Generalizations of the Zesting Construction for Fusion Categories

Nick Zhang

October 22, 2025

Agenda

- 1. Fusion categories using example of vector spaces
- 2. String diagrams
- 3. Braidings
- 4. Zesting construction
- 5. Generalizing zesting construction

Fusion Categories

Categorical Structure:

- Objects
 Finite dimensional vector spaces over field k
- Maps between objects with associative composition and identity map of each object Linear maps between vector spaces, which we can compose

Abelian Structure:

Direct sum of objects
 Direct sum of vector spaces. e.g. k³ ⊕ k⁵ = k8

Monoidal Structure:

- Tensor product of objects, which distributes over direct sum
 Tensor product of vector spaces, which distributes over direct sum
- Associators $(V \otimes U) \otimes W \cong V \otimes (U \otimes W)$ and unit constraints $\mathbf{1} \otimes V \cong V$ and $V \otimes \mathbf{1} \cong V$ satisfying the triangle and pentagon axioms Canonical associators $a_{V,U,W} : (V \otimes U) \otimes W \cong V \otimes (U \otimes W)$ and unit constraints $\mathbb{k} \otimes V \cong V$ and $V \otimes \mathbb{k} \cong V \mathbb{k}$

Fusion Categories

Rigidity

• Objects have left and right duals with evaluation and coevaluation morphisms The dual of vector space V is the space of linear maps $V \to \mathbb{k}$

Semisimplicity

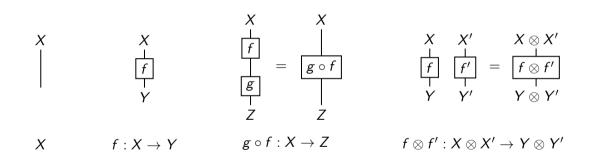
- An object X of an abelian category is simple if its only subobjects are 0 and X.
 The only simple vector space is k
- Objects are semisimple if they factor as a direct sum of simple objects
 Vector spaces can be factored as a direct sum of k

Definition

A **fusion category** is a semisimple rigid monoidal abelian category $\mathcal{C}.$ ^a.

^aAlso, it needs to be locally finite, k-linear, not equivalent to a direct sum of at least two nonzero multitensor categories, $\operatorname{End}_{\mathcal{C}}(1)$ is the base field k, and is "finite", which requires many more conditions...

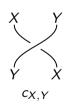
String diagrams

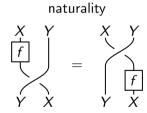


Braidings

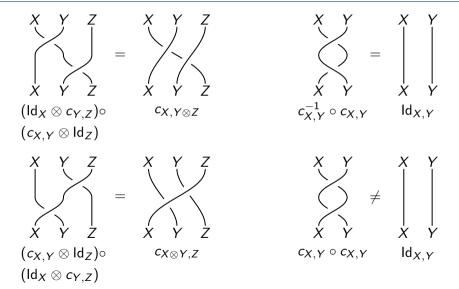
Braidings

• braidings $V \otimes U \cong U \otimes V$ canonical braidings $V \otimes U \cong U \otimes V : v \otimes u \mapsto u \otimes v$





Braidings



Graded Vector Spaces

A *G*-**graded vector space** is vector space *V* with decomposition

$$V = \bigoplus_{g \in G} V_g$$

A linear map f between two G-graded vector spaces V and W is the direct sum

$$f = \bigoplus_{g \in G} f_g$$

where $f_g: V_g \to W_g$ for each $g \in G$. Finally, a G-graded tensor product of two G-graded vector spaces is given by

$$(V \otimes_G W)_g = \bigoplus_{x,y \in G, xy = g} V_x \otimes W_y$$

for every $g \in G$.

Graded Fusion Category

Let G be a group. A fusion category C is G-graded if there is a decomposition

$$C = \bigoplus_{g \in G} C_g$$

of C into a direct sum of full abelian subcategories such that the tensor product maps $C_{\sigma} \times C_h$ to $C_{\sigma h}$ for all $g, h \in G$.

