Spatiotemporal Two-Pathogen Dynamics on Metapopulation Networks

Alyssa Yu Mentor: Prof. Laura Schaposnik

Poolesville High School

October 18, 2025 MIT PRIMES Conference

Outline

Introduction

2 Reaction-Diffusion (RD) Systems

3 Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

Outline

Introduction

2 Reaction-Diffusion (RD) Systems

Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

Epidemic Modeling

- Predict severity of infectious diseases and new case counts.
- Inform policy decisions including issued public health emergencies, lockdowns, and mask mandates.
- Examples include COVID-19 pandemic, 2009 H1N1 pandemic, and 2024 Chicago measles outbreak.

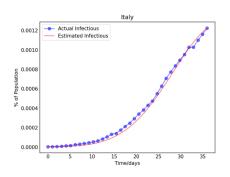


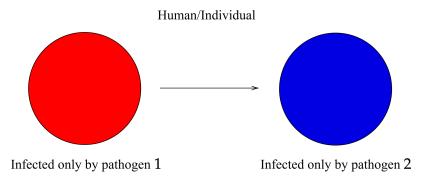
Figure: Modeling of COVID-19 infections in Italy [3].

Epidemics involve interacting pathogens with coupled dynamics. Capturing these multi-pathogen interactions is essential for more realistic models.

Two-Pathogen Interactions: Super-Infection

We consider co-circulation of two viruses or two strains of the same virus.

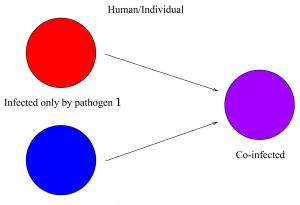
• **Super-Infection:** One pathogen can replace another pathogen in a host (e.g., super-infection of Hepatitis strains).



Two-Pathogen Interactions: Co-Infection

We consider co-circulation of two viruses or two strains of the same virus.

• **Co-Infection:** A host can be infected with both pathogens simultaneously (e.g., COVID-19 and influenza co-infection).



Metapopulation Networks

- Nodes represent local regions (e.g., cities, towns).
- Edges represent human movement between regions.

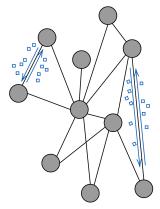


Figure: Metapopulation network example.

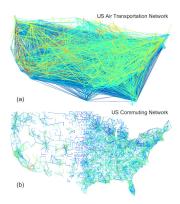
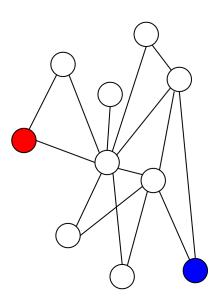


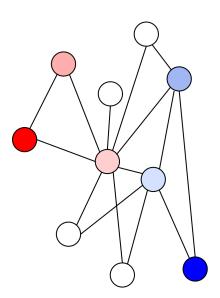
Figure: Metapopulation networks of USA [8].

Spatiotemporal Two-Pathogen Dynamics



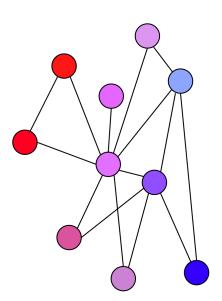
- Red: Pathogen 1 infection severity.
- Blue: Pathogen 2 infection severity.

Spatiotemporal Two-Pathogen Dynamics



- Red: Pathogen 1 infection severity.
- Blue: Pathogen 2 infection severity.

Spatiotemporal Two-Pathogen Dynamics



- Red: Pathogen 1 infection severity.
- Blue: Pathogen 2 infection severity.

Outline

Introduction

2 Reaction-Diffusion (RD) Systems

Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

Turing Patterns

- Appear in animal pigmentations, vegetation patterns, limb formation, synthetic biology, etc.
- Instabilities arise from small perturbations to a uniform state.
- Morphogens react and diffuse to form stable patterns of varying concentrations throughout spatial region.
- Proposed by Alan Turing in his 1952 paper "The Chemical Basis of Morphogenesis" [7].

