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Fusion Categories

Categorical Structure:
• Objects
Finite dimensional vector spaces over field k

• Maps between objects with associative composition and identity map of each object
Linear maps between vector spaces, which we can compose

Abelian Structure:
• Direct sum of objects
Direct sum of vector spaces. e.g. k3 ⊕ k5 = k8

Monoidal Structure:
• Tensor product of objects, which distributes over direct sum
Tensor product of vector spaces, which distributes over direct sum

• Associators (V ⊗ U)⊗W ∼= V ⊗ (U ⊗W ) and unit constraints 1⊗ V ∼= V and
V ⊗ 1 ∼= V satisfying the triangle and pentagon axioms
Canonical associators aV ,U,W : (V ⊗ U)⊗W ∼= V ⊗ (U ⊗W ) and unit constraints
k⊗ V ∼= V and V ⊗ k ∼= V k
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Fusion Categories

Rigidity

• Objects have left and right duals with evaluation and coevaluation morphisms
The dual of vector space V is the space of linear maps V → k

Semisimplicity

• An object X of an abelian category is simple if its only subobjects are 0 and X .
The only simple vector space is k

• Objects are semisimple if they factor as a direct sum of simple objects
Vector spaces can be factored as a direct sum of k

Definition

A fusion category is a semisimple rigid monoidal abelian category C. a.

aAlso, it needs to be locally finite, k-linear, not equivalent to a direct sum of at least two nonzero
multitensor categories, EndC(1) is the base field k, and is “finite”, which requires many more conditions...
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String diagrams
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Braidings

Braidings

• braidings V ⊗ U ∼= U ⊗ V
canonical braidings V ⊗ U ∼= U ⊗ V : v ⊗ u 7→ u ⊗ v
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Braidings
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Graded Vector Spaces

A G -graded vector space is vector space V with decomposition

V =
⊕
g∈G

Vg

A linear map f between two G -graded vector spaces V and W is the direct sum

f =
⊕
g∈G

fg

where fg : Vg → Wg for each g ∈ G . Finally, a G -graded tensor product of two
G -graded vector spaces is given by

(V ⊗G W )g =
⊕

x ,y∈G ,xy=g

Vx ⊗Wy

for every g ∈ G .
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Graded Fusion Category

Let G be a group. A fusion category C is G -graded if there is a decomposition

C =
⊕
g∈G

Cg

of C into a direct sum of full abelian subcategories such that the tensor product maps
Cg × Ch to Cgh for all g , h ∈ G .

Example

The category VectG of graded vector spaces is a graded fusion category:

VectG =
⊕
g∈G

Vectg
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Associative Zesting

Let C be a G -graded braided fusion category. The data of an associative zesting over C
consists of

• λ: a map G 2 → group of invertible objects of Ce .
• ν: a collection of isomorphisms νg ,h,k : λ(g , h)⊗ λ(gh, k) → λ(h, k)⊗ λ(g , hk).

Additionally we require normalization λ(e, g) = λ(g , e) = 1 and νg ,e,h = Idλ(g ,h).

−→Xg ⊗ Yh Xg ⊗ Yh ⊗ λ(g , h)

−→aXg ,Yh,Zk

νg ,h,k

Xg Yh λ(g , h) Zk λ(gh, k)

Xg Yh Zk λ(h, k)λ(g , hk)
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Associative Zesting

Example

Applying zesting to VectG can yield VectωG for ω : G 3 → k satisfying

ω(g , h, k)ω(g , hk, l)ω(h, k, l) = ω(gh, k, l)ω(g , h, kl).

The associator in this case is aXg ,Yh,Zk
= ω(g , h, k) · IdXg⊗Yh⊗Zk

.
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Braided Zesting

A Braided Zesting (λ, ν, t) is an associative zesting (λ, ν) equipped with a collection of
isomorphisms t(g , h) : λ(g , h) → λ(h, g) satisfying normalization condition
t(e, g) = t(g , e) = Id1.

Xg Yh

Yh Xg

−→ tg ,h

Xg Yh λ(g , h)

Yh Xg λ(h, g)

Theorem ([DGP+22])

Two braided extensions of Ce by G have the same group homomorphism G → BrPic(Ce)
if and only if they are related by braided zesting.
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Unnormalized Zesting

What if zesting data wasn’t normalized (i.e. λ(e, g) = λ(g , e) = 1 and νg ,e,h = Idλ(g ,h))?

Theorem

Any unnormalized associative zesting (λ′, ν ′) is “equivalent” to a normalized associative
zesting (λ, ν). That is, Cλ′,ν′ is equivalent to Cλ,ν as Ce extensions by grading group G.
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General Zesting

What if λ doesn’t have to be in Ce?
• Xg ⊗ Yh ⊗ λ(g , h) is not necessarily in Cgh.
• We define a new group operation · such that Xg ⊗ Yh ⊗ λ(g , h) ∈ Cg ·h

Theorem

Two Ce extensions by G and G ′ with group morphisms ϕg : G → BrPic(Ce) and
ϕh : G ′ → BrPic(Ce), respectively, are related by general braided zesting if and only if
there is a bijection (as sets) f : G → G ′ such that ϕh ◦ f = ϕg

Example

Starting from VectG , general zesting can modify its data into VectH for any group H with
the same cardinality as G .
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