Example

The category $Vect_G$ of graded vector spaces is a graded fusion category:

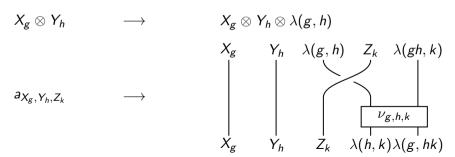
$$\mathsf{Vect}_G = \bigoplus_{g \in G} \mathsf{Vect}_g$$

Associative Zesting

Let $\mathcal C$ be a G-graded braided fusion category. The data of an **associative zesting** over $\mathcal C$ consists of

- λ : a map $G^2 \to \text{group of invertible objects of } \mathcal{C}_e$.
- ν : a collection of isomorphisms $\nu_{g,h,k}: \lambda(g,h) \otimes \lambda(gh,k) \to \lambda(h,k) \otimes \lambda(g,hk)$.

Additionally we require normalization $\lambda(e,g) = \lambda(g,e) = 1$ and $\nu_{g,e,h} = \operatorname{Id}_{\lambda(g,h)}$.



Associative Zesting

Example

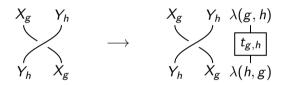
Applying zesting to Vect_G can yield Vect_G^ω for $\omega:G^3\to \Bbbk$ satisfying

$$\omega(g, h, k)\omega(g, hk, l)\omega(h, k, l) = \omega(gh, k, l)\omega(g, h, kl).$$

The associator in this case is $a_{X_g,Y_h,Z_k} = \omega(g,h,k) \cdot \operatorname{Id}_{X_g \otimes Y_h \otimes Z_k}$.

Braided Zesting

A **Braided Zesting** (λ, ν, t) is an associative zesting (λ, ν) equipped with a collection of isomorphisms $t(g,h): \lambda(g,h) \to \lambda(h,g)$ satisfying normalization condition $t(e,g) = t(g,e) = \operatorname{Id}_1$.



Theorem ([DGP+22])

Two braided extensions of C_e by G have the same group homomorphism $G \to BrPic(C_e)$ if and only if they are related by braided zesting.

Unnormalized Zesting

What if zesting data wasn't normalized (i.e. $\lambda(e,g) = \lambda(g,e) = 1$ and $\nu_{g,e,h} = \mathrm{Id}_{\lambda(g,h)}$)?

Theorem

Any unnormalized associative zesting (λ', ν') is "equivalent" to a normalized associative zesting (λ, ν) . That is, $\mathcal{C}^{\lambda', \nu'}$ is equivalent to $\mathcal{C}^{\lambda, \nu}$ as \mathcal{C}_e extensions by grading group G.

General Zesting

What if λ doesn't have to be in C_e ?

- $X_g \otimes Y_h \otimes \lambda(g,h)$ is not necessarily in \mathcal{C}_{gh} .
- We define a new group operation \cdot such that $X_g \otimes Y_h \otimes \lambda(g,h) \in \mathcal{C}_{g \cdot h}$

Theorem

Two C_e extensions by G and G' with group morphisms $\phi_g: G \to BrPic(C_e)$ and $\phi_h: G' \to BrPic(C_e)$, respectively, are related by general braided zesting if and only if there is a bijection (as sets) $f: G \to G'$ such that $\phi_h \circ f = \phi_g$

Example

Starting from $Vect_G$, general zesting can modify its data into $Vect_H$ for any group H with the same cardinality as G.

Acknowledgements

I would like to thank

- My mentors Julia Plavnik and Abigail Watkins for all their continued guidance
- Monique Müller for helping me practice my presentation
- All the PRIMES organizers for their support

References

Colleen Delaney, César Galindo, Julia Plavnik, Eric C. Rowell, and Qing Zhang. Braided zesting and its applications.

Communications in Mathematical Physics, 386(1):1-55, 2021.

Colleen Delaney, César Galindo, Julia Plavnik, Eric Rowell, and Qing Zhang. g-crossed braided zesting, 2022.

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik.

Tensor Categories, volume 205 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, 2015.

Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. Fusion categories and homotopy theory. Quantum Topology, 1(3):209–273, 2010.

Peter Selinger.

A survey of graphical languages for monoidal categories. arXiv preprint arXiv:0908.3347, 2009.