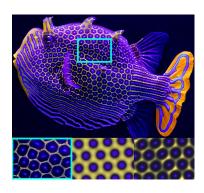


Figure: Turing pattern in boxfish pigmentation [2].

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2}$$

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial v}{\partial t} = g(u, v) + D_v \frac{\partial^2 v}{\partial x^2}$$

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

The simplest form of a reaction-diffusion system of two morphogens in one-dimensional space is:

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial v}{\partial t} = g(u, v) + D_v \frac{\partial^2 v}{\partial x^2}$$

• u and v: concentration of morphogens over space x and time t.

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{g}(\mathbf{u}, \mathbf{v}) + D_{\mathbf{v}} \frac{\partial^2 \mathbf{v}}{\partial x^2}$$

- u and v: concentration of morphogens over space x and time t.
- f and g: reaction functions.

- Turing patterns are modeled with reaction-diffusion systems.
- Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial v}{\partial t} = g(u, v) + D_v \frac{\partial^2 v}{\partial x^2}$$

- u and v: concentration of morphogens over space x and time t.
- f and g: reaction functions.
- D_u and D_v : diffusivity coefficients.

Cross-Diffusion

- Gradients of the morphogens are influenced by each other.
- Often induces instability.

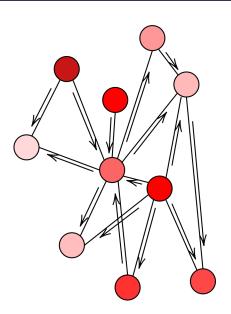
Definition (Reaction-diffusion system with cross-diffusion)

Reaction-diffusion equation of two morphogens with cross-diffusion:

$$\frac{\partial u}{\partial t} = f(u, v) + D_u \frac{\partial^2 u}{\partial x^2} + D_{uv} \frac{\partial^2 v}{\partial x^2},$$

$$\frac{\partial v}{\partial t} = g(u, v) + D_v \frac{\partial^2 v}{\partial x^2} + D_{vu} \frac{\partial^2 u}{\partial x^2},$$

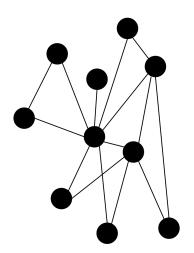
- u and v: concentration of morphogens over space x and time t.
- f and g: reaction functions.
- D_u and D_v : diffusivity coefficients.
- D_{uv} and D_{vu} : cross-diffusivity coefficients.



Can we model Turing patterns on networks?

We first consider the diffusion of a single morphogen.

Consider an unweighted and undirected network G := (V, E) with |V| = N, where an edge between nodes i and j is denoted by (i, j).



• Let u_i be the concentration of morphogen 1 on each node i, and D_u be its diffusivity coefficient.

- Let u_i be the concentration of morphogen 1 on each node i, and D_u be its diffusivity coefficient.
- Let k_i be node i's degree and A_{ij} be an entry of G's adjacency matrix.

- Let u_i be the concentration of morphogen 1 on each node i, and D_u be its diffusivity coefficient.
- Let k_i be node i's degree and A_{ij} be an entry of G's adjacency matrix.

The diffusion of a morphogen from node j to node i is of rate $D_u(u_j - u_i)$.

- Let u_i be the concentration of morphogen 1 on each node i, and D_u be its diffusivity coefficient.
- Let k_i be node i's degree and A_{ij} be an entry of G's adjacency matrix.

The diffusion of a morphogen from node i to node i is of rate $D_u(u_j - u_i)$. If we add these rates, the amount of the substance entering node i is

$$D_{u}\sum_{j=1}^{n}A_{ij}(u_{j}-u_{i})=D_{u}\left(\sum_{j=1}^{n}A_{ij}u_{j}\right)-D_{u}k_{i}u_{i}=D_{u}\sum_{j=1}^{n}L_{ij}u_{j},$$

Definition

We define $L_{ij} := A_{ij} - \delta_{ij} k_i$, where $\delta_{ij} := \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise} \end{cases}$. Moreover, we define $\boldsymbol{L}(G)$ to be the $N \times N$ matrix with entries L_{ij} . This is also the negative of the graph Laplacian.

