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Abstract. Orbital integrals are central to the representation theory of reduc-

tive groups, with applications to the trace formula, isogeny classes of elliptic
curves, and the (relative) Langlands program. Yet explicit computations are

difficult beyond GL2. Building on methods of Gekeler and Achter–Gordon,

we extend finite counting techniques for orbital integrals to GLn(Qp) and
SLn(Qp). For GLn, we relate orbital integrals to limits of density ratios over

finite quotients of Zp, yielding explicit formulas with respect to the geometric

measure. We further treat arbitrary bi-GLn(Zp)-invariant spherical test func-
tions that detect distinct double cosets. For SLn, we introduce new conjugacy

criteria and a modified ratio that accounts for orbit splitting. In the case of

SL2, we show that these limits recover orbital integrals for both geometric and
canonical measures. In all settings, we prove that the corresponding ratios

converge to the desired orbital integrals.
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1. Introduction

Background and motivation. Orbital integrals are key objects of study in the
representation theory of reductive groups as well as the theory of automorphic
forms [Kot05]. Specifically, let GLn be the algebraic group of invertible matrices
and let Qp denote the field of p-adic numbers (where p is an odd prime). We are
interested in the computation of integrals of certain test functions over conjugation
orbits of (regular semisimple) matrices in GLn(Qp). An important example is the
orbital integral of the characteristic function 1GLn(Zp). Given a linear transforma-
tion γ : Qn

p → Qn
p , this integral measures the “volume” of the set of bases of Qn

p

with respect to which the matrix of γ has integer coefficients.
These orbital integrals play an important role in the representation theory of

GLn(Qp) [Kot05]. They show up, historically, in trace formulas like the Arthur-
Selberg trace formula [Lan01], where orbital integrals encode contributions from
conjugacy classes on the geometric side of the trace formula. They can also be used
to calculate the cardinality of an ordinary isogeny class of elliptic curves over Fp,
as a consequence of Langlands and Kottwitz’s description of points on a Shimura
variety over a finite field [AG17].

Orbital integrals also play an important role in recent active areas such as the
Beyond Endoscopy conjectures [Lan04] and the relative Langlands program as a
whole [Zha17, GGP12, BZSV24], where they are used to isolate contributions from
specific Langlands-functorial transfers. Furthermore, many problems of represen-
tation theory and harmonic analysis on p-adic groups can be reduced to the ex-
plicit evaluation of a family of orbital integrals. They control character values,
the Plancherel formula [Sil96], and spectral decompositions on adelic quotients, so
computational techniques for orbital integrals have wide-ranging consequences in
modern number theory.

Statement of the problem. Despite their important role, explicit computations
of orbital integrals are notoriously difficult. Even more so, they have been shown to
be difficult to compute; for example, [Hal94] establishes relations between orbital
integrals and point counts on hyperelliptic curves which are known to be hard
to compute and not expressible as polynomials. Most existing research has been
concentrated in simple cases such as integrals over GL2.

In the case of GL2, Achter and Gordon [AG17] related some specific orbital
integrals over GL2 to local densities introduced by Gekeler in [Gek03]. Specifically,
they establish a powerful method for computing the orbital integral of a regular
semisimple element γ ∈ GL2(Qp) against the characteristic function of the maximal
compact subgroup: ∫

Orb(γ)

1GL2(Zp)(g
−1γg) dµ.

This method was further extended in [AAGG23] to work with the more general
group GSp2g. However, the Achter–Gordon approach, both for GL2 and GSp2g,
was restricted to a specific orbit and test function.

The present paper aims to significantly broaden the applicability of this method
by extending the theory to the linear algebraic groups GLn and SLn. This cre-
ates a more widely applicable framework for computing orbital integrals via their
connection to finite counting problems.
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Overview of results. The main results for GLn include an explicit formula relat-
ing the limit of the local ratios to the orbital integral under a measure known as the
geometric measure. For SL2, a new local ratio is introduced in order to deal with
a phenomenon where stable orbits split into multiple rational orbits in SL2(Qp).
Then, the limit of these ratios is explicitly connected to orbital integrals under both
the geometric and canonical measures.

In Section 2, we collect necessary background knowledge about topics such as
orbits, measures, the Steinberg map, and local ratios.

In Section 3, we extend Achter and Gordon’s method from GL2 to GLn, com-
puting the explicit factor relating the orbital integral to the limit of the local ratios.

In Section 4, we further extend their result to arbitrary bi-GLn(Zp)-invariant test
functions rather than just the characteristic function of GLn(Zp), thereby detecting
arbitrary double cosets. Specifically, for some λ1 ≥ · · · ≥ λn, let

S := GLn(Zp) diag(p
λ1 , pλ2 , . . . , pλn)GLn(Zp).

We demonstrate the following:

Theorem 4.4. Let γ ∈ S be regular semisimple, and let ϕλ denote the characteristic
function of S. Then,

ν(γ) = p−(n−1)(λ1+···+λn) · pn
2−1

#SLn(Fp)
Ogeom

GLn
(γ, ϕλ).

In Section 5, we explore conjugacy of matrices in SLn(Qp) and establish a cri-
terion that we will later add as an extra local condition on the densities to isolate
the SLn-conjugacy class within a GLn-conjugacy class.

Theorem 5.15. Let γ ∈ SLn(Qp) be regular semisimple. An element g in the
stable orbit of γ is in the same SLn-orbit as γ if and only if

det
(
v γv · · · γn−1v

)
≡ det

(
v gv · · · gn−1v

)
(mod NF [γ]/F (F [γ]×)),

where v is any common cyclic vector for γ and g.

In particular, in the case of SL2, conjugacy requires the matching of the norm
class of the top-right elements of the matrices in addition to GLn-conjugacy. We
also give a more direct and elementary proof of this in Appendix B.

In Section 6, we use the results from Section 5 to define a local ratio for detecting
conjugacy in SLn(Qp). We explore how the definition can be modified to be more
explicit in the cases of n = 2 and n = 3.

In Section 7, we relate the limit of the SL2 ratios to the values of orbital integrals
over SL2 under the canonical measure (and the geometric measure). We establish
the following relation:

Theorem 7.8. The relation between the limit of the ratios and the orbital integral
under the canonical measure is given by

νSL2(γ) = p−δ · (1− χp−1)−1 ·O(γ),

where δ and χ are defined as in Section 7.

This also allows us to provide an explicit formula for the limits of the SL2 ratios.
Finally, Section 8 shows that the limits involved in local ratios all eventually

stabilize. Furthermore, we can predict when the sequence of ratios will stabilize,
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and we establish an exact formula for orbital integrals as a finite point count instead
of the limit of point counts:

Theorem 8.15. Let γ ∈ GLn(Zp) be a regular semisimple element. Then for all
k ≥ 2δ + n we have

#Sk(c(γ))

pkn(n−1)
= ν(γ) =

pn
2−1

#SLn(Fp)
·Ogeom

GLn
(γ,1GLn(Zp)).

In particular,

Ogeom
GLn

(γ,1GLn(Zp)) =

∏n
i=2 (1− p−i)

p(2δ+n)n(n−1)−1
#Sk(c(γ)).

where δ = δ(γ).
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2. Background

2.1. Preliminaries. This section details definitions and preliminary results that
will be used throughout the paper. In this paper, we fix an odd prime p. We denote
the field of p-adic numbers by Qp and the ring of p-adic integers by Zp.

Remark 2.1. The arguments in this paper extend to any nonarchimedean local field
K of characteristic 0 with ring of integers OK and maximal ideal p. We work over
Qp for notational simplicity, using the fact that Zp/p

kZp
∼= Z/pkZ. For general K,

the quotients OK/pk are finite local rings of size qk, where q = |OK/p|, and need
not be isomorphic to Z/qkZ.

2.1.1. Rational orbits and stable orbits. A central consideration in this paper, when
dealing with SLn, is the phenomenon of conjugation orbits (conjugacy classes)
splitting when passing from the algebraic closure down to the base field.

Let G be a reductive group1 over a field F , and let γ ∈ G(F ).
The rational orbit (also conjugation orbit or just orbit) of γ is the set of elements

in G(F ) conjugate to γ by an element of G(F ):

Orb(γ) := {g−1γg : g ∈ G(F )}.
This set can be identified with the quotient space Gγ(F )\G(F ), where

Gγ := {g ∈ G : gγ = γg}
is the centralizer of γ. Elements in Orb(γ) are said to be rationally conjugate to γ.

The stable orbit of γ is the set of elements in G(F ) conjugate to γ by an element
of G(F ):

Orbst(γ) := {g−1γg : g ∈ G(F )} ∩G(F ).

Here F denotes the algebraic closure of F . Elements in Orbst(γ) are said to be
stably conjugate to γ.

1A reductive group is a linear algebraic group whose unipotent radical is trivial, i.e., it has no
nontrivial connected normal unipotent subgroup.
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The definitions imply that Orb(γ) ⊆ Orbst(γ). The potential difference between
these two sets is a subtle but important phenomenon.

This distinction arises from the action of the Galois group Gal(F/F ). Consider
the orbit of γ over the algebraic closure,

Orb(γ) := {g−1γg : g ∈ G(F )}.
The Galois group acts on this larger pointed set by acting on the matrix entries of
the elements. We have the following:

• An element belongs to the stable orbit if it is part of Orb(γ) and its entries
are individually fixed by the Galois action (which is simply the condition
that its entries lie in F ).

• An element belongs to the rational orbit only if it can be written as g−1γg
where the matrix g itself has entries in F .

The key point is that an element h = g−1γg can have all its entries in F even if
the matrix g used to form it does not. This discrepancy can be measured using
Galois cohomology. Example B.2 displays two matrices stably conjugate but not
rationally conjugate.

In this paper, the algebraic group G will either be GLn or SLn. While the
distinction between orbit types is crucial for SLn, the situation simplifies for GLn.

Proposition 2.2. Rational orbits and stable orbits in GLn(F ) are equal.

Proof. We follow the sketch of the proof in [Kot05, p.406]. This is a consequence of
Galois descent and Hilbert’s Theorem 90, applied to the following exact sequence
of pointed sets with Galois action:

1 → Gγ(F ) → G(F )→(Gγ\G)(F ) → 1.

