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Dirchlet’s Theorem

Density of Rationals

For all α ∈ R and ϵ > 0, there exists q ∈ N and p ∈ Z such that∣∣∣∣α− p

q

∣∣∣∣ < ϵ

Dirichlet’s Theorem

For all real numbers α ∈ R and t ≥ 1, there exists p, q ∈ Z such that

1 ≤ q ≤ t and |qα− p| < 1

t
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Higher Dimensions

Dirichlet’s Theorem for Mm,n(R)
For all matrices A ∈ Mm,n(R) t ≥ 1, there exists q ∈ Zn \ {0} and p ∈ Zm

such that

∥q∥ ≤ t and ∥Aq− p∥ <
1

t
n
m

where ∥·∥ is the supremum norm.

• Approximation of linear forms: m=1. Given (x1, . . . , xn) ∈ Rn, find
(q1, . . . , qn) ∈ Zn \ {0} and p ∈ Z minimizing |x1q1 + · · ·+ xnqn − p|.

• Simultaneous approximation: n=1. Given (x1, . . . , xn) ∈ Rn, find
q ∈ Z \ {0} (p1, . . . , pn) ∈ Zm minimizing
max(|x1q − p1|, . . . , |xnq − pn|).
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Singularity and Uniform Approximability

Definition: Given a matrix A ∈ Mm,n(R), we say that A is singular if for
all ϵ > 0, there exists a t0 ∈ R+ such that for all t ≥ t0, there exists
q ∈ Zn \ {0} and p ∈ Zm such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ ϵ

t
n
m

Definition: Given a non-increasing function f : R+ → R+ and matrix
A ∈ Mm,n(R), we say that A is uniformly f -approximable (or just
f -uniform) if for all large enough t > 0, there exists q ∈ Zn \ {0} and
p ∈ Zm such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

Definition: Given a matrix A ∈ Mm,n(R), we say A is totally irrational if
Aq− p ̸= 0 for all q ∈ Zn \ {0} and p ∈ Zn.
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Jarnik’s Theorem

Theorem (Jarnik (1959), Khintchine (1926))

Let m, n ∈ N where n > 1. Then for any non-increasing function
f : R+ → R+, the set of totally irrational f -uniform m × n matrices is
uncountable and dense in Mm,n(R).

In other words, the set of A such that ∥Aq− p∥ ≤ f (t) has infinitely many
solutions is uncountable and dense for all non-increasing functions f .
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Main Theorem

Definition: Let Q ⊆ Rn \ {0} and P ⊆ Rm. Given a function
f : R+ → R+ and matrix A ∈ Mm,n(R), we say that A is f -uniform with
respect to Q,P if for all large enough t > 0, there exists q ∈ Q and p ∈ P
such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

Let the set of matrices which are f -uniform with respect to Q,P be
denoted by UAQ,P(f ). Also let UA∗

Q,P(f ) be the set of matrices which are
non-trivially f -uniform with respect to Q,P.

Theorem (Kleinbock, Moshchevitin, Warren, Weiss, 2024)

Let Q ⊆ Rn \ {0} and P ⊆ Rm such that [important property] and let
f : R+ → R+ be any non increasing function. In addition, let S be a
countable collection of proper affine subspaces of Mm,n(R). Then the set
UAQ,P(f ) \

⋃
S∈S S is uncountable and dense.
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Generalizations

• Let P be the set of primes. Consider matrices A ∈ Mm,n(R) such that
for all large enough t > 0, there exists q ∈ {2k : k ∈ N}n \ {0} and
p ∈ Pm such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

• Fix integers 1 ≤ a ≤ n and 0 ≤ b ≤ m such that a+ b > m + 1.
Consider matrices A ∈ Mm,n(R) such that for all large enough t > 0,
there exists q ∈ Za × {0}n−a and p ∈ Zb × {0}m−b such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

Leo Hong (MIT PRIMES Conference (Mentored by Vasiliy Neckrasov) )Generalizations of Jarnik’s theorem via total density of certain subspacesOctober 18 2025 9 / 20



Generalizations

• Let P be the set of primes. Consider matrices A ∈ Mm,n(R) such that
for all large enough t > 0, there exists q ∈ {2k : k ∈ N}n \ {0} and
p ∈ Pm such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

• Fix integers 1 ≤ a ≤ n and 0 ≤ b ≤ m such that a+ b > m + 1.
Consider matrices A ∈ Mm,n(R) such that for all large enough t > 0,
there exists q ∈ Za × {0}n−a and p ∈ Zb × {0}m−b such that

∥q∥ ≤ t and ∥Aq− p∥ ≤ f (t)

Leo Hong (MIT PRIMES Conference (Mentored by Vasiliy Neckrasov) )Generalizations of Jarnik’s theorem via total density of certain subspacesOctober 18 2025 9 / 20