Reaction-Diffusion on Networks

Definition (Reaction-diffusion system on networks)

In a network, the simplest form of a two-morphogen reaction-diffusion system is

$$\frac{du_i}{dt} = f(u_i, v_i) + D_u \sum_{j=1}^n L_{ij} u_j,$$

$$\frac{dv_i}{dt} = g(u_i, v_i) + D_v \sum_{j=1}^n L_{ij} v_j.$$

Reaction-Diffusion on Networks

Definition (Reaction-diffusion system on networks)

In a network, the simplest form of a two-morphogen reaction-diffusion system is

$$\frac{du_i}{dt} = f(u_i, v_i) + D_u \sum_{j=1}^n L_{ij} u_j,$$

$$\frac{dv_i}{dt} = g(u_i, v_i) + D_v \sum_{j=1}^n L_{ij} v_j.$$

• u_i and v_i : morphogen densities for each node i = 1, 2, ..., n.

Reaction-Diffusion on Networks

Definition (Reaction-diffusion system on networks)

In a network, the simplest form of a two-morphogen reaction-diffusion system is

$$\frac{du_i}{dt} = f(u_i, v_i) + D_u \sum_{j=1}^n L_{ij} u_j,$$

$$\frac{dv_i}{dt} = g(u_i, v_i) + D_v \sum_{i=1}^n L_{ij} v_j.$$

Outline

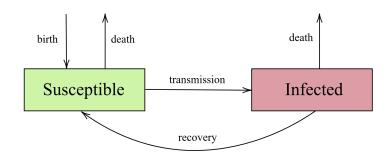
Introduction

2 Reaction-Diffusion (RD) Systems

3 Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

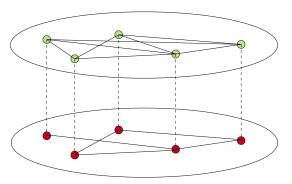
- Framework consisting of two models: superinfection model (MBRD-SI) and co-infection model (MBRD-CI).
- Based on Susceptible-Infected-Susceptible (SIS) dynamics, where individuals do not gain long-term immunity.



Multiplex Metapopulation Networks

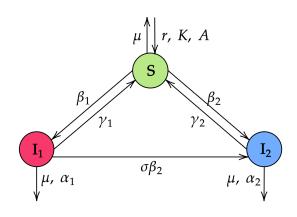
Goal: Model differing population movement patterns between susceptible and infected individuals.

Considering a simple scenario with only one circulating pathogen, we separate a metapopulation network into two layers (with the same nodes), one housing susceptible densities, and the other housing infected densities.



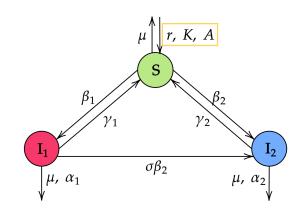
We consider the following three states:

- *S*, susceptible;
- *I*₁, pathogen 1-infected;
- *l*₂, pathogen 2-infected.



We consider the following three states:

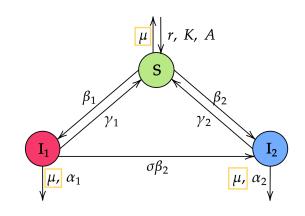
- *S*, susceptible;
- *I*₁, pathogen
 1-infected;
- *l*₂, pathogen 2-infected.



r, K, A: birth rate based on carrying capacity.

We consider the following three states:

- *S*, susceptible;
- I₁, pathogen
 1-infected;
- *l*₂, pathogen 2-infected.



 μ : natural death rate.