The key observation is that maximal tori of GLn are quasi split, hence cohomolog-
ically trivial. Indeed, maximal tori correspond to centralizers of regular semisimple
elements. Given such an element γ, its centralizer can be identified with F [γ]×,
or in other words, its centralizer is ResF [γ]/F Gm, which is a quasi split torus and
therefore cohomologically trivial by Shapiro’s lemma and Hilbert 90. We get the
following sequence

1 → Gγ(F ) → G(F )
φ→ (Gγ\G)(F ) → H1(F,Gγ(F )) = 1

and we may conclude that

Orbst(γ) = (Gγ\G)(F ) = Im(φ) = Orb(γ),

thus showing that rational orbits are equal to stable orbits in GLn(F ). □

This greatly simplifies considerations in the case of GLn. This proposition does
not hold true in general for SLn, however, as is shown in Appendix B.

2.1.2. Cartan decomposition. To describe the test functions we integrate, we recall
the Cartan decomposition. Using Gaussian elimination over Zp, we can write

GLn(Qp) =
⊔

λ1≥···≥λn

GLn(Zp) diag
(
pλ1 , . . . , pλn

)
GLn(Zp),

where each λi ∈ Z. This is the Cartan decomposition.
Given λ = (λ1, . . . , λn) ∈ Zn, we let pλ denote the matrix

diag(pλ1 , . . . , pλn) ∈ GLn(Qp).
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When λ satisfies λ1 ≥ · · · ≥ λn, it is called a dominant coweight. Let Zn,+ denote
the set of dominant coweights. Furthermore, let Kn := GLn(Zp). We can rewrite
the Cartan decomposition as

(2.1) GLn(Qp) =
⊔

λ∈Zn,+

Knp
λKn.

In this paper, we will study orbital integrals of bi-Kn-invariant functions with
compact support (i.e., functions f : GLn(Qp) → C such that f(k1gk2) = f(g) for
all g ∈ GLn(Qp) and k1, k2 ∈ Kn). By the Cartan decomposition, functions of the
form 1KnpλKn

span the space of such functions, and thus, it suffices to compute
integrals of characteristic functions of each double coset.

2.1.3. Regular and semisimple elements. In this section, we define the type of ele-
ments we will study. Assume that F is a perfect field.

Given X ∈ Mn(F ), we let GX denote its centralizer in GLn.

Definition 2.3. Let X ∈ Mn(F ). We say that X is semisimple if its orbit is a
closed subspace of GLn.

Equivalently, the matrix X is semisimple when it is diagonalizable when viewed
as an element of Mn(F ).

Example 2.4. If x ∈ F× is not a square, then the matrix

(
0 x
1 0

)
is semisimple

but not diagonalizable over F . Its centralizer is the set of matrices

(
a bx
b a

)
which

is isomorphic to the group ResF (
√
x)/F Gm(F ) = F (

√
x)×. Its orbit is the set

of matrices of trace 0 and determinant −x, which is a closed condition. This

corresponds to matrices

(
a b
c −a

)
such that a2+bc = x, which gives us a geometric

interpretation of the orbit as a conic in F 3.

For any X ∈ Mn(F ), we may define its regularity as

rX =
dimGX − rank(GLn)

2
=

dimGX − n

2
.

Definition 2.5. We say that X is regular if rX = 0.
Equivalently, regular elements are elements with centralizers of minimal dimen-

sion.
In particular, X ∈ Mn(Qp) is regular semisimple if its characteristic polynomial

has n distinct roots over Qp.

Example 2.6. When n = 2, we have rX ∈ {0, 1} and therefore all nonscalar
matrices are regular.

For example for any x ∈ Qp, the matrix

(
x 0
0 x

)
is semisimple but not regular,

the matrix

(
x 1
0 x

)
is regular but not semisimple. They have the same character-

istic polynomials but they are not conjugate.
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Example 2.7. In GL3, the following matrices are all representatives of the unipo-
tent conjugacy classes of regularity 0, 1, 3 respectively.1 1 0

0 1 1
0 0 1

 ,

1 0 1
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 .

The centralizers are respectively matrices of the formx y z
0 x y
0 0 x

 ,

x y z
0 s t
0 0 x

 ,

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

 ,

which have dimension 3, 5, 9 respectively.
Note that those are all GL3 unipotent orbits, classified by their Jordan blocks,

of type (3), (2, 1), (1, 1, 1) respectively. Therefore, there is no unipotent matrix of
regularity 2.

Remark 2.8. More generally, if G is a connected reductive group acting on a homo-
geneous space X, we say that x is semisimple if the stabilizer is closed, and regular
if that stabilizer has minimal dimension.

In particular, the notions of semisimple and regular are valid for X ∈ Lie(G).
In this exposition we use the fact that GLn embeds in its Lie algebra to define the
terms simultaneously on the group and its Lie algebra.

Next, we recall the Jordan decomposition.

Proposition 2.9 (Jordan decomposition). Let γ ∈ GLn(F ). We may write γ =
γsγu = γuγs where γs is semisimple and γu is unipotent.

Similarly, if X ∈ Mn(F ), we can decompose X = Xs+Xn where Xs is semisim-
ple and Xn is nilpotent, and [Xs, Xn] = 0.

It is clear that if X ∈ Mn(F ) we have exp(X)s = exp(Xs) and exp(X)u =
exp(Xn).

The reason why we tend to restrict our attention to regular semisimple matrices
is because criteria for conjugacy are nicer in the case of regular semisimple matrices,
as shown by the following lemma.

Lemma 2.10. Let γ ∈ GLn(F ) be regular semisimple. For all M ∈ GLn(F ), we
have that M ∈ Orb(γ) if and only if M has the same characteristic polynomial as
γ.

Proof. The forward direction is true as characteristic polynomials are invariant
under conjugation (this is well-known).

For the backward direction, we will begin by showing that M ∈ Orbst(γ) and
conclude using Proposition 2.2.

If two matrices X and Y are semisimple and have the same characteristic poly-
nomial χ, then they are both similar (in GLn(F )) to the diagonal matrix whose
diagonal entries equal the multiset of the roots of χ. Thus, they are stably conjugate
(i.e. conjugate by a matrix in GLn(F )).

Therefore, it suffices to show that if M has the same characteristic polynomial
as γ, then it is semisimple. Since M has n distinct eigenvalues, each eigenvalue
has geometric multiplicity 1, meaning that M is diagonalizable in GLn(F ). We
conclude that M is semisimple. □
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2.1.4. The Steinberg quotient. The Steinberg map c : Mn → An maps an element
X ∈ Mn to the coefficients of its characteristic polynomial:

c(X) = (tr(X), . . . ,det(X)).

The codomain of c|GLn
is called the Steinberg quotient of GLn, which we will denote

by
AGLn

= An−1 ×Gm.

Remark 2.11. The map c is sometimes called the “Chevalley map,” hence the no-
tation.

As seen in Lemma 2.10, the Steinberg quotient characterizes the space of con-
jugacy classes for regular semisimple elements in GLn(F ), as these elements are
conjugate if and only if their characteristic polynomials are equal. However, it does
not fully characterize the space of conjugacy classes in SLn(F ). In addition, an ele-
ment’s image in the Steinberg quotient of GLn(F ) does not determine the element’s
inclusion in a given double coset. Thus, the Steinberg quotient will be extended
in Section 4 in order to encapsulate the extra information needed to differentiate
between conjugacy classes as well as double cosets.

Let us list a few straightforward properties of the Steinberg quotient.

Lemma 2.12. Let X ∈ Mn(F ). We have c(X) = c(Xs) and c(Xn) = (0, . . . , 0).
If γ ∈ GLn(F ), then c(γu) =

(
(−1)k

(
n
k

))
1≤k≤n

, where γu is the unipotent part of γ

in the Jordan decomposition.

Proof. The characteristic polynomial of any nilpotent matrix is λn whereas the
characteristic polynomial of a unipotent matrix is

(λ− 1)n =

n∑
k=0

(
n

k

)
(−1)kλn−k,

thus concluding the proof. □

Lemma 2.13. For all x ∈ Fn, the set c−1(x) contains a unique (open) regular
orbit as well as a unique (closed) semisimple GLn(F )-orbit.

2.1.5. Orbital integrals and measures. A major focus of the paper is computing
orbital integrals over GLn(Qp). A central task is to define a suitable measure
on Orb(γ). When the group G = GLn(Qp) acts on itself by conjugation, the orbit
Orb(γ) can be identified with the Qp-points of the homogeneous space Gγ\G, where
Gγ is the centralizer of γ.

Since both G and Gγ are locally compact topological groups, they admit Haar
measures [Gle10], allowing us to endow the orbit Orb(γ) with a G-invariant quotient
measure. The properties of this measure depend crucially on the normalization of
the Haar measures on G and Gγ . Two important normalizations are used in the
literature:

• The canonical measure, denoted µcan
γ (or µcan), is the quotient measure on

Gγ\G obtained by equipping both G and Gγ with Haar measures normal-
ized to give the standard maximal compact subgroups measure 12. This

2This generally depends on a choice of integral model over Zp. In our case, when G and Gγ split
over an unramified extension, we normalize the measures so that the maximal compact subgroups

G(Zp) and Gγ(Zp) have volume 1. The only exception is when Gγ splits only over a ramified
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normalization is standard in the theory of automorphic forms and is used
in [Kot05].

• The geometric measure, denoted µgeom
γ (or µgeom), is defined via the Stein-

berg map c : GLn → AGLn
. For regular semisimple γ, the orbit Orb(γ)

is the fiber c−1(c(γ)). Fix Haar measures dg on G = GLn(Qp) and da on
AGLn

(Qp). Then there is a unique measure µgeom
a on each fiber c−1(a) such

that the disintegration formula∫
G

f(g) dg =

∫
AGLn (Qp)

(∫
c−1(a)

f(x) dµgeom
a (x)

)
da

holds for all compatible test functions f . We write µgeom
γ := µgeom

c(γ) . This

normalization is convenient for the local ratios considered below.

