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Epidemic Modeling

Predict severity of infectious
diseases and new case counts.

Inform policy decisions including
issued public health
emergencies, lockdowns, and
mask mandates.

Examples include COVID-19
pandemic, 2009 H1N1
pandemic, and 2024 Chicago
measles outbreak.

Figure: Modeling of COVID-19
infections in Italy [3].

Epidemics involve interacting pathogens with coupled dynamics. Capturing
these multi-pathogen interactions is essential for more realistic models.
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Two-Pathogen Interactions: Super-Infection

We consider co-circulation of two viruses or two strains of the same virus.

Super-Infection: One pathogen can replace another pathogen in a
host (e.g., super-infection of Hepatitis strains).
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Two-Pathogen Interactions: Co-Infection

We consider co-circulation of two viruses or two strains of the same virus.

Co-Infection: A host can be infected with both pathogens
simultaneously (e.g., COVID-19 and influenza co-infection).
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Metapopulation Networks

Nodes represent local regions (e.g., cities, towns).

Edges represent human movement between regions.

Figure: Metapopulation network
example.

Figure: Metapopulation
networks of USA [8].
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Spatiotemporal Two-Pathogen Dynamics

Red: Pathogen 1
infection severity.

Blue: Pathogen 2
infection severity.
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Turing Patterns

Appear in animal pigmentations,
vegetation patterns, limb
formation, synthetic biology, etc.

Instabilities arise from small
perturbations to a uniform state.

Morphogens react and diffuse to
form stable patterns of varying
concentrations throughout
spatial region.

Proposed by Alan Turing in his
1952 paper ”The Chemical
Basis of Morphogenesis” [7].

Figure: Turing pattern in boxfish
pigmentation [2].
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Reaction-Diffusion Systems

Turing patterns are modeled with reaction-diffusion systems.

Composed of a reaction and diffusion components.

Definition (Reaction-diffusion system of two morphogens)

The simplest form of a reaction-diffusion system of two morphogens in
one-dimensional space is:

∂u

∂t
= f (u, v) + Du

∂2u

∂x2

∂v

∂t
= g(u, v) + Dv

∂2v

∂x2

u and v : concentration of morphogens over space x and time t.

f and g : reaction functions.

Du and Dv : diffusivity coefficients.
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Cross-Diffusion

Gradients of the morphogens are influenced by each other.

Often induces instability.

Definition (Reaction-diffusion system with cross-diffusion)

Reaction-diffusion equation of two morphogens with cross-diffusion:

∂u

∂t
= f (u, v) + Du

∂2u

∂x2
+ Duv

∂2v

∂x2
,

∂v

∂t
= g(u, v) + Dv

∂2v

∂x2
+ Dvu

∂2u

∂x2
,

u and v : concentration of morphogens over space x and time t.

f and g : reaction functions.

Du and Dv : diffusivity coefficients.

Duv and Dvu: cross-diffusivity coefficients.
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Diffusion on Networks

Can we model Turing
patterns on networks?

We first consider the
diffusion of a single
morphogen.
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Diffusion on Networks

Consider an unweighted and
undirected network
G := (V ,E ) with |V | = N,
where an edge between nodes
i and j is denoted by (i , j).
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Diffusion on Networks

Let ui be the concentration of morphogen 1 on each node i , and Du

be its diffusivity coefficient.

Let ki be node i ’s degree and Aij be an entry of G ’s adjacency matrix.

The diffusion of a morphogen from node j to node i is of rate Du(uj − ui ).
If we add these rates, the amount of the substance entering node i is

Du

n∑
j=1

Aij(uj − ui ) = Du

 n∑
j=1

Aijuj

− Dukiui = Du

n∑
j=1

Lijuj ,

Definition

We define Lij := Aij − δijki , where δij :=

{
1, if i = j ,

0, otherwise
. Moreover, we

define L(G ) to be the N × N matrix with entries Lij . This is also the
negative of the graph Laplacian.
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Reaction-Diffusion on Networks

Definition (Reaction-diffusion system on networks)

In a network, the simplest form of a two-morphogen reaction-diffusion
system is

dui
dt

= f (ui , vi ) + Du

n∑
j=1

Lijuj ,

dvi
dt

= g(ui , vi ) + Dv

n∑
j=1

Lijvj .

ui and vi : morphogen densities for each node i = 1, 2, . . . , n.
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Multiplex Bi-Virus Reaction-Diffusion (MBRD) Framework

Framework consisting of two models: superinfection model
(MBRD-SI) and co-infection model (MBRD-CI).

Based on Susceptible-Infected-Susceptible (SIS) dynamics, where
individuals do not gain long-term immunity.
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Multiplex Metapopulation Networks

Goal: Model differing population movement patterns between susceptible
and infected individuals.

