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Motivation

Convex optimization is generally more tractable than nonconvex
optimization.

However, standard algorithms for convex optimization can still exhibit
rapidly increasing runtimes.

Dimension reduction can reduce memory and runtime costs, thus
improving tractability of solvers.
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Color refinement

An algorithm that, given a graph G , seeks to find a coloring function
η : V (G ) → N0 that satisfies stability; i.e. if the associated coloring
C = {η−1(c) | c ∈ η(V (G ))}, then for all C1,C2 ∈ C and v1, v2 ∈ C1,

|N(v1) ∩ C2| = |N(v2) ∩ C2|

Figure: Chen et al., 2024

Useful for isomorphism testing: if, in the coarsest stable partition C of
G1 ∪ G2, there exists C ∈ C such that |V (G1) ∩ C | ≠ |V (G2) ∩ C |,
then G1 and G2 are not isomorphic (Berkholz et al., 2015)
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Color refinement

Color refinement is not perfect. For example, it will mark these two graphs
below as isomorphic.
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Linear programming and quadratic programming

Definition

A linearly constrained quadratic program (LCQP) takes the form

minimize
1

2
x⊤Qx + c⊤x

subject to Ax ≤ b,

l ≤ x ≤ u

for Q ̸= 0. If Q = 0, we call this a linear program (LP).
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Past results

Definition

An equitable partition (P,Q) of a matrix A satisfies the condition that for
any S ∈ P and T ∈ Q, ∑

j∈T
Aij

is constant across all i ∈ S , and ∑
i∈S

Aij

is constant across all j ∈ T .

A variant of color refinement can find equitable partitions (Grohe et al.,
2014).
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Past results

Theorem (Grohe et al., 2014) [LPs]

Suppose colorings P and Q satisfy the following conditions:

For all T ∈ Q, (cj , lj , uj) is equal for all j ∈ T .

(P,Q) is equitable on A.

For all S ∈ P, bi is equal for all i ∈ S .

Then an equivalent reduced LP can projected from the original.

Theorem (Mladenov et al., 2017) [Convex LCQPs]

Suppose colorings P and Q satisfy all of the above conditions, and also
(Q,Q) is equitable on Q. An equivalent reduced LCQP can be projected
from the original.

We will discuss how projection works later.
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Example (part 1)

Example

Consider the convex LCQP given by

Q =


2 0 0 0
0 2 0 0
0 0 2 0

0 0 0 2

 , c =


2
2
2

3

 ,

A =

 1 2 3 5
2 3 1 5
3 1 2 5

 , b =

100100
100

 .

The coarsest reduction coloring is shown above. Specifically,
P = {{1, 2, 3}} and Q = {{1, 2, 3}, {4}}.
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Example (part 2)

Example

The reduced problem is given by

Q ′ =

[
6 0
0 2

]
, c ′ =

[
6
3

]
,

A′ =
[
6 5

]
, b′ =

[
100
]
.

The optimum for the reduced problem is x =

[
−1
−1.5

]
, and the optimum

for the original problem is x =


−1
−1
−1
−1.5

.
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Generalizations

Definition

A polynomial optimization problem of degree d with n variables and m
constraints takes the form

minimize
d∑

k=1

1

k

∑
1≤j1,...,jk≤n

A
(k)
j1...jk

k∏
r=1

xjr

subject to
d∑

k=1

1

k

∑
1≤j1,...,jk≤n

(
P
(k)
i

)
j1...jk

k∏
r=1

xjr ≤ bi ,

l ≤ x ≤ u.

We assume A(k) and P
(k)
i are symmetric rank k coefficient tensors. We

also define a rank k + 1 tensor P(k) given by concatenating P
(k)
i .
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Generalizations

Definition

A partition (Q1, . . . ,Qk) of a rank k tensor A(k) is equitable if, for any

1 ≤ r ≤ k, colors T1 ∈ Q1, . . . ,Tk ∈ Qk , and j
(1)
r , j

(2)
r ∈ Tr ,∑

js∈Ts
s ̸=r

A
(k)

j1...jr−1j
(1)
r jr+1...jk

=
∑
js∈Ts
s ̸=r

A
(k)

j1...jr−1j
(2)
r jr+1...jk

.

Definition

For a convex polynomial optimization problem, (P,Q) is a reduction
coloring if it satisfies the following:

For all 1 ≤ k ≤ d , (Q, . . . ,Q) is equitable on A(k).

For all 1 ≤ k ≤ d , (P,Q, . . . ,Q) is equitable on P(k).

For each S ∈ P, bi is equal for every i ∈ S .

For each T ∈ Q, (lj , uj) is equal for every j ∈ T .
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Generalizations

Definition

Given a reduction coloring (P,Q) of a convex polynomial optimization
problem, we define an equivalent reduced problem with |P| constraints and
|Q| variables:

For each A(k) and P(k), the reduced tensors are given by summing
color-based subtensors and keeping only one constraint per color.

We average Q color blocks in l and u.

We average P color blocks in b.
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Generalizations

Theorem (Z. and Chen, 2025)

Consider any convex polynomial optimization problem. Let (P,Q) be a
reduction coloring. If x is an optimum for the original problem, then x ′,
given by averaging Q color blocks in x , is an optimum for the reduced
problem. If x ′ is an optimum for the reduced problem, then x , given by
xj = x ′T for all j ∈ T and T ∈ Q, is an optimum for the original problem.
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Example (part 1)

Example

Consider a convex quadratically constrained quadratic program (QCQP),
which is constrained by 1

2x
⊤Pix ≤ bi for all 1 ≤ i ≤ m, where

Q =

 2 0 0
0 2 0
0 0 2

 , c =

 2
2
2

 ,

P1 =

 1 1 0
1 1 0
0 0 0

 , P2 =

 1 0 1
0 0 0
1 0 1

 ,

P3 =

 0 0 0
0 2 0
0 0 2

 , b =

100100
100

 .

The coarsest reduction coloring is the unit coloring.
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Example (part 2)

Example

The reduced problem is given by

Q ′ =
[
6
]
, c ′ =

[
6
]
,

P ′ =
[
4
]
, b′ =

[
100
]
.

The optimum for the reduced problem is x =
[
−1
]
, and the optimum for

the original problem is x =

−1
−1
−1

.
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Note on non-polynomial cases

Definition

For a general smooth convex optimization problem, a coloring (P,Q) is a
reduction coloring if it satisfies the following conditions for all x̂ that
satisfy x̂j1 = x̂j2 if j1 and j2 share a color in Q:

If T ∈ Q and j1, j2 ∈ T , then ∂F
∂xj1

∣∣∣
x=x̂

= ∂F
∂xj2

∣∣∣
x=x̂

.

If S ∈ P, T ∈ Q, and j1, j2 ∈ T , then

∂

∂xj1

(∑
i∈S

Gi

)∣∣∣∣∣
x=x̂

=
∂

∂xj2

(∑
i∈S

Gi

)∣∣∣∣∣
x=x̂

.

For all i that share some color in P, Gi (x̂) is equal.

For each S ∈ P, bi is equal for every i ∈ S .

For each T ∈ Q, (lj , uj) is equal for every j ∈ T .
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Experimental results

We use QPLIB, a library of quadratic programs (Furini et al., 2018).

Average runtime percentage of original is about 15.0%.
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Thank you! Any questions?
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