The Center of a Tambara-Yamagami-Like Category

Yun Guo Mentors: Prof. Monique Müller and Prof. Julia Plavnik

> October 19, 2025 MIT PRIMES October Conference

- Fusion categories can be thought of as a generalization of finite groups.
- Modular tensor categories = fusion category + braiding + twist + nondegeneracy.

- Fusion categories can be thought of as a generalization of finite groups.
- Modular tensor categories = fusion category + braiding + twist + nondegeneracy.
- Physically, modular tensor categories have applications in describing anyons in topological quantum phases of matter.

- Fusion categories can be thought of as a generalization of finite groups.
- Modular tensor categories = fusion category + braiding + twist + nondegeneracy.
- Physically, modular tensor categories have applications in describing anyons in topological quantum phases of matter.
- Mathematically, the twist and braiding structures in modular categories form S and T matrices. This encodes a projective representation of the modular group $SL(2,\mathbb{Z})$ by sending

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mapsto S, \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mapsto \mathcal{T}.$$

• Applications in topological quantum field theory and representation theory of quantum groups.

- Fusion categories can be thought of as a generalization of finite groups.
- Modular tensor categories = fusion category + braiding + twist + nondegeneracy.
- Physically, modular tensor categories have applications in describing anyons in topological quantum phases of matter.
- Mathematically, the twist and braiding structures in modular categories form S and T matrices. This encodes a projective representation of the modular group $SL(2,\mathbb{Z})$ by sending

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mapsto S, \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mapsto \mathcal{T}.$$

- Applications in topological quantum field theory and representation theory of quantum groups.
- How to construct examples of modular tensor categories?

• Equipping each object X in a fusion category $\mathcal C$ with a family of half-braiding isomorphisms $\{\gamma_Y:Y\otimes X\stackrel{\sim}{\to} X\otimes Y\}_{Y\in\mathcal C}$ constructs the Drinfeld center.

• Equipping each object X in a fusion category $\mathcal C$ with a family of half-braiding isomorphisms $\{\gamma_Y:Y\otimes X\stackrel{\sim}{\to} X\otimes Y\}_{Y\in\mathcal C}$ constructs the Drinfeld center.

Theorem (Müger, 2001)

Let k be an algebraically closed field and let C be a spherical fusion category. Then $\mathcal{Z}(C)$, the Drinfeld Center of C, is a modular category.

• Equipping each object X in a fusion category $\mathcal C$ with a family of half-braiding isomorphisms $\{\gamma_Y:Y\otimes X\stackrel{\sim}{\to} X\otimes Y\}_{Y\in\mathcal C}$ constructs the Drinfeld center.

Theorem (Müger, 2001)

Let k be an algebraically closed field and let C be a spherical fusion category. Then $\mathcal{Z}(C)$, the Drinfeld Center of C, is a modular category.

- The Tambara-Yamagami category is one of the few fusion categories with all data explicitly computed.
- A paper by Gelaki, Naidu, and Nikshych provides a technique to compute the center of a graded fusion category. As an example, they computed the center of the Tambara-Yamagami category.

• Equipping each object X in a fusion category $\mathcal C$ with a family of half-braiding isomorphisms $\{\gamma_Y:Y\otimes X\stackrel{\sim}{\to} X\otimes Y\}_{Y\in\mathcal C}$ constructs the Drinfeld center.

Theorem (Müger, 2001)

Let k be an algebraically closed field and let C be a spherical fusion category. Then $\mathcal{Z}(C)$, the Drinfeld Center of C, is a modular category.

- The Tambara-Yamagami category is one of the few fusion categories with all data explicitly computed.
- A paper by Gelaki, Naidu, and Nikshych provides a technique to compute the center of a graded fusion category. As an example, they computed the center of the Tambara-Yamagami category.
- This project is about using this technique to compute the center of a Tambara-Yamagami-like category defined in a paper by Galindo, Lentner, and Möller.