We consider the following three states:

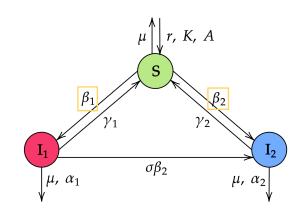
- *S*, susceptible;
- *l*₁, pathogen
 1-infected;
- *l*₂, pathogen 2-infected.



 α_1, α_2 : infection-induced death.

We consider the following three states:

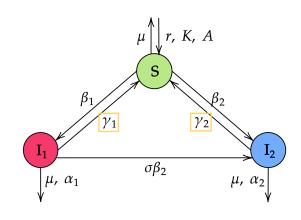
- *S*, susceptible;
- *l*₁, pathogen
 1-infected;
- *l*₂, pathogen 2-infected.



 β_1, β_2 : infection transmission.

We consider the following three states:

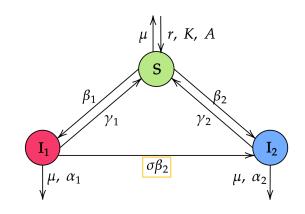
- S, susceptible;
- *l*₁, pathogen 1-infected;
- *l*₂, pathogen 2-infected.



 γ_1, γ_2 : recovery.

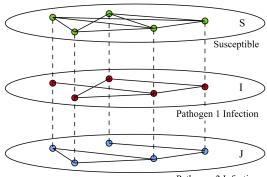
We consider the following three states:

- *S*, susceptible;
- *l*₁, pathogen
 1-infected;
- *l*₂, pathogen 2-infected.



 $\sigma \beta_2$: rate of superinfection.

- We consider a three-layer multiplex network, with the first, second, and third layers denoted G_S, G_I, and G_J and housing the S, I, and J densities, respectively. We treat the densities on each layer as morphogens.
- We incorporate cross-diffusion such that the diffusion in the S layer is also dependent on infected densities in the other two layers.



Pathogen 2 Infection

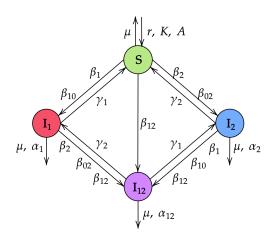
Recall the definition of L(G) from the last section. We let $L^{(S)} := L(G_S)$ with entries $L^{(S)}_{ij}$, $L^{(I)} := L(G_I)$ with entries $L^{(I)}_{ij}$, and $L^{(J)} := L(G_J)$ with entries $L^{(J)}_{ii}$.

Definition (MBRD-SI)

$$\begin{split} \frac{dS_{i}}{dt} &= rS_{i} \left(1 - \frac{S_{i}}{K} \right) \left(\frac{S_{i}}{A} - 1 \right) - \frac{\left(\beta_{1}I_{i} + \beta_{2}J_{i} \right)S_{i}}{S_{i} + I_{i} + J_{i}} + \gamma_{1}I_{i} + \gamma_{2}J_{i} - \mu S_{i} \\ &+ d_{11} \sum_{j=1}^{N} L_{ij}^{(S)}S_{j} + d_{12} \sum_{j=1}^{N} L_{ij}^{(I)}I_{j} + d_{13} \sum_{j=1}^{N} L_{ij}^{(J)}J_{j}, \\ \frac{dI_{i}}{dt} &= I_{i} \left(\frac{\beta_{1}S_{i}}{S_{i} + I_{i} + J_{i}} - \mu - \alpha_{1} - \gamma_{1} - \frac{\sigma\beta_{2}J_{i}}{S_{i} + I_{i} + J_{i}} \right) + d_{22} \sum_{j=1}^{N} L_{ij}^{(I)}I_{j}, \\ \frac{dJ_{i}}{dt} &= J_{i} \left(\frac{\beta_{2}S_{i}}{S_{i} + I_{i} + J_{i}} - \mu - \alpha_{2} - \gamma_{2} + \frac{\sigma\beta_{2}I_{i}}{S_{i} + I_{i} + J_{i}} \right) + d_{33} \sum_{i=1}^{N} L_{ij}^{(J)}J_{j}. \end{split}$$

