Bounds on the Distinguishing (Chromatic) Number of Posets

Aiden Jeong Mentor: Yunseo Choi

Branham High School

October 18, 2025 MIT PRIMES Conference

Posets

ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq

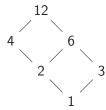
- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if a > b and no c with a > c > b

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if a > b and no c with a > c > b
- ullet Chains T (of length |T|-1) are totally ordered subsets of S

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- ullet Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

Posets

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

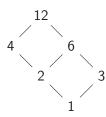


Posets

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

Example: L_{12}

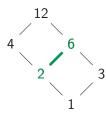
Divisors of 12 ordered by divisibility



Posets

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

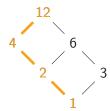
- Divisors of 12 ordered by divisibility
- 6 > 2



Posets

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

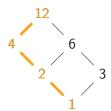
- Divisors of 12 ordered by divisibility
- 6 > 2
- $1 \leq 2 \leq 4 \leq 12$ is a chain



Posets

- ullet A poset P is a set S with a transitive, reflexive, antisymmetric order \preceq
- a covers b (denoted a > b) if $a \succ b$ and no c with $a \succ c \succ b$
- Chains T (of length |T|-1) are totally ordered subsets of S
- Height h(P) is the maximum chain length

- Divisors of 12 ordered by divisibility
- 6 > 2
- $1 \leq 2 \leq 4 \leq 12$ is a chain
- $h(L_{12}) = 3$

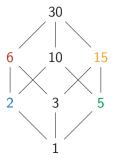


Poset Automorphisms

• Automorphisms of $P = (S, \preceq)$ are order-preserving bijections of S

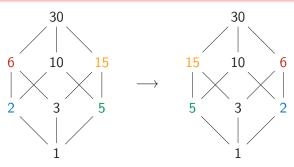
Poset Automorphisms

ullet Automorphisms of $P=(S,\preceq)$ are order-preserving bijections of S



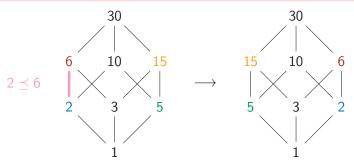
Poset Automorphisms

• Automorphisms of $P = (S, \preceq)$ are order-preserving bijections of S



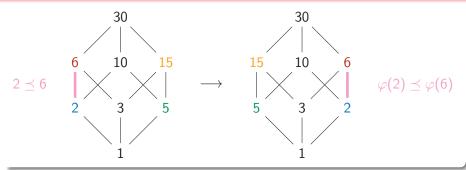
Poset Automorphisms

• Automorphisms of $P = (S, \preceq)$ are order-preserving bijections of S



Poset Automorphisms

• Automorphisms of $P = (S, \preceq)$ are order-preserving bijections of S



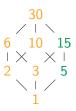
Distinguishing Colorings c

• Colorings of P preserved by no nontrivial automorphisms

Distinguishing Colorings c

Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L_{30}



Distinguishing Colorings c

Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L_{30}

• $\varphi(6) = 15$

Distinguishing Colorings c

Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L_{30}

$$\begin{array}{c} 30 \\ / | \\ 6 \\ 10 \\ 15 \\ | \times \times | \\ 2 \\ 3 \\ 5 \\ | / \\ 1 \end{array}$$

• $\varphi(6) = 15$

The Distinguishing Number D(P)

 \bullet The minimum number of colors in a distinguishing coloring of P

Distinguishing Chromatic Colorings c

 Distinguishing colorings of P where comparable elements are colored differently

Distinguishing Chromatic Colorings c

 Distinguishing colorings of P where comparable elements are colored differently

Example: A Distinguishing Chromatic Coloring of L_{30}

Distinguishing, not Chromatic

Distinguishing Chromatic Colorings c

 Distinguishing colorings of P where comparable elements are colored differently

Example: A Distinguishing Chromatic Coloring of L_{30}

Distinguishing, not Chromatic

Distinguishing and Chromatic

Distinguishing Chromatic Colorings c

 Distinguishing colorings of P where comparable elements are colored differently

Example: A Distinguishing Chromatic Coloring of L_{30}

Distinguishing, not Chromatic

Distinguishing and Chromatic

The Distinguishing Chromatic Number $\chi_D(P)$

ullet The least number of colors in a distinguishing chromatic coloring of P

Summary of Results

Notation

• Let P be a poset, L a lattice, and M a distributive lattice

Summary of Results

Notation

ullet Let P be a poset, L a lattice, and M a distributive lattice

Summary of Results

Quantity	Previous Upper Bound	Our Upper Bound
D(P)	$1 + \lfloor \log_2 \operatorname{Aut}(P) \rfloor$ (Choi, 2022)	$1 + \left\lceil \frac{\log_2 \operatorname{Aut}(P) }{f(P)} \right\rceil$
D(L)	-	$ Q_L -h(L)+2$
$\chi_D(L)$	-	$h(L) + \chi_D(Q_L)$
D(M)	2 (Collins & Trenk, 2021)	-
$\chi_D(M)$	$ Q_M + \chi_D(Q_M) - 1$ (Collins & Trenk, 2021)	$ Q_M + k$

