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Motivation

Fusion categories can be thought of as a generalization of finite
groups.

Modular tensor categories = fusion category + braiding + twist +
nondegeneracy.

Physically, modular tensor categories have applications in describing
anyons in topological quantum phases of matter.

Mathematically, the twist and braiding structures in modular
categories form S and T matrices. This encodes a projective
representation of the modular group SL(2,Z) by sending[

0 −1
1 0

]
7→ S ,

[
1 1
0 1

]
7→ T .

Applications in topological quantum field theory and representation
theory of quantum groups.

How to construct examples of modular tensor categories?
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Motivation

Equipping each object X in a fusion category C with a family of
half-braiding isomorphisms {γY : Y ⊗ X

∼−→ X ⊗ Y }Y∈C constructs
the Drinfeld center.

Theorem (Müger, 2001)

Let k be an algebraically closed field and let C be a spherical fusion
category. Then Z(C), the Drinfeld Center of C, is a modular category.

The Tambara-Yamagami category is one of the few fusion categories
with all data explicitly computed.

A paper by Gelaki, Naidu, and Nikshych provides a technique to
compute the center of a graded fusion category. As an example, they
computed the center of the Tambara-Yamagami category.

This project is about using this technique to compute the center of a
Tambara-Yamagami-like category defined in a paper by Galindo,
Lentner, and Möller.
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Introduction to Categories

Many times in math, we study objects and maps between the objects.
▶ Sets and functions between sets.
▶ Groups and group homomorphisms.
▶ Topological spaces and continuous maps.

Definition (Categories)

A category consists of a collection of objects and morphisms, in which
we can compose morphisms, there exists an identity morphism for each
object, and the composition of morphisms is associative.

X Y

Z

idX

f

g◦f

idY

g

idZ
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Example of Categories

Example

The category FdVect (over k).
Objects: finite-dimensional vector spaces.

Morphisms: linear maps between vector spaces.

What desirable properties of FdVect do we have?
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Fusion Categories: definition via an example

A fusion category is a category C equipped with following structures:

Direct sum: ⊕ between vector spaces.

Tensor product: ⊗ between vector spaces.

Associativity constraint: an isomorphism

(k⊗ k)⊗ k ∼−→ k⊗ (k⊗ k).

Satisfying the following properties:

Abelianess: for a linear map T , ker(T ) ∈ FdVect, im(T ) ∈ FdVect.

Semisimplicity: V ∼= k⊕ k⊕ ...⊕ k︸ ︷︷ ︸
dimV

.

Finite: V is finite dimensional.

k-linearity: Hom(V ,W ) ∈ FdVect.

Duality: exists the dual vector space V ∗, for ϕ ∈ V ∗, v ∈ V ,
ϕ(v) ∈ k.
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Schur’s Lemma

Lemma (Schur’s Lemma)

If C is abelian, k-linear and finite, when k is algebraically closed,
HomC(X ,Y ) ∼= k if X ∼= Y and HomC(X ,Y ) = 0 otherwise.

Example

In FdVect, a linear map T : k → k is determined by a scalar.

Example

In FdRep(G ), any G -linear map between two irreducible representations is
either 0 or a multiple of the identity.
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Building a Fusion Category

Example

Let G be a finite group. Let C be a fusion category over C with

Simple objects labeled by δx , where x ∈ G .

Tensor product given by δx ⊗ δy = δxy .

Question

What choices do we have for the associativity constraint

αδx ,δy ,δz : (δx ⊗ δy )⊗ δz → δx ⊗ (δy ⊗ δz)
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The Pentagon Axiom

((W ⊗ X )⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗ X )⊗ (Y ⊗ Z )

W ⊗ ((X ⊗ Y )⊗ Z ) W ⊗ (X ⊗ (Y ⊗ Z ))

αW ,X ,Y⊗idZ αW⊗X ,Y ,Z

αW ,X⊗Y ,Z αW ,X ,Y⊗Z

idW⊗αX ,Y ,Z

((δw ⊗ δx)⊗ δy )⊗ δz

(δw ⊗ (δx ⊗ δy ))⊗ δz (δw ⊗ δx)⊗ (δy ⊗ δz)

δw ⊗ ((δx ⊗ δy )⊗ δz) δw ⊗ (δx ⊗ (δy ⊗ δz))

ω(w ,x ,y) ω(wx ,y ,z)

ω(w ,xy ,z) ω(w ,x ,yz)

ω(x ,y ,z)
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Building a Fusion Category

Example

Let G be a finite group. Let C be a fusion category over C with

Simple objects labeled by δx , where x ∈ G .

Tensor product given by δx ⊗ δy = δxy .

The associativity constraint αδx ,δy ,δz : (δx ⊗ δy )⊗ δz → δx ⊗ (δy ⊗ δz)
is parameterized by ω(x , y , z) ∈ C, where ω satisfies the 3-cocycle
condition

ω(w , x , y)ω(w , xy , z)ω(x , y , z) = ω(wx , y , z)ω(w , x , yz)

for all w , x , y , z ∈ G .

We can think of each δx as a “copy” of C labeled by x . The objects can
then be seen as graded vector spaces, and morphisms are linear maps
respecting the grading. (Thus the name of this category k-FdVectωG .)
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Tambara-Yamagami Categories

Now add one non-invertible object M, with the additional fusion rules
given by

Ca ⊗M = M = M⊗ Ca, M⊗M =
⊕
a∈G

Ca.