Introduction to Categories

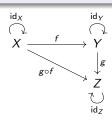
- Many times in math, we study objects and maps between the objects.
 - Sets and functions between sets.
 - Groups and group homomorphisms.
 - Topological spaces and continuous maps.

Introduction to Categories

- Many times in math, we study objects and maps between the objects.
 - Sets and functions between sets.
 - Groups and group homomorphisms.
 - ▶ Topological spaces and continuous maps.

Definition (Categories)

A category consists of a collection of **objects** and **morphisms**, in which we can **compose** morphisms, there exists an **identity morphism** for each object, and the composition of morphisms is **associative**.



Example of Categories

Example

The category FdVect (over k).

- Objects: finite-dimensional vector spaces.
- Morphisms: linear maps between vector spaces.

Example of Categories

Example

The category FdVect (over \mathbb{k}).

- Objects: finite-dimensional vector spaces.
- Morphisms: linear maps between vector spaces.

What desirable properties of FdVect do we have?

A **fusion category** is a category $\mathcal C$ equipped with following structures:

• **Direct sum:** \oplus between vector spaces.

A **fusion category** is a category \mathcal{C} equipped with following structures:

- **Direct sum:** \oplus between vector spaces.
- **Tensor product:** ⊗ between vector spaces.

A **fusion category** is a category \mathcal{C} equipped with following structures:

- **Direct sum:** \oplus between vector spaces.
- Tensor product: \otimes between vector spaces.
- Associativity constraint: an isomorphism

$$(\Bbbk \otimes \Bbbk) \otimes \Bbbk \xrightarrow{\sim} \Bbbk \otimes (\Bbbk \otimes \Bbbk).$$

A **fusion category** is a category $\mathcal C$ equipped with following structures:

- **Direct sum:** \oplus between vector spaces.
- Tensor product: ⊗ between vector spaces.
- Associativity constraint: an isomorphism

$$(\Bbbk \otimes \Bbbk) \otimes \Bbbk \xrightarrow{\sim} \Bbbk \otimes (\Bbbk \otimes \Bbbk).$$

Satisfying the following properties:

• **Abelianess:** for a linear map T, $ker(T) \in FdVect$, $im(T) \in FdVect$.

A **fusion category** is a category $\mathcal C$ equipped with following structures:

- **Direct sum:** \oplus between vector spaces.
- ullet Tensor product: \otimes between vector spaces.
- Associativity constraint: an isomorphism

$$(\Bbbk \otimes \Bbbk) \otimes \Bbbk \xrightarrow{\sim} \Bbbk \otimes (\Bbbk \otimes \Bbbk).$$

Satisfying the following properties:

- **Abelianess:** for a linear map T, $ker(T) \in FdVect$, $im(T) \in FdVect$.
- Semisimplicity: $V \cong \underbrace{\mathbb{k} \oplus \mathbb{k} \oplus ... \oplus \mathbb{k}}_{\dim V}$.

A **fusion category** is a category $\mathcal C$ equipped with following structures:

- **Direct sum:** \oplus between vector spaces.
- ullet Tensor product: \otimes between vector spaces.
- Associativity constraint: an isomorphism

$$(\Bbbk \otimes \Bbbk) \otimes \Bbbk \xrightarrow{\sim} \Bbbk \otimes (\Bbbk \otimes \Bbbk).$$

Satisfying the following properties:

- **Abelianess:** for a linear map T, $ker(T) \in FdVect$, $im(T) \in FdVect$.
- Semisimplicity: $V\cong \underbrace{\Bbbk\oplus \Bbbk\oplus ...\oplus \Bbbk}_{\dim V}$.
- **Finite**: *V* is finite dimensional.
- k-linearity: $Hom(V, W) \in FdVect$.