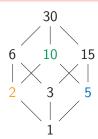
Lattices L

• Posets where any two elements of L have a least upper bound (their $join \lor$) and a greatest lower bound (their $meet \land$) in L

Lattices L

• Posets where any two elements of L have a least upper bound (their $join \lor$) and a greatest lower bound (their $meet \land$) in L

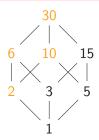
Example: Least Upper Bound for L_{30}



Lattices L

 Posets where any two elements of L have a least upper bound (their join ∨) and a greatest lower bound (their meet ∧) in L

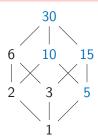
Example: Least Upper Bound for L_{30}



Lattices L

 Posets where any two elements of L have a least upper bound (their join ∨) and a greatest lower bound (their meet ∧) in L

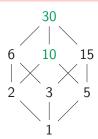
Example: Least Upper Bound for L_{30}



Lattices L

 Posets where any two elements of L have a least upper bound (their join ∨) and a greatest lower bound (their meet ∧) in L

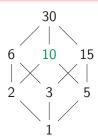
Example: Least Upper Bound for L_{30}



Lattices L

 Posets where any two elements of L have a least upper bound (their join ∨) and a greatest lower bound (their meet ∧) in L

Example: Least Upper Bound for L_{30}



Join-Irreducible Elements

Join-Irreducibles Elements

• Elements of lattice L that cover exactly one element

Join-Irreducible Elements

Join-Irreducibles Elements

- Elements of lattice L that cover exactly one element
- Q_L is the induced poset of join-irreducibles of lattice L

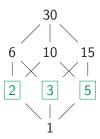
Join-Irreducible Elements

Join-Irreducibles Elements

- Elements of lattice L that cover exactly one element
- Q_L is the induced poset of join-irreducibles of lattice L

Example: Join-Irreducibles of L_{30}

• The join-irreducibles of L_{30} are 2, 3, and 5



Results for Lattices I

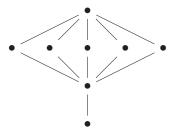
Theorem (J., 2025)

For lattices L, we have $D(L) \leq |Q_L| - h(L) + 2$.

Theorem (J., 2025)

For lattices L, we have $D(L) \leq |Q_L| - h(L) + 2$.

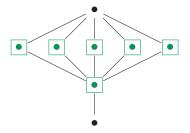
Example: An Equality Case



Theorem (J., 2025)

For lattices L, we have $D(L) \leq |Q_L| - h(L) + 2$.

Example: An Equality Case

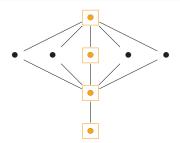


• $|Q_L| = 6$

Theorem (J., 2025)

For lattices L, we have $D(L) \leq |Q_L| - h(L) + 2$.

Example: An Equality Case

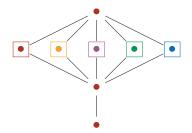


- $|Q_L| = 6$
- h(L) = 3

Theorem (J., 2025)

For lattices L, we have $D(L) \leq |Q_L| - h(L) + 2$.

Example: An Equality Case



- $|Q_L| = 6$
- h(L) = 3
- D(L) = 5

Theorem (J., 2025)

For lattices L, we have $\chi_D(L) \leq h(L) + \chi_D(Q_L)$.

Theorem (J., 2025)

For lattices L, we have $\chi_D(L) \leq h(L) + \chi_D(Q_L)$.

• Cannot replace either term with a constant

Distributive Lattices

• Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Distributive Lattices

• Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Example: Distributive and Non-Distributive Lattices

• L₃₀ is distributive

Distributive Lattices

Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Example: Distributive and Non-Distributive Lattices

- L₃₀ is distributive
- The modular lattice is not distributive:

Distributive Lattices

Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Example: Distributive and Non-Distributive Lattices

- L₃₀ is distributive
- The modular lattice is not distributive:

Distributive Lattices

Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Example: Distributive and Non-Distributive Lattices

- L₃₀ is distributive
- The modular lattice is not distributive:

• $c \wedge (b \vee d) = c \wedge a = c$

Distributive Lattices

Lattices M where all elements a, b, c satisfy

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Example: Distributive and Non-Distributive Lattices

- L₃₀ is distributive
- The modular lattice is not distributive:

- $c \wedge (b \vee d) = c \wedge a = c$
- $(c \wedge b) \vee (c \wedge d) = e \vee d = d$