Generalizations

• Inhomogeneous approximation: Fix b ∈ Rm. Consider matrices
A ∈ Mm,n(R) such that for all large enough t > 0, there exists
q ∈ Zn \ {0} and p ∈ Zm such that

∥q∥ ≤ t and ∥Aq− p+ b∥ ≤ f (t)

Note that this is equivalent to still considering ∥Aq− p∥ but letting
p ∈ Zm − b instead.
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Results

Theorem (H., Neckrasov)

Let n ≥ 2 and m ≥ 1. Suppose Q = aZ+ bZ for linearly independent
a,b ∈ Zn and P = Zm + c for some c ∈ Zm. Then for all non-increasing
functions f : R+ → R+, the set UA∗

P,Q(f ) is uncountable and dense.

Figure: Q = aZ+ + bZ+ and P = Zm + c
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Results

Theorem (H., Neckrasov)

Let n ≥ 2 and m ≥ 1, and fix 1 ≤ k ≤ min(m + 1, n). Suppose Q is the
union of two k-dimensional lattices contained in two distinct k-dimensional
subspaces of Rn and P is some m− k + 1-dimensional lattice. Then for all
non-increasing functions f : R+ → R+, the set UAP,Q(f ) is uncountable
and dense.

Remark: In the case where k = 1, we get the previous theorem.

Figure: Q and P for m = n = 3, k = 2, and m − k + 1 = 2
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Results

Theorem (H., Neckrasov)

Let Σ ⊆ Sn−1 be a set such that for all θ ∈ Σ, 0 ∈ conv(Σ \ {θ}) when
embedded in Rn, Π be some half space in Rm. Also let Q = Z+Σ and
P = Π ∩ Zm. Then for all non-increasing functions f : R+ → R+, the set
UAQ,P(f ) is uncountable and dense.

Figure: Q = Z+Σ and P = Π ∩ Zm for m = n = 2
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Zero-sets

Definition: Let q ∈ (Rn \ {0}) p ∈ Rn, Q ⊆ Rn \ {0}, and P ⊆ Rm.

• Define
Lq,p = {A ∈ Mm,n(R) : Aq− p = 0}

Note that this is an affine subspace of codimension m in Mm,n(R).
• Define LQ,P = {Lq,p : q ∈ Q,p ∈ P}.
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Total Density

Definition: Given Q ⊆ Rn \ {0} and P ⊆ Rm, we say LQ,P is totally
dense if

⋃
L∈LQ,P

L is dense in Mm,n(R) and for every open W ⊆ Y and

L ∈ LR where W ∩ L ̸= ∅, ⋃
L′∈LQ,P ,L′∩L∩W ̸=∅

L′

is not nowhere dense.

Theorem (Kleinbock, Moshchevitin, Warren, Weiss, 2024)

Let Q ⊆ Rn \ {0} and P ⊆ Rm such that LQ,P is totally dense and let
f : R+ → R+ be any non increasing function. In addition, let S be a
countable collection of proper affine subspaces of Mm,n(R). Then the set
UAQ,P(f ) \

⋃
S∈S S is uncountable and dense.
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Tm,n

Remark: The mapping (q,p) 7→ Lq,p is not injective.

Definition: Let Tm,n = Sn−1 × Rm and define the map

pr : (Rn \ {0})× Rn → Tm,n, (q,p) 7→
(

q
|q| ,

p
|q|

)
.

Note that Aq = p if and only if Aq/|q| = p/|q|, so Lq,p = Lpr(q,p).
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Main Lemma

Theorem (H., Neckrasov)

Let R ⊆ Tm,n. Fix r0 ∈ R and an open subset W of Mm,n intersecting Lr0 .
Suppose there exists ϵ > 0 such that the collection LR\(Bϵ(r0)∪Bϵ(−r0)) is
dense in W . Then, the set ⋃

r∈R:Lr∩Lr0∩W ̸=∅

Lr

has nonempty interior.

Figure: Tm,n \ (Bϵ(r0) ∪ Bϵ(−r0)) for m = n = 2
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Convex Hulls

Proposition

Let Σ ⊆ Sn−1 be a set such that 0 ∈ conv(Σ) when embedded in Rn and
Π be some half space in Rm. Also let Q = Z+Σ and P = Π ∩ Zm. Then
LQ,P is dense in Mm,n(R).

Corollary

Let Σ ⊆ Sn−1 be a set such that for all θ ∈ Σ, 0 ∈ conv(Σ \ {θ}) when
embedded in Rn and Π be some half space in Rm. Also let Q = Z+Σ and
P = Π ∩ Zm. Then LQ,P is totally dense in Mm,n(R).

Figure: 0 ∈ conv(Σ \ {θ})
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