Remark 2.14. There is an equivalent, concrete way to describe µgeom. Fix Haar
measures dg on G = GLn(Qp) and da on AGLn

(Qp). For a ∈ AGLn
(Qp) and any

small open neighborhood B of a, set

R(B) :=
volG(c

−1(B))

volAGLn
(B)

.

As B shrinks to {a} (e.g., along p-adic balls), the ratios R(B) converge to the
µgeom
a –measure of the fiber c−1(a). In fact, this method can be extended to support

the following. Let E ⊂ GLn(Qp) be an open set. Then,

lim
B→{a}

volG(c
−1(B) ∩ E)

volAGLn
(B)

= µgeom
a (c−1(a) ∩ E).

This fact will be used repeatedly in proofs regarding the convergence of local ratios.

AGLnc(γ)

( )B

E

Orbit of γ

γ G

c

Figure 1. Illustration of Remark 2.14

Equipped with these measures, we can now define the orbital integrals.

extension (equivalently, when γ has eigenvalues in a ramified field). In that case the canonical
measure is defined so that the maximal compact of the Néron model has volume 1, which may
differ slightly from Gγ(Zp); see Remark 7.2 for the precise adjustment.
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Definition 2.15. Let γ ∈ GLn(Qp) be regular semisimple. Its centralizer, denoted
T = Gγ , is a maximal torus in G. Let ϕ : GLn(Qp) → C be a compactly sup-
ported and locally constant function. The orbital integrals of ϕ with respect to the
geometric and canonical measures are:

Ogeom
GLn

(γ, ϕ) :=

∫
T (Qp)\GLn(Qp)

ϕ(g−1γg) dµgeom
γ ,

Ocan
GLn

(γ, ϕ) :=

∫
T (Qp)\GLn(Qp)

ϕ(g−1γg) dµcan
γ .

In this paper, we will be dealing with specific test functions. When it is clear which
test function (or measure) is being used, we may use a shorthand notation such as
O(γ).

2.1.6. Gekeler’s ratios. The ratios used in this paper are motivated by a powerful
heuristic introduced by Gekeler in his work studying isogeny classes of elliptic curves
over finite fields [Gek03]. A central object associated with an elliptic curve is its
Frobenius endomorphism. The Frobenius endomorphism can be represented as a
conjugacy class of matrices in GL2(Zℓ) (for ℓ ̸= p), whose characteristic polynomial
is X2 − tX + p = 0, where t is the trace of Frobenius.

Gekeler’s idea was to assume that the distribution of these Frobenius conjugacy
classes was uniform among all possible matrix conjugacy classes. This assumption
implies that the proportion of elliptic curves with a given Frobenius trace t should
be proportional to the number of all matrices that have trace t and determinant
p. This transforms a difficult arithmetic question into a more tractable problem of
counting matrices with a prescribed characteristic polynomial.

Definition 2.16. Let γ ∈ GLn(Qp) ∩Mn(Zp). We define

Sk(γ) := {g ∈ GLn(Zp/p
k) : c(γ) ≡ c(g) mod pk},

and the local ratios

νk(γ) =
#Sk

#GLn(Zp/pk)/#AGLn
(Zp/pk)

.

Also, define ν(γ) to be the limit of these ratios, i.e.,

ν(γ) := lim
k→∞

νk(γ).

Note that when the context is clear and γ is fixed, we will occasionally omit γ and
only write Sk and νk.

Since we may be dealing with many Gekeler-style ratios, when context is unclear,
the above ratio may be called νGLn

k (γ) for more specificity.

2.1.7. Hensel’s lemma. In order to show convergence of finite-level symbols, we will
make use of strong versions of Hensel’s lemma in the multivariate case.

Proposition 2.17 ([Con]). For a = (a1, a2, . . . , ad) in Qd
p, define

∥a∥p = max
i

|ai|p.

If f(X1, . . . , Xd) ∈ Zp[X1, . . . , Xd] and some a ∈ Zd
p satisfies

|f(a)|p < ∥(∇f) (a)∥2p
then there is an α ∈ Zd

p such that f(α) = 0 and ∥α− a∥p < ∥(∇f) (a)∥p.
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Theorem 2.18 (Multivariate Hensel’s lemma [Bou98, Corollary 2-3, p. 225]). Let
f1, . . . , fr ∈ Zp[X1, . . . , Xn] with r ≤ n. Define the Jacobian of f as the r×n matrix

Jf (x) =
(

∂fi
∂Xj

(x)
)
. where x ∈ Zn

p . Assume that there are a = (a1, . . . , an) ∈ Zr
p

and I = {j1, . . . , jr} so that the corresponding r × r minor

min(valfi(a))1≤i≤r > 2val

(
∂fi
∂Xjk

(a)

)
1≤i,k≤r

= 2e

for all i. In other words, there is e so that one of the minors of Jf (a) is nonzero
modulo pe and f(a) ≡ 0 (mod p2e).

• If e = 0 then there is a unique x = (x1, . . . , xn) ∈ Zn
p so that fi(x) = 0 for

all i and xi = ai if i /∈ I, and xi ≡ ai (mod p) if i ∈ I.
• (Implicit functions theorem) In general, there are power series ϕi1 , . . . , ϕir

with no constant terms so that for all t = (ti)i∈{1,...,n}\I ∈ (Z×
p )

n−r we
have

f(a+ peφ(t)) = 0, where φ(t) =

{
ϕi(t) i ∈ I
peti i /∈ I

.

3. Relating orbital integrals to local ratios in GLn

In this section, we expand upon the work in [AG17] by extending the space of
matrices from GL2 to GLn. Let γ be a regular semisimple element of GLn(Zp). To
relate the local ratios to the orbital integrals, we must first consider the subset of
G(Zp) as defined below:

Vk(γ) := {g ∈ GLn(Zp) : c(g) ≡ c(γ) mod pk}.

Furthermore, let

(3.1) V (γ) :=
⋂
k≥1

Vk(γ).

Similarly define Uk(c(γ)) be the neighborhood of c(γ) in AGLn
(Zp) defined by

Uk(c(γ)) := {x ∈ AGLn
(Zp) : x ≡ c(γ) mod pk}.

We define the auxiliary ratio

uk(γ) :=
volµcan

GLn
(Vk(γ))

vol(Uk(c(γ))
=

volµcan
GLn

(Vk(γ))

p−nk
.

Now, we take the limit of these ratios and relate it to the limit of the local ratios
and the orbital integrals.

Proposition 3.1. We have

lim
k→∞

uk(γ) = Ogeom
GLn

(γ,1GLn(Zp)).

Proof. Notice that V (γ), acting as a limit for Vk(γ), becomes the intersection of
Orb(γ) and GLn(Zp) as equality of characteristic polynomials implies conjugacy in
GLn(Qp).

Then Ogeom
G (γ,1GLn(Zp)) is just the volume of V (γ) as a subset of Orb(γ) with

respect to the geometric measure. Let a0 = c(γ) ∈ AGLn
(Zp). Notice that we can
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write Vk(γ) = c−1(Uk(a0)) ∩GLn(Zp). Thus,

lim
k→∞

uk(γ) = lim
k→∞

vol|µG| (c
−1(Uk(a0)) ∩GLn(Zp))

vol|µA|(Uk(a0))

= vol|µgeom
γ |(Vk(γ))

by the definition of the geometric measure (see Remark 2.14). □

Now we relate this auxiliary ratio to our local ratios.

Proposition 3.2. We have

lim
k→∞

uk(γ) =
#SLn(Fp)

pn2−1
· ν(γ) =

n∏
i=2

(1− p−i) · ν(γ).

Proof. Let πk = πGLn

k : GLn(Zp) → GLn(Zp/p
k) be the reduction map mod pk.

Note that Vk = π−1
k (Sk).

Notice that for each root of c(g) ≡ c(γ) in GLn(Zp/p
k), we have a fiber of volume

(p−k)n
2

in Vk. Thus, we only need to count the number of fibers in Vk, which is
#Sk, meaning we have:

volµcan
GLn

(Vk) =
#Sk

pkn2 .

By the definition of uk(γ), we have

uk(γ) =
volµcan

GLn
(Vk(γ))

p−nk
=

#Sk · p−kn2

p−kn

=
#Sk

p(n2−n)k
=

#Sk ·#SLn(Fp)

#SLn(Fp) · pn2(k−1)p−kn+1pn2−1

=
#SLn(Fp)

pn2−1
· νk(γ).

Because limk→∞ νk(γ) = ν(γ), we have that

lim
k→∞

uk(γ) =
#SLn(Fp)

pn2−1
· ν(γ) =

n∏
i=2

(1− p−i) · ν(γ).

This concludes the proof. □

Combining Proposition 3.1 and Proposition 3.2, we get the following:

Theorem 3.3. The local ratios relate to the orbital integrals via

ν(γ) =
pn

2−1

#SLn(Fp)
·Ogeom

GLn
(γ,1GLn(Zp)),

where #SLn(Fp) = pn
2−1

∏n
i=2 (1− p−i).

Remark 3.4. In general, we expect stable orbital integrals with the geometric mea-
sure over more general split groups G (like GLn) with simply connected semisimple

derived subgroup to differ from the local ratios by a factor of pdim(Gder)

#Gder(Fp)
.

Note that what “local ratio” would mean in that case is ambiguous. Indeed, for
such groups, the maximal tori are no longer cohomologically trivial, so stable orbits
may be strictly larger than rational orbits, and simple equality of characteristic
polynomials will not suffice. Even for stable orbital integrals, we do not want to
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count matrices in Mn(Z/pkZ) since they do not all lift to elements of G(Qp). A
candidate could be the tangent space of G at γ.

4. Integrating general spherical functions

Recall the Cartan decomposition for GLn(Qp) in (2.1). For M ∈ Mn(Zp) such
that det(M) ≡ 0 (mod p), the matrix M doesn’t lie in GLn(Zp) as the determi-
nant isn’t invertible in Zp. This implies that the intersection of the Orb(M) with
GLn(Zp) is empty. Thus, the double coset here Knp

λKn acts as a replacement for
GLn(Zp) so that the volume isn’t 0.