Considering a simple scenario with only one circulating pathogen, we
separate a metapopulation network into two layers (with the same nodes),
one housing susceptible densities, and the other housing infected densities.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.

µ: natural death rate.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.

α1, α2: infection-induced death.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.

β1, β2: infection transmission.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.

γ1, γ2: recovery.
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Super-Infection Model (MBRD-SI)

We consider the
following three states:

S , susceptible;

I1, pathogen
1-infected;

I2, pathogen
2-infected.

σβ2: rate of superinfection.

Alyssa Yu Spatiotemporal Two-Pathogen Dynamics 22 / 32

Alyssa Yu



Alyssa Yu





Super-Infection Model (MBRD-SI)

We consider a three-layer
multiplex network, with
the first, second, and
third layers denoted GS ,
GI , and GJ and housing
the S , I , and J densities,
respectively. We treat
the densities on each
layer as morphogens.

We incorporate
cross-diffusion such that
the diffusion in the S
layer is also dependent
on infected densities in
the other two layers.
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Super-Infection Model (MBRD-SI)

Recall the definition of L(G ) from the last section. We let L(S) := L (GS)

with entries L
(S)
ij , L(I ) := L (GI ) with entries L

(I )
ij , and L(J) := L (GJ) with

entries L
(J)
ij .

Definition (MBRD-SI)

dSi
dt

= rSi

(
1− Si

K

)(
Si
A

− 1

)
− (β1Ii + β2Ji )Si

Si + Ii + Ji
+ γ1Ii + γ2Ji − µSi

+d11

N∑
j=1

L
(S)
ij Sj + d12

N∑
j=1

L
(I )
ij Ij + d13

N∑
j=1

L
(J)
ij Jj ,

dIi
dt

= Ii

(
β1Si

Si + Ii + Ji
− µ− α1 − γ1 −

σβ2Ji
Si + Ii + Ji

)
+d22

N∑
j=1

L
(I )
ij Ij ,

dJi
dt

= Ji

(
β2Si

Si + Ii + Ji
− µ− α2 − γ2 +

σβ2Ii
Si + Ii + Ji

)
+d33

N∑
j=1

L
(J)
ij Jj .
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.

α1, α2, α12: infection-induced death.
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.

β1, β2, β10, β02: infection transmission.
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.

β12: co-transmission
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.

γ1, γ2: recovery.
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Co-Infection Model (MBRD-CI)

We consider the following
four states:

S , susceptible;

I1, pathogen 1
mono-infected;

I2, pathogen 2
mono-infected;

I12, co-infected.

We obtain new reaction functions f , g , h, l .
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Co-Infection Model (MBRD-CI)

We consider a four-layer
multiplex network, with the first,
second, third layers denoted GS ,
GI , and GJ and housing the S ,
I , and J densities, respectively.
The fourth layer houses the C
densities and contains no edges.
We treat the densities on each
layer as morphogens.

We incorporate cross-diffusion
such that the diffusion in the S
layer is also dependent on
infected densities in the second
and third layers.
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Co-Infection Model (MBRD-CI)

Let L(S) := L (GS) with entries L
(S)
ij , L(I ) := L (GI ) with entries L

(I )
ij , and

L(J) := L (GJ) with entries L
(J)
ij . Recall the reaction functions f , g , h, and

l given previously.

Definition (MBRD-CI)

dSi
dt

= f (Si , Ii , Ji ,Ci ) + d11

N∑
j=1

L
(S)
ij Sj + d12

N∑
j=1

L
(I )
ij Ij + d13

N∑
j=1

L
(J)
ij Jj ,

dIi
dt

= g(Si , Ii , Ji ,Ci ) + d22

N∑
j=1

L
(I )
ij Ij ,

dJi
dt

= h(Si , Ii , Ji ,Ci ) + d33

N∑
j=1

L
(J)
ij Jj ,

dCi

dt
= l(Si , Ii , Ji ,Ci ),
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Pattern Formation in Lattice Networks

Figure: Pattern in super-infection
dynamics, layer I , t = 1800.

Figure: Pattern in co-infection
dynamics, layer I , t = 550.
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Applications

The Multiplex Bi-Virus Reaction-Diffusion (MBRD) framework can be
adapted for other contagion processes such as:

Information Propagation: Spread of conflicting or related rumors
in a network of societies.

Malware Propagation: Analyze computer virus and anti-virus
dynamics, or pairs of viruses that support one another’s survival by
infecting the same host computer (e.g. Vobfus and Beebone).

Election Forecasting: Modeling spatial dynamics between voting
intentions of states and regions can predict election outcomes and
explain spread of political ideologies throughout a country.
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