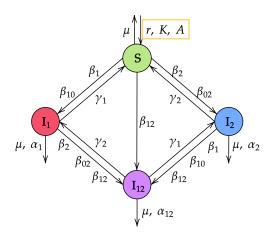
We consider the following four states:

- *S*, susceptible;
- I₁, pathogen 1 mono-infected;
- *l*₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



We consider the following four states:

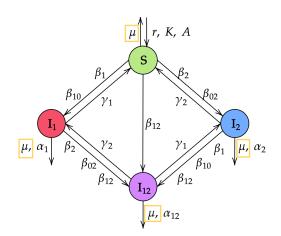
- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



r, K, A: birth rate based on carrying capacity.

We consider the following four states:

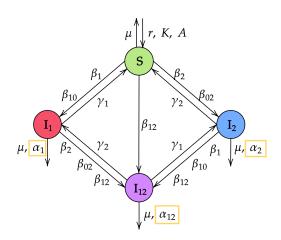
- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



 μ : natural death rate.

We consider the following four states:

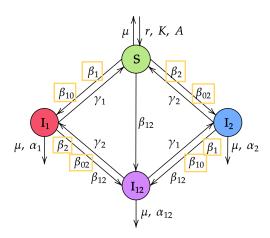
- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



 $\alpha_1, \alpha_2, \alpha_{12}$: infection-induced death.

We consider the following four states:

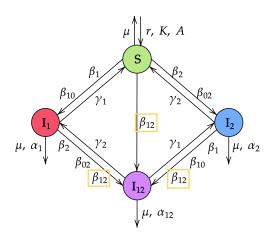
- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



 $\beta_1, \beta_2, \beta_{10}, \beta_{02}$: infection transmission.

We consider the following four states:

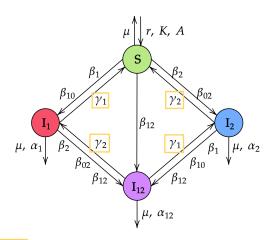
- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



 β_{12} : co-transmission

We consider the following four states:

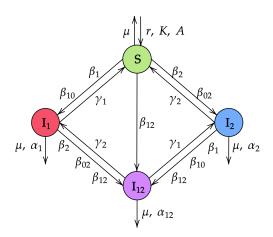
- *S*, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



 γ_1 , γ_2 : recovery.

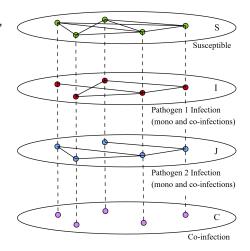
We consider the following four states:

- S, susceptible;
- I₁, pathogen 1 mono-infected;
- I₂, pathogen 2 mono-infected;
- *I*₁₂, co-infected.



We obtain new reaction functions f, g, h, l.

- We consider a four-layer multiplex network, with the first, second, third layers denoted G_S, G_I, and G_J and housing the S, I, and J densities, respectively. The fourth layer houses the C densities and contains no edges. We treat the densities on each layer as morphogens.
- We incorporate cross-diffusion such that the diffusion in the S layer is also dependent on infected densities in the second and third layers.



Let $\mathbf{L}^{(S)} := \mathbf{L}(G_S)$ with entries $L_{ij}^{(S)}$, $\mathbf{L}^{(I)} := \mathbf{L}(G_I)$ with entries $L_{ij}^{(I)}$, and $\mathbf{L}^{(J)} := \mathbf{L}(G_J)$ with entries $L_{ij}^{(J)}$. Recall the reaction functions f, g, h, and I given previously.