In this case, the characteristic polynomial of an element isn’t sufficient to deter-
mine which double coset the element is in. To remedy this, we must extend the
definition of the Steinberg quotient to record the dominant coweights. First, we
define the function:

Definition 4.1. Let
inv : GLn(Qp) → Zn,+

be the Cartan invariant map, mapping γ ∈ GLn(Qp) to the unique λ ∈ Zn,+ such
that γ ∈ Knp

λKn. Note, we compute inv(γ) by Gaussian elimination with row and
column operations reducing γ to diagonal form.

Now, we can extend our Steinberg map:

Definition 4.2. Define the extended Steinberg map,

cinv : GLn → An−1 ×Gm × Zn,+,

by
γ 7→ (tr(γ), . . . ,det(γ), inv(γ))

We also let
Ainv := An−1 ×Gm × Zn,+

be the extended Steinberg quotient.

Since local ratios involve computations modulo pk, we require a reduction map
for our extended Steinberg map, like before:

πAinv

k : An(Zp)× Zn,+ → An(Zp/p
k)× (Z/k ∪ {∞})n,+.

As before, the map reduces the coefficients of the characteristic polynomial modulo
pk and the elements of λ such that if 0 ≤ λi < k, it gets sent to itself, and if λi ≥ k,
it gets sent to ∞. With this, we can define our local ratio.

Definition 4.3. Let γ be a regular semisimple element in GLn(Qp). Define

Sinv
k :=

{
g ∈ Mn(Zp/p

k) : πAinv

k (cinv(g)) = πAinv

k (cinv(γ))
}

The local ratio is thus

νk(γ) :=
#Sinv

k

#GLn(Zp/pk)/AGLn(Zp/pk)
, lim

k→∞
(νk(γ)) = ν(γ).

Theorem 4.4. Let γ be a regular semisimple element in GLn(Qp) such that γ ∈
Knp

λKn, where λ = (λ1, λ2, . . . , λn) ∈ Zn,+. Let ϕλ denote the characteristic func-
tion of Knp

λKn. Then,

ν(γ) = p−(n−1)(λ1+···+λn) · pn
2−1

#SLn(Fp)
Ogeom

GLn
(γ, ϕλ).
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Proof. Let πM
k : Mn(Zp) → Mn(Zp/p

k) be the reduction map mod pk, so we can
define

Vk := (πM
k )−1(Sinv

k )

We define the set

Uk := {g ∈ Ainv(Zp) : π
Ainv

k (g) = πAinv

k (γ)}
as the (p−k)n neighborhood around the image of γ under the Steinberg map. For
k ≥ val(det(γ)), we have that Vk ⊂ Knp

λKn, and thus,

Vk = c−1
inv(γ) ∩Knp

λKn

We can therefore express our orbital integral as

Ogeom
GLn

(γ, ϕλ) = lim
k→∞

volµcan
GLn

(c−1
inv(Uk) ∩Knp

λKn)

volµcan
A

(Uk)

= lim
k→∞

|det(γ)|−n volµcan
Matn

(c−1
inv(Uk) ∩Knp

λKn)

|det(γ)|−1 volµcan
An

(Uk)

= p(n−1)(λ1+···+λn) · lim
k→∞

p−kn2

#Sinv
k

p−nk

= p(n−1)(λ1+···+λn)
#SLn(Fp)

pn2−1
ν(γ).

Rearranging, we get

ν(γ) = p−(n−1)(λ1+···+λn) · pn
2−1

#SLn(Fp)
Ogeom

GLn
(γ, ϕλ).

□

Remark 4.5. Note that for n = 2, to have invk(γ0) = invk(γ) is equivalent to
|det(γ0)| = |det(γ)| and min(val(γ0)) = min(val(γ)), where min(val(γ)) denotes the
minimum valuation of the entries of γ, because the minimum valuation is preserved
under conjugation by GLn(Z). Therefore, for local ratios in n = 2, we can replace
invk with min(val) for a more efficient computation.

5. A characterization of SLn-conjugacy

This section was inspired by the explicit results in Appendix B regarding SL2

conjugacy. The goal of this section is to make sense of the criterion mentioned
in Theorem B.7 as a generalization of the orientation of a basis, and extend it to
higher-dimensional examples.

Fix a dimension n ≥ 2. Let F be a field and let V = F⊕n. Let G = GL(V )
and S = SL(V ). For γ ∈ G, we let OrbG(γ) (resp. OrbS(γ)) denote the G-orbit
(resp. S-orbit) of γ.

Given g ∈ G and v ∈ V , define the n-tuple Λg(v) as

Λg(v) = (v, gv, . . . , gn−1v).

Note that G acts on n-tuples in V n via

g · (v1, . . . , vn) := (gv1, . . . , gvn).

Lemma 5.1. Let γ ∈ G. For all g ∈ G we have

Λγ(gv) = gΛg−1γg(v).
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Proof. The proof is by direct application of the definitions. □

Define the set C ⊂ G× V of cyclic pairs

C = {(g, v) ∈ G× V : SpanFΛg(v) = V } .

Definition 5.2. Given an n-tuple of vectors (v1, . . . , vn) ∈ V n, we define its
(signed) volume to be

vol((v1, . . . , vn)) = det
(
v1 v2 · · · vn

)
.

Corollary 5.3. If g commutes with γ, then Λγ(gv) = gΛγ(v). In that case, we
have

vol(Λγ(gv)) = det(g) vol(Λγ(v)).

Given γ ∈ G, let Gγ denote its centralizer in G.

Corollary 5.4. Let g, h ∈ G such that g−1γg = h−1γh. Then,

vol(Λγ(gv)) ≡ vol(Λγ(hv)) (mod det (Gγ)).

Proof. Let c = gh−1. From g−1γg = h−1γh, we get cγ = γc, so c ∈ Gγ .
Then,

vol(Λγ(gv)) = vol(Λγ(chv)) = det(c) vol(Λγ(hv)),

which yields the desired result. □

Recall that given a regular semisimple element γ ∈ G, the F -algebra F [γ] has no
torsion (by regularity) and is therefore an n-dimensional F -vector space. We may
identify V with F [γ] so that the action of γ is the same, seen as an element of GL(V )
or F [γ]×. Without the semisimplicity assumption, we would get an identification
of the semisimple part of γ in G with γ ∈ F [γ].

Under this identification, we have Gγ
∼= F [γ]× and det(x) = NF [γ]/F (x) for all

x ∈ F [γ]×. We can therefore establish the following.

Proposition 5.5. Assume γ ∈ G is regular semisimple. We have

det(Gγ) = NF [γ]/F (F [γ]×).

Definition 5.6. Let γ ∈ G be a regular semisimple element. Define the map

Vγ : V → F/NF [γ]/F (F [γ]×), v 7→ vol(Λγ(v)) (mod NF [γ]/F (F [γ]×)).

Corollary 5.3 is telling us that Vγ(Gγv) = {Vγ(v)} and therefore Vγ factors
through the finite quotient V/Gγ .

Definition 5.7. Let πG and πV denote the usual projection maps from C ⊂ G×V
to G and V , respectively.

Proposition 5.8. Let γ ∈ G be a regular semisimple element. Under our identifi-
cation, we have

πV (π
−1
G (γ)) = F [γ]×.

Proof. Since γ is regular semisimple, its characteristic polynomial is also its minimal
polynomial. Therefore, the set Λγ(1) = (1, γ, . . . , γn−1) must have rank n. By

Corollary 5.3 we get that all elements in F [γ]× = Gγ · 1 belong to πV (π
−1
G (γ)).

Conversely, if x /∈ F [γ]× then dim(F [γ]x) < n and therefore Λγ(x) cannot have
full-rank. □
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Corollary 5.9. Let γ ∈ Gγ be a regular semisimple element. Then the map Vγ is

constant on πV (π
−1
G (γ)).

Remark 5.10. Let Gell ⊂ G the set of regular semisimple elements γ so that F [γ]
is a field. Then Proposition 5.8 tells us that Gell × V \{0} ⊂ C.

Example 5.11. Assume n = 2 and γ ∈ G is regular semisimple. We have that
F [γ] ∼= F ⊕F when γ is diagonalizable, and F [γ] is a field otherwise. Consequently,
we can write

V/Gγ =

{
{{0}, F× × {0}, {0} × F×, F [γ]×} if γ is diagonalizable

{{0}, F [γ]×} else
.

In the second case, the zero vector generates a rank 0 lattice, whereas any vector in
F [γ]× gives rise to a basis of V . In the first case, vectors in F××{0} and {0}×F×

are eigenvectors for γ and therefore their images under powers of γ generate 1-
dimensional eigenspaces.

Definition 5.12. Let γ ∈ G be a regular semisimple element. Define the map
ωγ : OrbstG(γ) → F×/NF [γ]/F (F [γ]×) by

ωγ(γ
′) =

vol(Λγ′(v))

vol(Λγ(v))
(mod NF [γ]/F (F [γ]×)),

where v ∈ πV (π
−1
G (γ)) ∩ πV (π

−1
G (γ′)).

Proposition 5.13. The map ωγ is well-defined.

Proof. Firstly, let us observe that the set πV (π
−1
G (γ)) ∩ πV (π

−1
G (γ′)) is nonempty

because F [γ]× and F [γ′]× are both Zariski open sets and therefore must intersect.
Since γ, γ′ are conjugate then det(Gγ) = det(Gγ′) = NF [γ]/F (F [γ]×) and there-

fore ωγ(γ
′) does not depend on the choice of v. □

Example 5.14. Let p = 3. Consider the two matrices

γ =


0 0 0 −2
1 0 0 −1
0 1 0 0
0 0 1 0

 , γ′ =


0 0 0 −2/3
0 3 0 −1
0 0 1 0
0 0 0 1

 .

Both matrices are semisimple and have characteristic polynomial λ4 +λ2 +2. Pick
v = 1⊕ 0⊕ 0⊕ 0 which is a cyclic vector for both matrices, and

vol Λγ(v) = 1, vol Λγ′(v) = 27.

We get that ωγ(γ
′) = 27.

Theorem 5.15. We have OrbS(γ) = ω−1
γ (1). In other words, given γ ∈ SLn(Qp)

a regular semisimple element and g in the stable orbit of γ, g and γ are in the same
SLn-orbit if and only if

det
(
v γv · · · γn−1v

)
≡ det

(
v gv · · · gn−1v

)
(mod NF [γ]/F (F [γ]×)),

where v is any common cyclic vector for γ and g.

