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Posets

Posets

A poset P is a set S with a transitive, reflexive, antisymmetric order ⪯
a covers b (denoted a⋗ b) if a ≻ b and no c with a ≻ c ≻ b

Chains T (of length |T | − 1) are totally ordered subsets of S

Height h(P) is the maximum chain length

Example: L12

Divisors of 12 ordered by
divisibility

6⋗ 2

1 ⪯ 2 ⪯ 4 ⪯ 12 is a chain

h(L12) = 3
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Automorphisms of Posets

Poset Automorphisms

Automorphisms of P = (S ,⪯) are order-preserving bijections of S

Example: A Poset Automorphism φ of L30

30

6 10 15

2 3 5

1

2 ⪯ 6

−→

30

15 10 6

5 3 2

1

φ(2) ⪯ φ(6)
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The Distinguishing Number of a Poset

Distinguishing Colorings c

Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L30

30

6 10 15

2 3 5

1

φ(6) = 15

The Distinguishing Number D(P)

The minimum number of colors in a distinguishing coloring of P
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The Distinguishing Chromatic Number of a Poset

Distinguishing Chromatic Colorings c

Distinguishing colorings of P where comparable elements are colored
differently

Example: A Distinguishing Chromatic Coloring of L30

30

6 10 15

2 3 5

1

Distinguishing, not Chromatic

30

6 10 15

2 3 5

1

Distinguishing and Chromatic

The Distinguishing Chromatic Number χD(P)

The least number of colors in a distinguishing chromatic coloring of P
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Summary of Results

Notation

Let P be a poset, L a lattice, and M a distributive lattice

Summary of Results

Quantity Previous Upper Bound Our Upper Bound

D(P)
1 + ⌊log2 |Aut(P)|⌋

(Choi, 2022)
1 +

⌈
log2 |Aut(P)|

f (P)

⌉
D(L) - |QL| − h(L) + 2

χD(L) - h(L) + χD(QL)

D(M)
2

(Collins & Trenk, 2021)
-

χD(M)
|QM |+ χD(QM)− 1

(Collins & Trenk, 2021)
|QM |+ k
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Lattices

Lattices L

Posets where any two elements of L have a least upper bound (their
join ∨) and a greatest lower bound (their meet ∧) in L

Example: Least Upper Bound for L30

10 = 2 ∨ 5
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Join-Irreducible Elements

Join-Irreducibles Elements

Elements of lattice L that cover exactly one element

QL is the induced poset of join-irreducibles of lattice L

Example: Join-Irreducibles of L30
The join-irreducibles of L30 are 2, 3, and 5

30

6 10 15

2 3 5

1
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Results for Lattices I

Theorem (J., 2025)

For lattices L, we have D(L) ≤ |QL| − h(L) + 2.

Example: An Equality Case

•

•

• • • • •

•

•

• • • • •

•

•

•

•

• • • • •

•

•

•

|QL| = 6

h(L) = 3

D(L) = 5
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Results for Lattices II

Theorem (J., 2025)

For lattices L, we have χD(L) ≤ h(L) + χD(QL).

Cannot replace either term with a constant
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Distributive Lattices

Distributive Lattices

Lattices M where all elements a, b, c satisfy

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

Example: Distributive and Non-Distributive Lattices

L30 is distributive

The modular lattice is not distributive:
a

b
c

d

e

c ∧ (b ∨ d) = c ∧ a = c

(c ∧ b) ∨ (c ∧ d) = e ∨ d = d
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Results for Distributive Lattices I

Theorem (Collins & Trenk, 2021)

For a distributive lattice M such that χD(QM) ≥ 3, we have

χD(M) ≤ |QM |+ χD(QM)− 1.

Theorem (J., 2025)

If M is a distributive lattice, we have χD(M) ≤ |QM |+ k, where

k =


1 if |max(QM)| = 1,

2 if |max(QM)| ̸= 1, 4,

3 if |max(QM)| = 4.

Stronger except when χD(QM) = 2 and |max(QM)| = 4 or
χD(QM) = 3 and |max(QM)| = 4

Bounds on the Distinguishing (Chromatic) Number of Posets Distributive Lattices 11 / 15
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Results for Distributive Lattices II

Corollary

For a distributive lattice M with |max(QM)| ̸= 1, 4, we have
χD(M) ≤ |QM |+ 2.

Sharp for Ln when n has at least 4 prime factors and prime exponents
are not all distinct

Example: χD(L30)

χD(M) = 5

|max(QM)| = 3

30

6 10 15

2 3 5

1
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