Definition (MBRD-CI)

$$\begin{split} \frac{dS_{i}}{dt} &= f(S_{i}, I_{i}, J_{i}, C_{i}) + d_{11} \sum_{j=1}^{N} L_{ij}^{(S)} S_{j} + d_{12} \sum_{j=1}^{N} L_{ij}^{(I)} I_{j} + d_{13} \sum_{j=1}^{N} L_{ij}^{(J)} J_{j}, \\ \frac{dI_{i}}{dt} &= g(S_{i}, I_{i}, J_{i}, C_{i}) + d_{22} \sum_{j=1}^{N} L_{ij}^{(I)} I_{j}, \\ \frac{dJ_{i}}{dt} &= h(S_{i}, I_{i}, J_{i}, C_{i}) + d_{33} \sum_{j=1}^{N} L_{ij}^{(J)} J_{j}, \\ \frac{dC_{i}}{dt} &= I(S_{i}, I_{i}, J_{i}, C_{i}), \end{split}$$

Pattern Formation in Lattice Networks

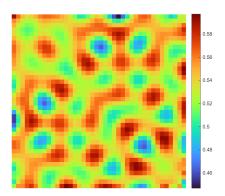


Figure: Pattern in super-infection dynamics, layer I, t = 1800.

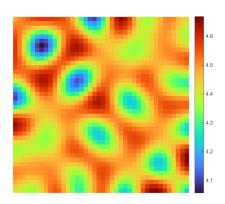


Figure: Pattern in co-infection dynamics, layer I, t = 550.

Applications

The Multiplex Bi-Virus Reaction-Diffusion (MBRD) framework can be adapted for other contagion processes such as:

- **Information Propagation:** Spread of conflicting or related rumors in a network of societies.
- Malware Propagation: Analyze computer virus and anti-virus dynamics, or pairs of viruses that support one another's survival by infecting the same host computer (e.g. Vobfus and Beebone).
- **Election Forecasting:** Modeling spatial dynamics between voting intentions of states and regions can predict election outcomes and explain spread of political ideologies throughout a country.

Acknowledgments

I would like to thank:

- My mentor, Prof. Laura Schaposnik, for introducing me to Turing patterns and for her invaluable guidance throughout the project.
- Dr. Tanya Khovanova and Shijie Zhang, for their extensive feedback on this presentation.
- The MIT PRIMES-USA organizers, for this wonderful research opportunity.
- My friends and family, for their support.

References I

Adams, Katherine.

"Prevalence of SARS-CoV-2 and Influenza Coinfection and Clinical Characteristics Among Children and Adolescents Aged 18 Years Who Were Hospitalized or Died with Influenza—United States, 2021–22 Influenza Season."

MMWR. Morbidity and Mortality Weekly Report, 71, 2022.

Alessio, Benjamin M., and Ankur Gupta.

"Diffusiophoresis-enhanced Turing patterns."

Science Advances, 9(45): eadj2457, 2023.

Ivanoe De Falco, Antonio Della Cioppa, Umberto Scafuri, and Ernesto Tarantino.

Coronavirus Covid–19 spreading in Italy: Optimizing an epidemiological model with dynamic social distancing through Differential Evolution.

arXiv preprint arXiv:2004.00553, 2020.

Daozhou Gao, Travis C. Porco, and Shigui Ruan.

Coinfection dynamics of two diseases in a single host population.

Journal of Mathematical Analysis and Applications, 442(1):171–188, 2016.

References II

Riccardo Muolo, Lorenzo Giambagli, Hiroya Nakao, Duccio Fanelli, and Timoteo Carletti.

Turing patterns on discrete topologies: from networks to higher-order structures. *Proceedings of the Royal Society A*, 480(2302):20240235, 2024.

Martin A. Nowak and Robert M. May.

Superinfection and the evolution of parasite virulence.

Proceedings of the Royal Society of London. Series B: Biological Sciences, 255(1342):81–89, 1994.

Turing, Alan Mathison.

"The chemical basis of morphogenesis."

Bulletin of Mathematical Biology, 52(1), 153-197, 1990.

Wang, Lin, and Xiang Li.

Spatial epidemiology of networked metapopulation: An overview.

Chinese Science Bulletin, 59(28):3511-3522, 2014.