Proof. Let γ′ ∈ OrbG(γ) and let g ∈ G so that γ′ = g−1γg. By Proposition 5.1 we
know that

Λγ(gv) = g · Λγ′(v).
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We get two facts out of this: firstly gv ∈ πV (π
−1
G (γ)) since the set generated by gv

is a basis, and secondly Vγ(gv) = det(g)Vγ′(v). However, Proposition 5.8 tells us
that gv and v are both in F [γ]× and therefore Vγ(gv) = Vγ(v). We obtain that

ωγ(γ
′) =

det(g−1)Vγ(gv)

Vγ(v)
= det(g)−1 (mod NF [γ]/F (F [γ]×)).

Therefore, if γ′ ∈ OrbS(γ) then we may assume that g ∈ S and therefore ω(γ′) =
1.

Conversely, assume that det(g) = NF [γ]/F (x) for some x ∈ F [γ]× = Gγ . Define

h = x−1g ∈ S. We have det(h) = det(x)−1 det(g) = 1 and h−1γh = g−1xγx−1︸ ︷︷ ︸
=γ

g =

g−1γg = γ′. Therefore, we conclude that γ′ ∈ OrbS(γ). □

Example 5.16. Continuing Example 5.14, we find that γ and γ′ are conjugate in
SL4(Q3) if and only if 27 is a norm in E = Q3[λ]/(λ

4 + λ2 + 2). The polynomial
λ4 + λ2 + 2 defines a degree 4 extension of F3 hence the extension E is the unique
degree 4 unramified extension of Q3. Since v3(27) = 3 is not divisible by 4, it is
not a norm hence γ and γ′ are GL4(Q3) conjugate but not SL4(Q3)-conjugate.

Corollary 5.17. Let γ ∈ G be a regular semisimple element so that γ has an
eigenvector v ∈ V . Then OrbG(γ) = OrbS(γ).

Proof. Let λ ∈ F be an eigenvalue of γ corresponding to v. Then write the char-
acteristic polynomial of γ as pγ(t) = (t− λ)f(t) for some polynomial f(t). By the
Chinese Remainder Theorem we have

F [γ] ∼= F [t]/(pγ(t)) ∼= F [t]/(t− λ)⊕ F [t]/(f(t)) ∼= F ⊕ F [t]/(f(t)).

Under this decomposition, the norm of an element (x, 1) where x ∈ F is itself,
hence NF [γ]/F (F [γ]×) = F× and therefore the map ωγ is trivial. □

Remark 5.18. Note that if γ ∈ G then OrbstS (γ) = OrbG(γ). Let Sγ be the central-
izer of γ in SLn seen as an algebraic torus. We know that the number of S-orbits
inside OrbstS (γ) is equal to |H1(F,Sγ(F ))|. Write F [γ] = F1 ⊕ · · ·⊕Fr be a decom-

position of F [γ] as sum of fields. Consider the exact sequence on the F -points of
the sequence

1 −→ Sγ −→
r∏

i=1

ResFi/F Gm︸ ︷︷ ︸
=Gγ

NF [γ]/F ]−→ Gm −→ 1,

where ResFi/F denotes the Weil restriction of scalars. The middle term is cohomo-
logically trivial and therefore

H1(F,Sγ(F )) ∼= Coker(H0(F,Gγ(F ))−→H0(F, F
×
))

∼= F×/NF [γ]/F (F [γ]×).

Therefore we already know that the index of NF [γ]/F (F [γ]×) in F× is equal to the
number of S-orbits in the G-orbits. The upshot of Theorem 5.15 however, is that
it gives us an explicit way to sort elements of OrbG(γ) into S-orbits.

Corollary 5.19. Assume that γ ∈ G is regular semisimple and that F [γ] is a field.
Then γ ∈ OrbS(γ) if and only if the two following conditions hold:

(i) The characteristic polynomials of γ and γ′ are equal.
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(ii)
det
(
v γv · · · γn−1v

)
det
(
v γ′v · · · (γ′)n−1v

) ∈ NF [γ]/F (F [γ]×), where v can be taken to

be any nonzero vector in V .

Proof. We have seen that the first condition ensures that γ′ ∈ OrbG(γ). The second
condition is a reformulation of Theorem 5.15. The condition that F [γ] is a field
means that F [γ]× = F [γ′]× = V \{0} hence Vγ and Vγ′ are constant on V \{0}
hence the result does not depend on the choice of v. □

Corollary 5.20. Assume that n = 2 and γ =

(
a b
c d

)
∈ G be an elliptic regular

semisimple element. Let γ′ =

(
x y
s t

)
∈ G. The following are equivalent:

(i) γ′ ∈ OrbS(γ);
(ii) det(γ) = det(γ′), Tr(γ) = Tr(γ′), and c ≡ s (mod NF [γ]/F (F [γ]×));

(iii) det(γ) = det(γ′), Tr(γ) = Tr(γ′), and b ≡ y (mod NF [γ]/F (F [γ]×)).

Proof. This is a reformulation of Corollary 5.19. Indeed, if we take v =

(
1
0

)
then

det
(
v γv

)
det
(
v γ′v

) =

det

(
1 a
0 c

)
det

(
1 x
0 s

) =
c

s
,

which proves (i) ⇔ (ii).

Similarly, taking v =

(
0
1

)
shows (i) ⇔ (iii). □

Example 5.21. Let γ =

(
0 −1
1 0

)
and γ′ =

(
0 1
−1 0

)
. If v = ⟨a, b⟩ is any nonzero

vector, then

vol (Λ(v, γ)) = a2 + b2, and vol (Λ(v, γ′)) = −(a2 + b2).

Therefore, we get that γ and γ′ are conjugate in SL2(Qp) if and only if −1 is a
norm of Qp(γ).

Corollary 5.22. Assume that n = 3 and γ =
(
γij
)
1≤i,j≤3

be an elliptic regular

semisimple element. Let γ′ =
(
γ′
ij

)
1≤i,j≤3

. If γ and γ′ share the same characteristic

polynomial, then they are S-conjugate if and only if

γ2
21γ32+γ21γ31γ33−γ21γ22γ31−γ23γ

2
31 ≡ γ′

21
2
γ′
32+γ′

21γ
′
31γ

′
33−γ′

21γ
′
22γ

′
31−γ′

23γ
′
31

2

mod F×/NF [γ]/F (F [γ]×).

Proof. This is following the same method as the previous corollary, taking v =1
0
0

. Note that if F [γ]/F is not a field extension of degree 3, then F [γ] must be

isomorphic to F⊕3 or F ⊕ E, where E/F is a quadratic extension. In both cases,
we have that NF [γ]/F (F [γ]×) = F× so the equation holds by default. □
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6. A local ratio for SLn rational orbits

In this section, we define a local ratio for matrices in SLn which aims to detect
rational conjugacy as in Theorem 5.15.

6.1. Defining the ratio in general. Recall that c : SLn(Qp) → ASLn
, the Stein-

berg map, takes a matrix to the n-tuple of coefficients of its characteristic polyno-
mial.

Let Rk = Zp/p
kZp and let v ∈ (Rk)

n. Then, for each h ∈ SLn(Rk), we call (h, v)
a cyclic pair if {v, hv, . . . , hn−1v} spans Rn

k , or equivalently if

vol(Λh(v)) = det( v hv · · · hn−1v ) ∈ R×
k .

We have Rk[h] ⊆ Mn(Rk). Then, the determinant-of-multiplication defines a mul-
tiplicative norm map

NRk[h]/Rk
: Rk[h]

× → R×
k , x 7→ det(mx : Rk[h] → Rk[h]).

If we fix any cyclic v for h, then we can define the invariant norm class

Vh,k = [vol(Λh(v))] ∈ R×
k /NRk[h]/Rk

(Rk[h]
×).

Since existence of a cyclic v is not guaranteed, we work over the cyclic locus, defined
as

SLn(Rk)
cyc := {h ∈ SLn(Rk) : ∃v with vol(Λh(v)) ∈ R×

k }.
For γ ∈ SLn(Zp), let

Fk(γ) = {h ∈ SLn(Rk) : c(h) ≡ c(γ) mod pk}

and intersect

Fk(γ)
cyc = Fk(γ) ∩ SLn(Rk)

cyc.

Definition 6.1. Let γ ∈ SLn(Zp) be regular semisimple. We define the local ratio

νSLn

k (γ) =
# {h ∈ Fk(γ)

cyc : Vh,k = Vγ,k}
#Fk(γ)cyc

.

Furthermore, we define

νSLn(γ) = lim
k→∞

νSLn

k (γ)

whenever the limit exists.

This definition is general, but it is impractical to work with and compute because
of the mystery surrounding Vh,k. In the following subsections, we aim to provide
simpler definitions of the ratio for low values of n (the dimension).

6.2. A concrete definition in SL2 using the Hilbert symbol. First, we define
a local version of the Hilbert symbol for Zp/p

k.

Definition 6.2. Let a, b ∈ Zp/p
k, and define (a, b)p,k to be 1 if there exists a

solution (x, y, z) to z2 = ax2 + by2, where x, y, z ∈ Zp/p
k and at least one of x, y, z

is a unit in Zp/p
k, and −1 otherwise. If a, b ∈ Zp \ {0}, then we define (a, b)p,k :=

(a, b)p,k, where a and b represent a and b reduced modulo pk, respectively.

Lemma 6.3. Let a, b ∈ Zp \ {0}. As k → ∞, the symbol (a, b)p,k converges to the
usual Hilbert symbol (a, b)p.
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Proof. The Hilbert symbol (a, b)p is 1 if and only if the equation

F (x, y, z) = z2 − ax2 − by2 = 0

has a nontrivial solution in Qp. By clearing denominators and common factors of
p, this is equivalent to the existence of a primitive solution in Zp, i.e., a solution
(x, y, z) ∈ Z3

p where at least one of x, y, z is a unit.

Suppose (a, b)p = 1. Then, there is a primitive solution (x0, y0, z0) ∈ Z3
p to

F (x, y, z) = 0. Taking this solution mod pk yields (a, b)p,k = 1 for all k ≥ 1, so the
desired result is true in this case.

