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@ a covers b (denoted a> b) if a>- b and no c with a>>c > b
@ Chains T (of length | T| — 1) are totally ordered subsets of S

o Height h(P) is the maximum chain length

Example: L

@ Divisors of 12 ordered by
divisibility
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Posets

Posets

o A poset P is a set S with a transitive, reflexive, antisymmetric order <

@ a covers b (denoted a> b) if a>- b and no c with a>>c > b
@ Chains T (of length | T| — 1) are totally ordered subsets of S

o Height h(P) is the maximum chain length

Example: L

@ Divisors of 12 ordered by

divisibility
e 6>2
0 1<2=<4<12isa chain
e h(Lip)=3
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Automorphisms of Posets

Poset Automorphisms

e Automorphisms of P = (S, <) are order-preserving bijections of S
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Automorphisms of Posets

Poset Automorphisms

e Automorphisms of P = (S, <) are order-preserving bijections of S

Example: A Poset Automorphism ¢ of Lsg
30 30
1N AN
6 10 10 6
XX = [X X]
2 3 5 5 3 2
NV
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The Distinguishing Number of a Poset

Distinguishing Colorings ¢
@ Colorings of P preserved by no nontrivial automorphisms

Bounds on the Dis Chromatic) Number o s Background 3/15



The Distinguishing Number of a Poset

Distinguishing Colorings ¢
@ Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L3g

VAN
15
X X
5
N/

Bounds on the Distin g (Chromatic) Number of Posets Background 3/15



The Distinguishing Number of a Poset

Distinguishing Colorings ¢
@ Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L3g

VAN
15
X X
5
N/

° p(0) =15

Bounds on the Distinguishing (Chromatic) Number of Posets Background 3/15



The Distinguishing Number of a Poset

Distinguishing Colorings ¢
@ Colorings of P preserved by no nontrivial automorphisms

Example: A Distinguishing Coloring of L3g
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5
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° ¢(0) =15

The Distinguishing Number D(P)

@ The minimum number of colors in a distinguishing coloring of P
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differently

Example: A Distinguishing Chromatic Coloring of Lzg
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The Distinguishing Chromatic Number of a Poset

Distinguishing Chromatic Colorings ¢

@ Distinguishing colorings of P where comparable elements are colored
differently

Example: A Distinguishing Chromatic Coloring of Lzg

VRN VRN
15 10 15
I X X I X X
5 2 3 5
N/ AN \1 /
Distinguishing, not Chromatic Distinguishing and Chromatic

The Distinguishing Chromatic Number xp(P)

@ The least number of colors in a distinguishing chromatic coloring of P
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Summary of Results

Notation
@ Let P be a poset, L a lattice, and M a distributive lattice
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Summary of Results

Notation
@ Let P be a poset, L a lattice, and M a distributive lattice

Summary of Results

] Quantity H Previous Upper Bound \ Our Upper Bound ‘

1+ [logy [Aut(P)|] log, |Aut(P)|
b(P) (Choi, 2022) 1+ [ ) 1
D(L) - |Qul — h(L) +2
xp(L) - h(L) + xp(QL)

2

D(M) (Collins & Trenk, 2021) )

|Qm| + xp(Qm) — 1
Xo(M) | Collins & Trenk, 2021) |Qu| + K
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Lattices

Lattices L

@ Posets where any two elements of L have a least upper bound (their
Join V) and a greatest lower bound (their meet A) in L
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Join-Irreducible Elements
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@ Elements of lattice L that cover exactly one element
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Join-Irreducible Elements

Join-Irreducibles Elements
@ Elements of lattice L that cover exactly one element

@ @y is the induced poset of join-irreducibles of lattice L

Example: Join-Irreducibles of L3q
@ The join-irreducibles of L3g are 2, 3, and 5
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Results for Lattices |

Theorem (J., 2025)
For lattices L, we have D(L) < |Qr| — h(L) + 2.
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Results for Lattices |

Theorem (J., 2025)
For lattices L, we have D(L) < |Qr| — h(L) + 2.

Example: An Equality Case

E]// é\\

~A T

o ’QL| =6
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Results for Lattices Il

Theorem (J., 2025)
For lattices L, we have xp(L) < h(L) + xp(QL).
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Results for Lattices Il

Theorem (J., 2025)
For lattices L, we have xp(L) < h(L) + xp(QL).

@ Cannot replace either term with a constant
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Distributive Lattices

Distributive Lattices
o Lattices M where all elements a, b, ¢ satisfy

an(bvec)=(anb)V(anc)
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Distributive Lattices

Distributive Lattices
o Lattices M where all elements a, b, ¢ satisfy

AN(bVec)=(anb)V(aAc)

Example: Distributive and Non-Distributive Lattices
@ L3g is distributive

@ The modular lattice is not distributive:
¢ \
9 /

e cAN(bvd)=cha=c
o (cAb)V(chnd)=evd=d
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Results for Distributive Lattices |

Theorem (Collins & Trenk, 2021)
For a distributive lattice M such that xp(Qum) > 3, we have

xo(M) < |Qum| + xp(Qm) — 1.
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Theorem (Collins & Trenk, 2021)
For a distributive lattice M such that xp(Qum) > 3, we have

xo(M) < |Qum| + xp(Qm) — 1.

Theorem (J., 2025)
If M is a distributive lattice, we have xp(M) < |Qm| + k, where

—_

if [max(Qum)| =1,
k=42 iflmax(Qum)| # 1,4,
if |max(Qm)| = 4.
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Results for Distributive Lattices |

Theorem (Collins & Trenk, 2021)
For a distributive lattice M such that xp(Qum) > 3, we have

xo(M) < |Qum| + xp(Qm) — 1.

Theorem (J., 2025)
If M is a distributive lattice, we have xp(M) < |Qm| + k, where

1 if|max(Qum)| =1,
k=42 iflmax(Qum)| # 1,4,
3 if [max(Qum)| = 4.

@ Stronger except when xp(Qum) =2 and | max(Qu)| = 4 or
xp(Qum) =3 and | max(Qu)| = 4
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Results for Distributive Lattices Il

Corollary

For a distributive lattice M with | max(Qm)| # 1,4, we have
xo(M) < |Qu| +2.
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Corollary

For a distributive lattice M with | max(Qm)| # 1,4, we have
xo(M) < |Qu| +2.

@ Sharp for L, when n has at least 4 prime factors and prime exponents
are not all distinct

Example: xp(Lso)
30
VIR
6 10 15
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Corollary

For a distributive lattice M with | max(Qm)| # 1,4, we have
xo(M) < |Qu| +2.

@ Sharp for L, when n has at least 4 prime factors and prime exponents
are not all distinct

Example: xp(Lso)

RN
10 15
® xp(M) =5 X X |
2" 3 5
N
1
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Results for Distributive Lattices Il

Corollary

For a distributive lattice M with | max(Qm)| # 1,4, we have
xo(M) < |Qu| +2.

@ Sharp for L, when n has at least 4 prime factors and prime exponents
are not all distinct

Example: xp(Lso)

30
VIR
6 10 15
® xp(M) =5 X X
o |max(Qum)| =3 2\?/5
1
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