Theorem (Collins & Trenk, 2021)

For a distributive lattice M such that $\chi_D(Q_M) \geq 3$, we have

$$\chi_D(M) \leq |Q_M| + \chi_D(Q_M) - 1.$$

Theorem (Collins & Trenk, 2021)

For a distributive lattice M such that $\chi_D(Q_M) \geq 3$, we have

$$\chi_D(M) \leq |Q_M| + \chi_D(Q_M) - 1.$$

Theorem (J., 2025)

If M is a distributive lattice, we have $\chi_D(M) \leq |Q_M| + k$, where

$$k = egin{cases} 1 & \textit{if} \mid \mathsf{max}(Q_M) ert = 1, \ 2 & \textit{if} \mid \mathsf{max}(Q_M) ert
eq 1, 4, \ 3 & \textit{if} \mid \mathsf{max}(Q_M) ert = 4. \end{cases}$$

Theorem (Collins & Trenk, 2021)

For a distributive lattice M such that $\chi_D(Q_M) \geq 3$, we have

$$\chi_D(M) \leq |Q_M| + \chi_D(Q_M) - 1.$$

Theorem (J., 2025)

If M is a distributive lattice, we have $\chi_D(M) \leq |Q_M| + k$, where

$$k = egin{cases} 1 & \textit{if} \mid \max(Q_M) \mid = 1, \ 2 & \textit{if} \mid \max(Q_M) \mid \neq 1, 4, \ 3 & \textit{if} \mid \max(Q_M) \mid = 4. \end{cases}$$

• Stronger except when $\chi_D(Q_M)=2$ and $|\max(Q_M)|=4$ or $\chi_D(Q_M)=3$ and $|\max(Q_M)|=4$

Corollary

For a distributive lattice M with $|\max(Q_M)| \neq 1, 4$, we have $\chi_D(M) \leq |Q_M| + 2$.

Corollary

For a distributive lattice M with $|\max(Q_M)| \neq 1, 4$, we have $\chi_D(M) \leq |Q_M| + 2$.

• Sharp for L_n when n has at least 4 prime factors and prime exponents are not all distinct

Corollary

For a distributive lattice M with $|\max(Q_M)| \neq 1, 4$, we have $\chi_D(M) \leq |Q_M| + 2$.

• Sharp for L_n when n has at least 4 prime factors and prime exponents are not all distinct

Example: $\chi_D(L_{30})$



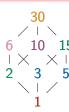
Corollary

For a distributive lattice M with $|\max(Q_M)| \neq 1, 4$, we have $\chi_D(M) \leq |Q_M| + 2$.

• Sharp for L_n when n has at least 4 prime factors and prime exponents are not all distinct

Example: $\chi_D(L_{30})$

• $\chi_D(M) = 5$



Corollary

For a distributive lattice M with $|\max(Q_M)| \neq 1, 4$, we have $\chi_D(M) \leq |Q_M| + 2$.

• Sharp for L_n when n has at least 4 prime factors and prime exponents are not all distinct

Example: $\chi_D(L_{30})$

- $\chi_D(M) = 5$
- $|\max(Q_M)| = 3$

Acknowledgments

I am grateful to my mentor Yunseo Choi for suggesting this project, guiding me through my research, and providing valuable feedback and advice. I would like to sincerely thank the PRIMES-USA program and its directors Dr. Tanya Khovanova, Dr. Pavel Etingof, and Dr. Slava Gerovitch for the opportunity to work on this project.

13 / 15

References I

- [AC96] M. Albertson and K. Collins. "Symmetry Breaking in Graphs". In: *Electron. J. Combin.* **3** (1996).
- [BC04] B. Bogstad and L. Cowen. "The Distinguishing Number of the Hypercube". In: Discrete Math. 283 (2004).
- [Cho22] Y. Choi. *On the Distinguishing (Chromatic) Number of Posets.* working paper. 2022.
- [CS13] M. Cavers and K. Seyffarth. "Graphs With Large Distinguishing Chromatic Number". In: Electron. J. Combin. (2013), P19–P19.
- [CT06] K. Collins and A. Trenk. "The Distinguishing Chromatic Number". In: *Electron. J. Combin.* (2006), R16–R16.
- [CT21] K. Collins and A. Trenk. "The Distinguishing Number and Distinguishing Chromatic Number for Posets". In: Order (2021).

References II

- [DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. 2nd ed. Cambridge Univ. Press, 2002.
- [KT09] M. Hovey K. Collins and A. Trenk. "Bounds on the Distinguishing Chromatic Number". In: Electron. J. Combin. 16 (2009).
- [WT07] S. Klavžar W. Imrich and V. Trofimov. "Distinguishing Infinite Graphs". In: *Electron. J. Combin.* (2007), R36–R36.