The other case is (a, b)p = −1. This means that the equation F (x, y, z) = 0 has
no primitive solution in Zp. We will show that (a, b)p,k = −1 for all sufficiently
large k.

We claim that some K exists such that (a, b)p,K = −1. Suppose to the contrary
that (a, b)p,k = 1 for all k. This implies, for each k, the existence of an approximate
solution vk = (xk, yk, zk) ∈ Z3

p that satisfies |F (vk)|p ≤ p−k and ∥vk∥p = 1.
The gradient is

∇F (vk) = (−2axk,−2byk, 2zk).

Let M = ∥∇F (vk)∥p. Specifically, since ∥vk∥p = 1, we have

M = |2|p ·max(|axk|p, |byk|p, |zk|p) ≥ |2|p ·min(|a|p, |b|p, 1).

The lifting condition is |F (vk)|p < M2, which becomes p−k < M2. Since M is
bounded below by a positive constant that does not depend on k, we can certainly
find a large enough k such that p−k < M2. For such a k, Proposition 2.17 guarantees
the existence of a true solution α ∈ Z3

p to F (α) = 0. This contradicts the statement
(a, b)p = −1.

Thus, there must exist some integer K such that

(a, b)p,K = −1.

Furthermore, if (a, b)p,k for some k > K, then such a solution would reduce to a
primitive solution mod pK , contradicting the fact that (a, b)p,K = −1. So, we have
(a, b)p,k = −1 for all k ≥ K, and thus it stabilizes to −1. □

We define this Hilbert symbol in order to preserve the fact that everything in
the local ratio is a finite count. However, in practice, there are efficient ways to
compute the Hilbert symbol directly, so one does not need to rely on this finite-level
Hilbert symbol. An example is given in Appendix A.

Proposition 6.4. Let γ ∈ SL2(Zp) be regular semisimple. Then,

νSL2

k (γ) ∼
#

{
h ∈ SL2(Zp/p

k) :
c(h) ≡ c(γ) mod pk,

(h12, D)p,k = (γ12, D)p,k

}
#SL2(Zp/pk)/#ASL2

(Zp/pk)
.

(Here, the notation ∼ denotes having the same limit as k → ∞.)

Proof. Follows from Corollary 5.20. □
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6.3. An invariant for SL3. Let γ =
(
γij
)
1≤i,j≤3

be an elliptic regular semisimple

element in SL3(Zp). Define

κ(γ) = γ2
21γ32 + γ21γ31γ33 − γ21γ22γ31 − γ23γ

2
31.

According to Corollary 5.22, if γ and γ′ have the same characteristic polynomial
and κ(γ) ≡ κ(γ′) (mod Q×

p /NQp[γ]/Qp
(Qp[γ]

×)), then they are conjugate. With
this, we state the SL3 ratio:

Proposition 6.5. Let γ ∈ SL3(Zp) be regular semisimple. Then,

νSL3

k (γ) ∼
#

{
h ∈ SL3(Zp/p

k) :
c(h) ≡ c(γ) mod pk,

κ(h) ≡ κ(γ) mod R×
k /NRk[h]/Rk

(Rk[h]
×)

}
#SL3(Rk)/#ASL3

(Rk)
.

7. Explicit computations for SL2 local ratios

Because computations are much simpler in SL2, we are able to use experimental
data (see Appendix A) to conjecture the following as an explicit formula of these
SL2 ratios, which we will prove in this section:

Proposition 7.1. Let γ ∈ SL2(Qp) be regular semisimple and have trace t. Let

D = t2 − 4 be the discriminant of the characteristic polynomial. Let δ = ⌊val(D)
2 ⌋,

i.e., p2δ is the highest power of p2 that divides D. Let χ =
(

D/p2δ

p

)
(this is the

Legendre symbol). We have

νSL2(γ) = p−δ ·


p

p−1 · pδ, χ = 1,
1
2 · pδ+1−1

p−1 , χ = 0,
p

p+1 · pδ−1
p−1 or p

p+1 · pδ+1−1
p−1 , χ = −1.

The two cases for χ = −1 represent the two different conjugacy classes that γ may
be in.

7.1. Relating the ratio with the orbital integral. This section aims to prove
Proposition 7.1 by relating the ratio with an orbital integral with known values.

7.1.1. Formulating the problem in terms of existing results. Fix choices of Haar
measures on SL2(Qp) and T (Qp) (the centralizer); suppose they are dg and dgγ ,

respectively. Let dġ = dg
dgγ

be a measure on T (Qp)\ SL2(Qp). For regular semisimple

γ ∈ SL2(Zp), define

O(γ) =

∫
T (Qp)\ SL2(Qp)

1SL2(Zp)(g
−1γg) dġ.

The value of this orbital integral depends on the specific Haar measures chosen. In
this section, we denote by O(γ) the integral using the canonical measure, denoted
µcan (see Section 2.1.5).

Remark 7.2. In this case, the canonical measure is gotten by first letting dg be
the Haar measure on SL2(Qp) giving SL2(Zp) volume 1. Then, the measure on
the centralizer T (Qp) depends on whether it is split or elliptic. In the split case,
we choose the measure giving T (Zp) volume 1. In the elliptic case, the connected
component of the identity (denoted T ◦(Qp)) is assigned a volume of 1.
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Theorem 7.3 ([Rüd25]). For regular semisimple γ ∈ SL2(Zp), suppose γ has
distinct eigenvalues a, b ∈ Qp(γ) where Qp(γ) is the smallest field containing the
eigenvalues of γ. Let

dγ = val
(
1− a

b

)
,

where val is normalized with val(p) = 1. Then,

O(γ) =


pdγ , χ = 1 (hyperbolic),

1
2 · pdγ+1

2 −1
p−1 , χ = 0 (ramified elliptic),

pdγ−1
p−1 or pdγ+1−1

p−1 , χ = −1 (unramified elliptic).

Remark 7.4. The measure used in [Rüd25] differs from µcan in the ramified case.
Specifically, the measure µcan is half the measure on the orbit used in [Rüd25].
This factor arises because the measure used in [Rüd25] gives the entire centralizer
volume 1, which consists of two connected components in the ramified case. We
have appropriately scaled the cited value of O(γ) to match our use of µcan.

We begin by explicitly relating the quantities dγ and δ := ⌊val(D)
2 ⌋.

Lemma 7.5. We have

dγ =

{
δ, χ ∈ {−1, 1},
δ + 1

2 , χ = 0.

Proof. Suppose χγ(x) = x2 − tx+1 is the characteristic polynomial of γ. Then we
have

a, b =
−t±

√
D

2
=⇒ b− a = ±

√
D.

Then,

dγ = val
(
1− a

b

)
= val

(
b− a

b

)
= val

(√
D

b

)
=

1

2
val(D)− val(b).

Since χγ ∈ Zp[x] and it is monic, the roots a and b are integral over Zp. Hence,
they both have nonnegative valuation. However, at the same time, we get val(a) +
val(b) = val(ab) = val(1) = 0, so val(a) = val(b) = 0. Thus,

dγ =
1

2
val(D).

By the definition of δ, we have δ = ⌊dγ⌋. Notice that χ ∈ {−1, 1} whenever val(D)
is even and χ = 0 whenever val(D) is odd. This yields the desired result. □

Using this result, we can rewrite the values for O(γ) as follows:

O(γ) =


pδ, χ = 1,
1
2 · pδ+1−1

p−1 , χ = 0,
pδ−1
p−1 or pδ+1−1

p−1 , χ = −1.
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This reduces Proposition 7.1 to showing that

νSL2(γ) = p−δ ·O(γ) ·


p

p−1 , χ = 1,

1, χ = 0,
p

p+1 , χ = −1.

7.1.2. Proving Proposition 7.1. We first relate the limit of the ratios to the orbital
integral with the geometric measure, and then we relate the geometric and canonical
measures.

Lemma 7.6. Let Ogeom(γ) be the rational orbital integral with the geometric mea-
sure. We have νSL2(γ) = Ogeom(γ).

Proof. We first introduce notation. Let G = SL2(Qp), K denote its maximal com-
pact subgroup SL2(Zp), and Gk = SL2(Zp/p

k).
Let t = tr(γ). Let πk : K → Gk be the reduction map mod pk.
We define the following subsets of K to reflect the two conditions required for

rational conjugacy.

Ak(γ) = {h ∈ K : tr(h) ≡ t mod pk},
Bk(γ) = {h ∈ K : (a(h), D)p,k = (a(γ), D)p,k},

Vk(γ) = Ak(γ) ∩ Bk(γ) =

{
h ∈ K :

tr(h) ≡ t mod pk,

(a(h), D)p,k = (a(γ), D)p,k

}
.

Next, define

V(γ) =
⋂
k≥1

Vk(γ).

By Lemma 6.3, the set V(γ) consists precisely of all of the matrices in the rational
orbit of γ who also have integer coefficients. In other words,

V(γ) = Orb(γ) ∩K.

For convenience, we define Sk(γ) to be the set referenced in the numerator of
the definition of νk(γ):

Sk(γ) = π(Vk(γ)) =

{
h ∈ Gk :

tr(h) ≡ t mod pk,

(a(h), D)p,k = (a(γ), D)p,k

}
⊂ Gk.

Because of this shorthand, we can write the following:

νSL2

k (γ) =
#Sk(γ)

#Gk/pk
.

Because µG(K) = 1 and Haar measures are left/right invariant, the fibers of πk

each have measure 1
#Gk

. Thus,

µG(Vk(γ)) =
#Sk(γ)

#Gk
=⇒ νSL2

k (γ) =
µG(Vk(γ))

p−k
.
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Now, let Uk(γ) = t + pkZp (recall that t is the trace of γ). Normalizing the Haar
measure on Qp to give Zp volume 1, we have µZp

(Uk(γ)) = p−k. Then,

lim
k→∞

νSL2

k (γ) = lim
k→∞

µG(Vk(γ))

p−k
= lim

k→∞

µG(Vk(γ))

µZp
(Uk(γ))

= lim
k→∞

µG(c
−1(Uk(γ)) ∩ Bk(γ))

µZp
(Uk(γ))

= µgeom(V(γ)).