Question

What are all the coherent associativity constraints we can put given this
fusion rule?
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Tambara-Yamagami Categories

Theorem (Tambara and Yamagami, 1998)

Let G be a finite (abelian) group, χ be a nondegenerate symmetric bilinear
form, and τ be a square root of |G |−1. The Tambara-Yamagami category
TY(G , χ, τ) parameterizes all fusion categories with this fusion rule. The
associativity constraints are given by:

αCa,Cb,Cc = idCa+b+c
, αCa,Cb,M = idM, αM,Ca,Cb

= idM,

αCa,M,Cb
= χ(a, b)idM αM,M,Ca =

⊕
b∈G

idCb
, αCa,M,M =

⊕
b∈G

idCb
,

αM,Ca,M =
⊕
b∈G

χ(a, b)idCa+b
, αM,M,M =

⊕
a,b∈G

τχ(a, b)−1idM.
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The Category GLM(G , σ, ω, δ, ϵ)
Add non-invertible objects Mx̄ parameterized by x̄ ∈ G/2G , with tensor
products given by

Ca ⊗Mx̄ = Mx̄+ā = Mx̄ ⊗ Ca, Mx̄ ⊗Mȳ =
⊕

t∈x̄+ȳ+δ

Ct .

Theorem (Galindo, Lentner, and Möller, 2024)

Let (σ, ω) be an abelian 3-cocycle of a specific form, δ ∈ G/2G, and ϵ be
a sign choice. The following defines a coherent associativity structure:

αCa,Cb,Cc = ω(a, b, c)idCa+b+c
, αCa,Cb,Mx̄ = ω(a+ b + x̄ , a, b)idMx̄+a+b

,

αMx̄ ,Ca,Cb
= ω(x̄ + δ, a, b)idMx̄+a+b

, αCa,Mx̄ ,Cb
= σ(a, b)idMa+x̄+b

αMx̄ ,Mȳ ,Ca =
⊕

t∈x̄+ȳ+δ

ω(x̄ , t, a)idCt+a , αCa,Mx̄ ,Mȳ =
⊕

t∈x̄+ȳ+δ

ω(a+ x̄ , a, t)idCa+t ,

αMx̄ ,Ca,Mȳ =
⊕

t∈x̄+ȳ+δ+a

σ(a, t)idCt ,

αMx̄ ,Mȳ ,Mz̄ =
⊕

t∈x̄+ȳ+δ,r∈ȳ+z̄+δ

ϵ|2G |− 1
2σ(t, r)−1idMx̄+ȳ+z̄+δ

.
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An Overview of the Gelaki-Naidu-Nikshych Technique

Definition (Drinfeld Center, vague)

The Drinfeld center of a fusion category C, Z(C), contains objects in the
forms of (X , γ), where X ∈ C and the half-braiding γ is a family of maps

{γY : Y ⊗ X
∼−→ X ⊗ Y }Y∈C .

This subjects to some naturality conditions (omitted).

Definition (Graded Fusion Category)

Let G be a finite group. A fusion category C is G -graded if there is a
decomposition

C =
⊕
g∈G

Cg

satisfying ⊗ : Cg × Ch → Cgh.
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{γY : Y ⊗ X
∼−→ X ⊗ Y }Y∈C .

This subjects to some naturality conditions (omitted).

Definition (Graded Fusion Category)

Let G be a finite group. A fusion category C is G -graded if there is a
decomposition

C =
⊕
g∈G

Cg

satisfying ⊗ : Cg × Ch → Cgh.
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An Overview of the Gelaki-Naidu-Nikshych Technique

We can define an action of a finite group on a category via a functor
F : Cat(G ) → Aut(C).

Each object in the equivariantization of C, CG , is a pair (X , u),
where X ∈ C and u = {ug : g .X

∼−→ X}g∈G .
Each object in the relative center of C, ZCe (C), is a pair (X , γ),
where X ∈ C and γ = {γY : Y ⊗ X

∼−→ X ⊗ Y }Y∈Ce .

Theorem (Gelaki, Naidu, and Nikshych, 2001)

The relative center ZCe (C) has a canonical braided G-crossed structure.
Furthermore, there is an equivalence of braided fusion categories

ZCe (C)G
∼−→ Z(C).
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Our Results

Theorem

Let C = GLM(G , σ, ω, δ, ϵ). The following is a complete list of simple objects of
ZD(C)Z/2Z ∼= Z(C).

2|G ||G2| objects of dimension 1 parameterized by an ordered tuple (a, b, ν),
where a+ b ∈ G2 and ν ∈ {±1}. The corresponding simple object is C(a,b).

The Z/2Z-equivariant structure is given by ug = ν
√
γg ,g (C(a,b))id.

[G : 2G ] · |G | objects of dimension 2 parameterized by an ordered tuple
(x̄ , u,∆), where x̄ ∈ G/2G, u ∈ G, and ∆ ∈ {±1}. The corresponding
simple object is M(x̄,u). The Z/2Z-equivariant structure is given by

ug = ∆
√
γg ,g (M(x̄,u))id.

|G |(|G |−|G2|)
2 objects of dimension

√
|2G | parameterized by an unordered pair

(a, b), where a, b ∈ G and a+ b ̸= G2. The corresponding simple object is
C(a,b) ⊕ C(−a−2b,b). The Z/2Z-equivariant structure is given by
ug = γg ,g (C(a,b))idC(a,b)

⊕ idC(−a−2b,b)
.
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