A **fusion category** is a category $\mathcal C$ equipped with following structures:

- ullet Direct sum: \oplus between vector spaces.
- ullet Tensor product: \otimes between vector spaces.
- Associativity constraint: an isomorphism

$$(\Bbbk \otimes \Bbbk) \otimes \Bbbk \xrightarrow{\sim} \Bbbk \otimes (\Bbbk \otimes \Bbbk).$$

Satisfying the following properties:

- **Abelianess:** for a linear map T, $ker(T) \in FdVect$, $im(T) \in FdVect$.
- Semisimplicity: $V \cong \underbrace{\mathbb{k} \oplus \mathbb{k} \oplus ... \oplus \mathbb{k}}_{\dim V}$.
- **Finite:** *V* is finite dimensional.
- k-linearity: $Hom(V, W) \in FdVect$.
- **Duality:** exists the dual vector space V^* , for $\phi \in V^*$, $v \in V$, $\phi(v) \in \mathbb{k}$.

Schur's Lemma

Lemma (Schur's Lemma)

If $\mathcal C$ is abelian, \Bbbk -linear and finite, when \Bbbk is algebraically closed, $\operatorname{Hom}_{\mathcal C}(X,Y)\cong \Bbbk$ if $X\cong Y$ and $\operatorname{Hom}_{\mathcal C}(X,Y)=0$ otherwise.

Schur's Lemma

Lemma (Schur's Lemma)

If $\mathcal C$ is abelian, \Bbbk -linear and finite, when \Bbbk is algebraically closed, $\operatorname{\mathsf{Hom}}_{\mathcal C}(X,Y)\cong \Bbbk$ if $X\cong Y$ and $\operatorname{\mathsf{Hom}}_{\mathcal C}(X,Y)=0$ otherwise.

Example

In FdVect, a linear map $T : \mathbb{k} \to \mathbb{k}$ is determined by a scalar.

Schur's Lemma

Lemma (Schur's Lemma)

If $\mathcal C$ is abelian, k-linear and finite, when k is algebraically closed, $\operatorname{\mathsf{Hom}}_{\mathcal C}(X,Y)\cong k$ if $X\cong Y$ and $\operatorname{\mathsf{Hom}}_{\mathcal C}(X,Y)=0$ otherwise.

Example

In FdVect, a linear map $T : \mathbb{k} \to \mathbb{k}$ is determined by a scalar.

Example

In FdRep(G), any G-linear map between two irreducible representations is either 0 or a multiple of the identity.

Building a Fusion Category

Example

Let G be a finite group. Let $\mathcal C$ be a fusion category over $\mathbb C$ with

- Simple objects labeled by δ_x , where $x \in G$.
- Tensor product given by $\delta_x \otimes \delta_y = \delta_{xy}$.

Building a Fusion Category

Example

Let G be a finite group. Let $\mathcal C$ be a fusion category over $\mathbb C$ with

- Simple objects labeled by δ_x , where $x \in G$.
- Tensor product given by $\delta_x \otimes \delta_y = \delta_{xy}$.

Question

What choices do we have for the associativity constraint

$$\alpha_{\delta_{\mathsf{x}},\delta_{\mathsf{y}},\delta_{\mathsf{z}}}: (\delta_{\mathsf{x}}\otimes\delta_{\mathsf{y}})\otimes\delta_{\mathsf{z}}\to\delta_{\mathsf{x}}\otimes(\delta_{\mathsf{y}}\otimes\delta_{\mathsf{z}})$$