The last step is by the definition of the geometric measure (see Remark 2.14). Since
V(γ) consists of all the elements in K that satisfy the trace and Hilbert symbol
condition, it is the intersection of K and the rational orbit of γ. The measure of
this is Ogeom(γ). □

Next, in order to relate Ogeom(γ) to O(γ) which uses the canonical measure, we
must relate µgeom and µcan.

Theorem 7.7. We have

µgeom

µcan
= p−δ · (1− χp−1)−1.

Proof. Let |∆(γ)| =
√

|D(γ)|p. From [Gor22, Eq. 36], we get

µgeom =
|∆(γ)|

volωT
(T ◦)

µcan.

From [Gor22, Example 2.8], we have

|ωT | =
√
∆E/Qp

· |ωcan|,

where ∆E/Qp
is the discriminant of E/Qp.

In general, according to [Gor22, Thm 2.6], we have

volωcan(T ◦) =
#T (Fp)

pdimT
.

In our case, the torus T has dimension 1. Thus,

(7.1) µgeom =
|∆(γ)| · p√

∆E/Qp
·#T (Fp)

µcan.

Now, we do the cases separately:

• Case χ = 1 (T is split): In this case,

|∆(γ)| = p− val(D)/2 = p−δ.

Also, note that ∆E/Qp
= 1. Since T is the split torus {diag(a, a−1)}, taking

Fp-points gives T (Fp) ≃ F×
p , so #T (Fp) = p − 1. Putting this together

with (7.1) yields the desired result.

• Case χ = 0 (T is ramified elliptic): In this case, we have |∆(γ)| = p−δ− 1
2 .

Also, we have ∆E/Qp
= p. To count the number of elements in T (Fp), note

that T = Res1E/Qp
Gm. It can be shown that #T (Fp) = p for a ramified

extension. Putting this together with (7.1) yields the desired result.
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• Case χ = −1 (T is unramified elliptic): In this case, we get |∆(γ)| = p−δ.
Also, we get ∆E/Qp

= 1. To count the number of elements in T (Fp), note

that T = Res1E/Qp
Gm. We have the exact sequence of tori

1 −→ Res1E/Qp
Gm −→ ResE/Qp

Gm

NE/Qp−−−−→ Gm −→ 1.

Since E/Qp is unramified, taking Fp-points yields

1 −→ T (Fp) −→ F×
p2

NF
p2

/Fp
−−−−−→ F×

p −→ 1.

Thus, we may count #T (Fp) = p2−1
p−1 = p + 1. Putting this together

with (7.1) yields the desired result.

This concludes the proof. □

This yields the final result of this section, which also proves Proposition 7.1.

Theorem 7.8. Let γ ∈ SL2(Qp) be regular semisimple and have trace t. Let

D = t2 − 4 be the discriminant of the characteristic polynomial. Let δ = ⌊val(D)
2 ⌋,

i.e., p2δ is the highest power of p2 that divides D. Let χ =
(

D/p2δ

p

)
(this is the

Legendre symbol). The relation between the limit of the ratios and the orbital integral
under the canonical measure is given by

νSL2(γ) = p−δ · (1− χp−1)−1 ·O(γ).

Corollary 7.9. We have

νSL2(γ) = p−δ · (1− χp−1)−1 ·


pδ, χ = 1,
1
2 · pδ+1−1

p−1 , χ = 0,
pδ−1
p−1 or pδ+1−1

p−1 , χ = −1.

8. Convergence of local ratios

In this section, we let F = Qp (although everything works with a more general
p-adic field). In this context, the local ratios we defined can be rephrased as a
valuation (and therefore open) condition on F .

By the theory of Igusa zeta functions, we know that given a variety X defined
over Spec(Zp) as the zero locus of a function f ∈ Zp[X1, . . . , Xℓ], the ratios

#(X ×Spec(Zp) Spec(Zp/p
kZp))

pk dimX =
#(f−1(pkZp)/p

kZp)

pk(ℓ−1)

do not necessarily stabilize when X is singular. Note that on the left-hand side we
use # to mean the number of rational points.

Example 8.1. Let f(x) = (x+ y)2. We have that #(f−1(pkZp)/p
kZp) = pk+⌊k/2⌋

and therefore
#(f−1(pkZp)/p

kZp)

pk
= p⌊k/2⌋,

which never stabilizes.

We wish to show that the orbit of a regular semisimple γ ∈ GLn(F ) has a
very “tame” singularity, and not only do ratios converge, they stabilize for k large
enough.
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8.1. A low-dimensional example. Let X =

(
λ 0
0 µ

)
∈ M2(F ) where λ ̸= µ and

min(val(λ), val(µ)) = 0.
The local ratios boil down to counting matrices of the form(

x y
s t

)
∈ M2(Z/pkZ)

such that x + t ≡ λ + µ (mod pk) and xt − ys ≡ λµ (mod pk). Using the trace
condition, this is equivalent to counting(

x y
z λ+ µ− x

)
∈ M2(Z/pkZ) such that xλ+ xµ− x2 − zy ≡ λµ (mod pk).

Let f : Z3
p → Zp be defined by f(x, y, z) = xλ + xµ − x2 − zy − λµ. The zero

locus of f is exactly the GL2(F )-conjugacy class of X and f−1(pkZp) = Vk(X) as
defined in (3.1). Write Sk := {M ∈ M2(Z/pkZ) : f(M) ≡ 0 (mod pk)}. We want

to check that #Sk

p2k stabilizes.

Example 8.2. We give an example illustrating the method in [Gek03]. Take
λ = 1 + pm and µ = 1 − pm for m ≥ 1. Then X ≡ I2 (mod p), which is its own
conjugacy class. The set of elements in M2(Z/pZ) with the same characteristic
polynomial as X modulo p corresponds to solutions of x(2− x)− yz ≡ 1 (mod p),
or equivalently,

yz ≡ −(x− 1)2 (mod p).

If x = 1 then either y or z are trivial modulo p, so there are 2p − 1 solutions.

If x ̸= 1 then the set of solutions {(x, y,− (x−1)2

y ) : x ̸≡ 1 (mod p)} which has

cardinality (p− 1)2. This yields #S1 = p2.
The set of solutions split into two conjugacy classes: {In}, and the remaining

p2−1 solutions. We can verify the point count through the orbit-stabilizer theorem,
the (Z) of any element of the second class has p(p − 1) elements and we have
p(p− 1)× (p2 − 1) = (p2 − 1)(p2 − p) = #GL2(Z/pZ).

If k > 1 then again, all elements that are nonscalar modulo p are conjugate and
their centralizer has smooth reduction modulo p hence cardinality p2(k−1)#Z =
p2k−1(p− 1) = p2k − p2k−1. We will treat the remaining cases in Examples 8.3 and
8.5, after a few general observations. By the orbit stabilizer theorem, the number
of nonscalar matrices with the prescribed characteristic polynomial is p2k−p2(k−1).

We have

∇f(x, y, z) =

λ+ µ− 2x
−z
−y

 .

Note that f(λ, 0, 0) = f(µ, 0, 0) = 0 and ∇f(λ, 0, 0) =

λ− µ
0
0

 = −∇f(µ, 0, 0).

Since λ ̸= µ we do have

|f(λ, 0, 0)|p = 0 < ∥∇f(λ, 0, 0)∥2p = |λ− µ|2p.

Example 8.3. Continuing Example 8.2. Modulo p, the solution (1, 0, 0) is the only
element of S1 so that ∇f(x, y, z) = 0 (mod p). For all other solutions, either z or
y is nonzero modulo p hence any lift of a mod p solution Zp will satisfy |∇f | = 1.
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We can then use Hensel’s lemma to say that there are exactly p2k lifts of nonscalar
matrices mod p to roots of p modulo pk. Write Sk = Ak⊔Bk where Ak are elements
of Sk that are scalars modulo p, and Bk the rest. We get that #Bk = p2k#B1 for
all k ≥ 2. In particular #Bk

p2k is constant. In Example 8.5, we finish the analysis by

studying Ak.

Remark 8.4. Although one might be tempted to use Hensel’s Lemma in its more
general forms when 0 < ∥∇f∥∞ < 1, we must observe that not every matrix
M ∈ M2(Z/pkZ) (for k > 1) lifts to a root of f over Zp. Indeed, for all e > 1 one
may define

Me = X +

(
0 pe

pe 0

)
.

If e < k and 2e ≥ k then f(Me) ≡ 0 (mod pk). Indeed, any lift of Me to Zp is of

the form X +

(
xpk pe + ypk

pe + spk tpk

)
. By linearity of the trace, the trace of such

a matrix is equal to the one of X if and only if the trace of the right summand is
zero, or in other terms, we have x + t = 0. There is however a problem with the
determinant, the determinant of this lift is λµ+ p2e (mod p2e+1) and therefore no
lift of Me to Zp is conjugate to X.

Example 8.5. We continue Examples 8.2 and 8.3. We have shown in Example 8.2
that A1 = 1. Therefore, elements of Ak are of the form I2 + pM where M ∈
M2(Z/pk−1Z). Computing the trace and determinant, we also get the conditions

ptr(M) ≡ 0 (mod pk), 1 + ptr(M) + p2 det(M) ≡ 1− p2m (mod pk).

If k = 2 then we only have one condition, namely tr(M) ≡ 0 (mod p) and we get
#A2 = p3. Now assume that k > 2. Simplifying the equations, we get tr(M) ≡ 0
(mod pk−1) and det(M) ≡ −p2m−2 (mod pk−2).

The idea is that the condition above gives us a condition on the characteristic
polynomial of M ∈ M2(Z/pk−1Z), which lets us proceed by induction. If m = 1
then M cannot be a scalar modulo p, therefore we are reduced to a counting of the
form #Bk (for a different characteristic polynomial). We make this explicit in the
proposition below.

Proposition 8.6. For all t ∈ Zp and d ∈ Z×
p define

Sk(t, d) = {M ∈ M2(Z/pkZ) : tr(M) ≡ t (mod pk), det(M) ≡ d (mod pk)}.

