invertible objects of Ce.
® v: a collection of isomorphisms vg p « : A(g, h) ® A(gh, k) — A(h, k) ® \(g, hk).
Additionally we require normalization \(e,g) = A(g,e) =1 and vg e p = ldy(g,p)-

Xz © Y, — Xg @ Yy ® Mg, h)
Xg Yh A(ga h) Zk )‘(gha k)

.

X, Yn,Zk —

Xg Yh Zk )‘(ha k))‘(ga hk)

10/16



Associative Zesting

Example

Applying zesting to Vectg can yield Vect? for w : G — k satisfying
w(g, h, k)w(g, hk, Nw(h, k, 1) = w(gh, k, w(g, h, k).

The associator in this case is ax,,y, z, = w(g, h, k) - ldx, o v,0z-
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Braided Zesting

A Braided Zesting (), v, t) is an associative zesting (\, ) equipped with a collection of
isomorphisms t(g, h) : A(g, h) — A\(h, g) satisfying normalization condition
t(e,g) = t(g,e) =Ids.

Xe  Yh Xe  Yn Mg, h)

V — V te
N N

Yh Xg Yh Xg A(h7g)

Theorem ([DGP*22])

Two braided extensions of Ce by G have the same group homomorphism G — BrPic(Ce)
if and only if they are related by braided zesting.
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Unnormalized Zesting

What if zesting data wasn't normalized (i.e. A(e,g) = A(g,e) =1 and vg e = Idy(g,n))?

Theorem

Any unnormalized associative zesting (\',v') is “equivalent” to a normalized associative
zesting (\,v). That is, NV s equivalent to CM as Ce extensions by grading group G.
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General Zesting

What if A doesn’t have to be in Co?
* Xy ® Y, ® A(g, h) is not necessarily in Cgp,.
® We define a new group operation - such that X; ® Y, ® A(g, h) € Cg.p

Theorem

Two C. extensions by G and G’ with group morphisms ¢4 : G — BrPic(C.) and
¢n : G' — BrPic(C.), respectively, are related by general braided zesting if and only if
there is a bijection (as sets) f : G — G’ such that ¢p o f = ¢g

Example

Starting from Vectg, general zesting can modify its data into Vecty for any group H with
the same cardinality as G.
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