The Pentagon Axiom

$$((W \otimes X) \otimes Y) \otimes Z$$

$$(W \otimes (X \otimes Y)) \otimes Z$$

$$(W \otimes (X \otimes Y)) \otimes Z$$

$$(W \otimes X) \otimes (Y \otimes Z)$$

The Pentagon Axiom

$$((W \otimes X) \otimes Y) \otimes Z$$

$$(W \otimes (X \otimes Y)) \otimes Z$$

$$(W \otimes (X \otimes Y)) \otimes Z$$

$$(W \otimes X) \otimes (Y \otimes Z)$$

$$\alpha_{W,X,Y,Z}$$

$$\alpha_{W,X,Y,Z}$$

$$W \otimes ((X \otimes Y) \otimes Z)$$

$$id_{W} \otimes \alpha_{X,Y,Z}$$

$$W \otimes (X \otimes Y) \otimes Z$$

$$W \otimes (X \otimes Y) \otimes Z$$

$$((\delta_{w} \otimes \delta_{x}) \otimes \delta_{y}) \otimes \delta_{z}$$

$$(\delta_{w} \otimes (\delta_{x} \otimes \delta_{y})) \otimes \delta_{z}$$

$$(\delta_{w} \otimes (\delta_{x} \otimes \delta_{y})) \otimes \delta_{z}$$

$$(\delta_{w} \otimes \delta_{x}) \otimes (\delta_{y} \otimes \delta_{z})$$

Building a Fusion Category

Example

Let G be a finite group. Let $\mathcal C$ be a fusion category over $\mathbb C$ with

- Simple objects labeled by δ_x , where $x \in G$.
- Tensor product given by $\delta_x \otimes \delta_y = \delta_{xy}$.
- The associativity constraint $\alpha_{\delta_x,\delta_y,\delta_z}: (\delta_x \otimes \delta_y) \otimes \delta_z \to \delta_x \otimes (\delta_y \otimes \delta_z)$ is parameterized by $\omega(x,y,z) \in \mathbb{C}$, where ω satisfies the **3-cocycle** condition

$$\omega(w,x,y)\omega(w,xy,z)\omega(x,y,z)=\omega(wx,y,z)\omega(w,x,yz)$$

for all $w, x, y, z \in G$.

Building a Fusion Category

Example

Let G be a finite group. Let C be a fusion category over $\mathbb C$ with

- Simple objects labeled by δ_x , where $x \in G$.
- Tensor product given by $\delta_x \otimes \delta_y = \delta_{xy}$.
- The associativity constraint $\alpha_{\delta_x,\delta_y,\delta_z}: (\delta_x \otimes \delta_y) \otimes \delta_z \to \delta_x \otimes (\delta_y \otimes \delta_z)$ is parameterized by $\omega(x,y,z) \in \mathbb{C}$, where ω satisfies the **3-cocycle** condition

$$\omega(w,x,y)\omega(w,xy,z)\omega(x,y,z)=\omega(wx,y,z)\omega(w,x,yz)$$

for all $w, x, y, z \in G$.

We can think of each δ_x as a "copy" of $\mathbb C$ labeled by x. The objects can then be seen as graded vector spaces, and morphisms are linear maps respecting the grading. (Thus the name of this category $\mathbb k$ -FdVect $_G^\omega$.)

Tambara-Yamagami Categories

Now add one non-invertible object M, with the additional fusion rules given by

$$\mathbb{C}_{\textbf{a}} \otimes \mathsf{M} = \mathsf{M} = \mathsf{M} \otimes \mathbb{C}_{\textbf{a}}, \quad \mathsf{M} \otimes \mathsf{M} = \bigoplus_{\textbf{a} \in G} \mathbb{C}_{\textbf{a}}.$$

Tambara-Yamagami Categories

Now add one non-invertible object M, with the additional fusion rules given by

$$\mathbb{C}_a \otimes M = M = M \otimes \mathbb{C}_a, \quad M \otimes M = \bigoplus_{a \in G} \mathbb{C}_a.$$

Question

What are all the coherent associativity constraints we can put given this fusion rule?

Tambara-Yamagami Categories

Theorem (Tambara and Yamagami, 1998)

Let G be a finite (abelian) group, χ be a nondegenerate symmetric bilinear form, and τ be a square root of $|G|^{-1}$. The Tambara-Yamagami category $TY(G,\chi,\tau)$ parameterizes all fusion categories with this fusion rule. The associativity constraints are given by:

$$\begin{split} &\alpha_{\mathbb{C}_a,\mathbb{C}_b,\mathbb{C}_c} = \mathsf{id}_{\mathbb{C}_{a+b+c}}, \quad \alpha_{\mathbb{C}_a,\mathbb{C}_b,\mathsf{M}} = \mathsf{id}_{\mathsf{M}}, \quad \alpha_{\mathsf{M},\mathbb{C}_a,\mathbb{C}_b} = \mathsf{id}_{\mathsf{M}}, \\ &\alpha_{\mathbb{C}_a,\mathsf{M},\mathbb{C}_b} = \chi(a,b)\mathsf{id}_{\mathsf{M}} \quad \alpha_{\mathsf{M},\mathsf{M},\mathbb{C}_a} = \bigoplus_{b \in G} \mathsf{id}_{\mathbb{C}_b}, \quad \alpha_{\mathbb{C}_a,\mathsf{M},\mathsf{M}} = \bigoplus_{b \in G} \mathsf{id}_{\mathbb{C}_b}, \\ &\alpha_{\mathsf{M},\mathbb{C}_a,\mathsf{M}} = \bigoplus_{b \in G} \chi(a,b)\mathsf{id}_{\mathbb{C}_{a+b}}, \quad \alpha_{\mathsf{M},\mathsf{M},\mathsf{M}} = \bigoplus_{a,b \in G} \tau \chi(a,b)^{-1}\mathsf{id}_{\mathsf{M}}. \end{split}$$

The Category $\mathsf{GLM}(G, \sigma, \omega, \delta, \epsilon)$

Add non-invertible objects $M_{\bar{x}}$ parameterized by $\bar{x} \in G/2G$, with tensor products given by

$$\mathbb{C}_{\textbf{\textit{a}}} \otimes \mathsf{M}_{\bar{x}} = \mathsf{M}_{\bar{x}+\bar{\textbf{\textit{a}}}} = \mathsf{M}_{\bar{x}} \otimes \mathbb{C}_{\textbf{\textit{a}}}, \quad \mathsf{M}_{\bar{x}} \otimes \mathsf{M}_{\bar{y}} = \bigoplus_{t \in \bar{x}+\bar{y}+\delta} \mathbb{C}_{t}.$$

The Category $\mathsf{GLM}(G, \sigma, \omega, \delta, \epsilon)$

Add non-invertible objects $M_{\bar{x}}$ parameterized by $\bar{x} \in G/2G$, with tensor products given by

$$\mathbb{C}_{\boldsymbol{a}} \otimes \mathsf{M}_{\bar{x}} = \mathsf{M}_{\bar{x} + \bar{\boldsymbol{a}}} = \mathsf{M}_{\bar{x}} \otimes \mathbb{C}_{\boldsymbol{a}}, \quad \mathsf{M}_{\bar{x}} \otimes \mathsf{M}_{\bar{y}} = \bigoplus_{t \in \bar{x} + \bar{y} + \delta} \mathbb{C}_{t}.$$

Theorem (Galindo, Lentner, and Möller, 2024)

Let (σ, ω) be an abelian 3-cocycle of a specific form, $\delta \in G/2G$, and ϵ be a sign choice. The following defines a coherent associativity structure:

$$\begin{split} \alpha_{\mathbb{C}_{\mathfrak{a}},\mathbb{C}_{b},\mathbb{C}_{c}} &= \omega(a,b,c) \mathrm{id}_{\mathbb{C}_{a+b+c}}, \quad \alpha_{\mathbb{C}_{\mathfrak{a}},\mathbb{C}_{b},\mathsf{M}_{\bar{x}}} = \omega(a+b+\bar{x},a,b) \mathrm{id}_{\mathsf{M}_{\bar{x}+a+b}}, \\ \alpha_{\mathsf{M}_{\bar{x}},\mathbb{C}_{\mathfrak{a}},\mathbb{C}_{b}} &= \omega(\bar{x}+\delta,a,b) \mathrm{id}_{\mathsf{M}_{\bar{x}+a+b}}, \quad \alpha_{\mathbb{C}_{\mathfrak{a}},\mathsf{M}_{\bar{x}},\mathbb{C}_{b}} = \sigma(a,b) \mathrm{id}_{\mathsf{M}_{a+\bar{x}+b}} \\ \alpha_{\mathsf{M}_{\bar{x}},\mathsf{M}_{\bar{y}},\mathbb{C}_{a}} &= \bigoplus_{t \in \bar{x}+\bar{y}+\delta} \omega(\bar{x},t,a) \mathrm{id}_{\mathbb{C}_{t+a}}, \quad \alpha_{\mathbb{C}_{\mathfrak{a}},\mathsf{M}_{\bar{x}},\mathsf{M}_{\bar{y}}} = \bigoplus_{t \in \bar{x}+\bar{y}+\delta} \omega(a+\bar{x},a,t) \mathrm{id}_{\mathbb{C}_{a+t}}, \\ \alpha_{\mathsf{M}_{\bar{x}},\mathbb{C}_{a},\mathsf{M}_{\bar{y}}} &= \bigoplus_{t \in \bar{x}+\bar{y}+\delta+a} \sigma(a,t) \mathrm{id}_{\mathbb{C}_{t}}, \\ \alpha_{\mathsf{M}_{\bar{x}},\mathsf{M}_{\bar{y}},\mathsf{M}_{\bar{z}}} &= \bigoplus_{t \in \bar{x}+\bar{y}+\delta,r\in\bar{y}+\bar{z}+\delta} \epsilon |2G|^{-\frac{1}{2}} \sigma(t,r)^{-1} \mathrm{id}_{\mathsf{M}_{\bar{x}+\bar{y}+\bar{z}+\delta}}. \end{split}$$

Definition (Drinfeld Center, vague)

The Drinfeld center of a fusion category C, $\mathcal{Z}(C)$, contains objects in the forms of (X, γ) , where $X \in C$ and the half-braiding γ is a family of maps

$$\{\gamma_Y: Y \otimes X \xrightarrow{\sim} X \otimes Y\}_{Y \in \mathcal{C}}.$$

This subjects to some naturality conditions (omitted).

Definition (Drinfeld Center, vague)

The Drinfeld center of a fusion category C, $\mathcal{Z}(C)$, contains objects in the forms of (X, γ) , where $X \in C$ and the half-braiding γ is a family of maps

$$\{\gamma_Y: Y \otimes X \xrightarrow{\sim} X \otimes Y\}_{Y \in \mathcal{C}}.$$

This subjects to some naturality conditions (omitted).

Definition (Graded Fusion Category)

Let G be a finite group. A fusion category $\mathcal C$ is G-graded if there is a decomposition

$$\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$$

satisfying $\otimes : \mathcal{C}_{g} \times \mathcal{C}_{h} \to \mathcal{C}_{gh}$.

• We can define an **action** of a finite group on a category via a functor $F: Cat(G) \to Aut(C)$.

- We can define an **action** of a finite group on a category via a functor $F : Cat(G) \to Aut(C)$.
- Each object in the **equivariantization** of C, C^G , is a pair (X, u), where $X \in C$ and $u = \{u_g : g.X \xrightarrow{\sim} X\}_{g \in G}$.

- We can define an **action** of a finite group on a category via a functor $F: Cat(G) \to Aut(C)$.
- Each object in the **equivariantization** of \mathcal{C} , $\mathcal{C}^{\mathcal{G}}$, is a pair (X, u), where $X \in \mathcal{C}$ and $u = \{u_g : g.X \xrightarrow{\sim} X\}_{g \in \mathcal{G}}$.
- Each object in the **relative center** of \mathcal{C} , $\mathcal{Z}_{\mathcal{C}_e}(\mathcal{C})$, is a pair (X, γ) , where $X \in \mathcal{C}$ and $\gamma = \{\gamma_Y : Y \otimes X \xrightarrow{\sim} X \otimes Y\}_{Y \in \mathcal{C}_e}$.

Theorem (Gelaki, Naidu, and Nikshych, 2001)

The relative center $\mathcal{Z}_{\mathcal{C}_e}(\mathcal{C})$ has a canonical braided G-crossed structure. Furthermore, there is an equivalence of braided fusion categories

$$\mathcal{Z}_{\mathcal{C}_e}(\mathcal{C})^G \xrightarrow{\sim} \mathcal{Z}(\mathcal{C}).$$

Our Results

Theorem

Let $\mathcal{C} = \mathsf{GLM}(G, \sigma, \omega, \delta, \epsilon)$. The following is a complete list of simple objects of $\mathcal{Z}_{\mathcal{D}}(\mathcal{C})^{\mathbb{Z}/2\mathbb{Z}} \cong \mathcal{Z}(\mathcal{C})$.

- $2|G||G_2|$ objects of dimension 1 parameterized by an ordered tuple (a,b,ν) , where $a+b\in G_2$ and $\nu\in\{\pm 1\}$. The corresponding simple object is $\mathbb{C}_{(a,b)}$. The $\mathbb{Z}/2\mathbb{Z}$ -equivariant structure is given by $u_g=\nu\sqrt{\gamma_{g,g}(\mathbb{C}_{(a,b)})}$ id.
- $[G:2G] \cdot |G|$ objects of dimension 2 parameterized by an ordered tuple (\bar{x},u,Δ) , where $\bar{x} \in G/2G$, $u \in G$, and $\Delta \in \{\pm 1\}$. The corresponding simple object is $M_{(\bar{x},u)}$. The $\mathbb{Z}/2\mathbb{Z}$ -equivariant structure is given by $u_g = \Delta \sqrt{\gamma_{g,g}(M_{(\bar{x},u)})}$ id.
- $\frac{|G|(|G|-|G_2|)}{2}$ objects of dimension $\sqrt{|2G|}$ parameterized by an unordered pair (a,b), where $a,b\in G$ and $a+b\neq G_2$. The corresponding simple object is $\mathbb{C}_{(a,b)}\oplus\mathbb{C}_{(-a-2b,b)}$. The $\mathbb{Z}/2\mathbb{Z}$ -equivariant structure is given by $u_g=\gamma_{g,g}(\mathbb{C}_{(a,b)})\mathrm{id}_{\mathbb{C}_{(a,b)}}\oplus\mathrm{id}_{\mathbb{C}_{(-a-2b,b)}}$.

Bibliography I

- Bruillard, Paul et al. (2014). On Modular Categories.

 https://web.math.ucsb.edu/~zhenghwa/data/course/lecture_
 notes/Chap5.pdf. Date: August 29, 2014.
- Etingof, Pavel et al. (2015). *Tensor Categories*. Vol. 205. Mathematical Surveys and Monographs. American Mathematical Society.
- Galindo, César, Simon Lentner, and Sven Möller (2024). "Modular Z₂-Crossed Tambara-Yamagami-like Categories for Even Groups". In: *Preprint: arXiv 2411.12251*. arXiv: 2411.12251 [math.QA]. URL: https://arxiv.org/abs/2411.12251.
- Gelaki, Shlomo, Deepak Naidu, and Dmitri Nikshych (2009). "Centers of Graded Fusion Categories". In: *Algebra & Number Theory* 3.8, pp. 959–990.

Bibliography II

Tambara, Daisuke and Shigeru Yamagami (1998). "Tensor Categories with Fusion Rules of Self-Duality for Finite Abelian Groups". In: Journal of Algebra 209.2, pp. 692–707. ISSN: 0021-8693. DOI: https://doi.org/10.1006/jabr.1998.7558. URL: https://www.

sciencedirect.com/science/article/pii/S0021869398975585.

Walton, Chelsea (2024). Symmetries of Algebras, Vol. 1. 619 Wreath Publishing.

Acknowledgment

I would like to thank:

- My mentors Prof. Monique Müller and Prof. Julia Plavnik for suggesting this project, answering my questions, organizing the meetings, providing invaluable feedback, and offering encouragement.
- The MIT Math Department and the PRIMES program for providing me with the opportunity to work on this project.
- My parents for their support.