Write Bk(t, d) for the subset of Sk(t, d) consisting of matrices whose reduction mod-

ulo p are scalars, and Ak(t, d) = Sk(t, d)\Bk(t, d). Let X =

(
λ 0
0 µ

)
where λ ̸= µ

and min(val(λ), val(µ)) = 0 and define δ = val(λ− µ). We have the following:

(1) #Ak(λ+ µ, λµ) = p2k−1#A1(λ+ µ, λµ),
(2) If δ = 0 then Sk(λ+ µ, λµ) = Ak(λ+ µ, λµ),
(3) If k > 2δ then p−2k#Bk(λ+ µ, λµ) and p−2k#Sk(λ+ µ, λµ) are constant.

Proof. For part (1), note that Ak(t, d) is always a single orbit. Let Zk denote the
stabilizer of an element of the orbit. Since elements of Ak(t, d) are regular, their
stabilizer is a space of dimension 2 (a torus or a product of a torus and an affine
space), hence Zk+1 = p2Zk and the result follows.

Part (2) is immediate since if δ = 0 then B1(λ+ µ, λµ) = ∅
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To show part (2) we proceed by induction on δ ≥ 1.
(δ = 0) This follows from (1) and (2).
(δ ≥ 1) Write µ = λ + pδu with u ∈ Z×

p . We have B1 = {λI2 (mod p)}. Write
N = λI2 + pM ∈ Ak(λ + µ, λµ). Computing the characteristic polynomial of N ,
we get the necessary and sufficient conditions

p trM ≡ pδu (mod pk), p2 det(M) ≡ 0 (mod pk).

We get that

Bk(λ+ µ, λµ) ∼=
p−1⊔
i=0

Sk−1(p
δ−1u, ipk−2).

The valuation of the discriminant of a matrix of trace upδ−1 and determinant ipk−2

with u, i ∈ Z×
p is

1

2
val
(
u2p2(δ−1) − 4ipk−2

)
= δ − 1

since k > 2δ. Therefore we can use the induction hypothesis to determine that

#Bk(λ+ µ, λµ)

p2k
=

p−1∑
i=0

#Sk−1(p
δ−1u, ipk−2)

p2k

is constant. □

Remark 8.7. Note that this approach extends verbatim to nondiagonal matrices and
the counts of Sk can be written explicitly. This is done in [Gek03, §4]. However,
we only care about the convergence, hence we could simplify the arguments and
motivate the next section.

8.2. A general approach. Let us write gln = Mn and t ⊂ gln its Cartan subal-
gebra of diagonal matrices.

Recall that c : gln → An is the Steinberg quotient, mapping a matrix to the
coefficients of its characteristic polynomial.

It is known ([Bou02, Chapter 5, §5]) that the Jacobian of c evaluated at a t has
only one nonzero Jacobian, whose determinant

det(Jc|t) =
∏

α∈Φ+

α,

up to a unit, where Φ+ is the set of positive roots associated to t. Let jc be that
determinant.

For a general X, by conjugation invariance, we have

|det(J)c(X)| =
∏

α∈Φ+

|α(Xs)|.

A semisimple element X ∈ gln(F ) is regular whenever jc(X) ̸= 0.

Lemma 8.8. Viewing gln(Zp) as the points of a Zp-scheme, the smooth locus of c
is j−1

c (Z×
p ), i.e. the space of points whose reduction modulo p is regular.

Proof. This is just the criterion for smoothness by looking at the special fiber. □

Remark 8.9. This result is more general than the case of gln. In our case, we have

|det Jc(M)| =
∏

1≤i≤j≤n

|λi − λj |,
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where λ1, . . . , λn ∈ F sep are the eigenvalues of M .
Indeed, the only nonzero minor of Jc(diag(x1, . . . , xn))

−1 · · · −1
s1(x2, . . . , xn) · · · s1(x1, . . . , xn−1)

...
(−1)nsn−1(x2, . . . , xn) · · · (−1)nsn−1(x1, . . . , xn−1)


where si =

∑
1≤k1<···<ki≤n

i∏
m=1

Xkm
∈ Z[X1, . . . , Xn] is the degree i elementary sym-

metric polynomial in n variables. An easy induction (removing the last column to
the others) shows that its determinant is the expected one.

Let us establish some notation: Given x ∈ Zn
p we let

• δ(x) = val jc(X) ∈ 1
2Z, where X ∈ c−1(x),

• φx(M) = c(M)− x,
• Sk(x) = {M ∈ gln(Z/pkZ) : φx(M) = 0 (mod pk)},
• Sr

k(x) = {M ∈ Sk(x) : rM = r}, where M = M (mod p).

• S≥r
k (x) =

⊔
k≥r S

r
k(x).

Let us list a few straightforward facts.

Lemma 8.10. For any x ∈ Zn
p and k ≥ 1 we have that S0

k(x) is a single conjugation

class and #S0
k(x) = p(k−1)n(n−1)#S0

1(x).

Proof. By definition of S0
k, any M ∈ S0

k(x) reduces to a regular element. Since
M (mod p) is regular, the centralizer Zk of M is a space of fixed dimension n, so

#Zk+1 = pn#Zk hence #S0
k+1(x) =

pn2

pn #S0
k(x) as desired. □

Lemma 8.11. Let X ∈ gln(Zp) be a regular semisimple element and let x = c(X).
The following are equivalent:

(1) δ(x) = 0,
(2) X is regular modulo p,

(3) S≥0
1 (x) = ∅,

(4) S≥0
k (x) = ∅ for all k,

(5) S1(x) = S0
1(x),

(6) #Sk(x) = p(k−1)n(n−1)#S0
1(x).

Proof. The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇐ (6) are clear since if
δ(x) = 0 then any element in gln(Fp) with characteristic polynomial x (mod p) is
conjugate to X (mod p). Then note that jc(X) ∈ Z×

p for any lift of M to gln(Zp).
This lets us use part (1) of Hensel’s lemma with f = φx stated in Theorem 2.18. □

Proposition 8.12. Let γ ∈ GLn(Zp) be a regular semisimple element. Let k =
#{α ∈ Φ+ : |α(γ)| < 1} and x = c(X). We have

Sk(x) =

k⊔
i=0

Si
k(x).

Proof. For any X ∈ S1(x), we have GX ⊂ GXs and since Xs is semisimple, we get
dim(GX) ≤ dim(GXs

) = n+#{α ∈ Φ : α(Xs) = 0} = n+ 2#{α ∈ Φ+ : α(Xs) =
0}. □
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Let us define the residual regularity of X ∈ Mn(Zp) the integer rX where X = X
(mod p).

Proposition 8.13. Let γ ∈ GLn(Zp) be a regular semisimple element.
For all k > 2δ(c(γ)) + n. We may decompose

S
n(n−1)/2
k (c(γ)) ∼=

⊔
i

Sk(xi),

where the number of sets is independent of k and S
n(n−1)/2
k (xi) = ∅ for all i

Proof. We may assume that the residual regularity of γ is n(n−1)/2 since otherwise

S
n(n−1)/2
k (c(γ)) = ∅. Since γ is regular and its residue modulo p must be scalar, we

may write γ = λIn + pℓY where ℓ = min(val(α(γ))) ≥ 1. The residual regularity of
Y is strictly smaller than the one of X.

Let x = c(γ) and λIn + pM ∈ S
n(n−1)/2
k (x). By definition of Sk, we have

χλIn+M (t) = χpM (t− λ) ≡ χγ(t) = χpℓY (t− λ) (mod pk).

Call ci the map giving the n− ith coefficient of the characteristic polynomial.
We have ci(pM) = pic(M) By previous equation we get

ci(M) = ci(p
ℓ−1Y ) (mod pk−i), 1 ≤ i ≤ n.

We get

c(M) ∈
{
(c1(p

ℓ−1Y ), c2(p
ℓ−1Y ) + α1p

k−2, . . . ) : αi ∈ Z/piZ
}

(mod pk−1),

and therefore

S
n(n−1)/2
k (x) ∼=

⊔
α1,...,αn−1

Sk−1

(
(ci(p

ℓ−1Y ) + αip
k−i)ni=1

)
We use α0 = 0 above. If ℓ = 1 then the residual regularity of any element of

Sk−1

(
(ci(Y ) + αip

k−i)ni=1

)
is at most the residual regularity as Y which is strictly

smaller than n(n− 1)/2.
If ℓ ≥ 2 then we may apply the induction hypothesis on each set in the disjoint

union above and conclude. □

Proof. The second part follows from the fact that #Sk(x) = #Ak(x) + #Bk(x)
and p−kn(n−1)#Ak(x) is constant by Lemma 8.10.

For the first part, we will prove it by induction on δ(x).
(δ(x) = 0) #Bk(x) = 0 for all k.
(δ(x) ≥ 1) Let N ∈ Ak(x) and N ∈ A1(x) its residue modulo p. We can write

N = N + pM with M ∈ gln(Z/pk−1Z). □

Corollary 8.14. Let γ ∈ GLn(Zp) be a regular semisimple element. If r = r(γ) > 0

and k ≥ 2δ + n then Sr
k(c(γ))

∼=
⊔
i

Sk(xi), where S≥r
k (xi) = ∅, and the number of

xi’s is independent of k.

Proof. This is obtained by induction using the previous proposition. If r = n(n−
1)/2 then we use the previous proposition, otherwise decompose γ = X + pℓY
where X (mod p) is a “block-scalar” matrix. Then use Proposition 8.13 on each
block. □

This means that we can decompose the local density sets Sk in a union of regular
sets, and we obtain the following.
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Theorem 8.15. Let γ ∈ GLn(Zp) be a regular semisimple element, and let δ =
δ(γ). Then for all k ≥ 2δ + n we have

#Sk(c(γ))

pkn(n−1)
= ν(γ) =

pn
2−1

#SLn(Fp)
·Ogeom

GLn
(γ,1GLn(Zp)).

In particular,

Ogeom
GLn

(γ,1GLn(Zp)) =

∏n
i=2 (1− p−i)

p(2δ+n)n(n−1)−1
#Sk(c(γ)).

Proof. This is just a restatement of Theorem 3.3 with the knowledge of stabilization
of ratios. □

Remark 8.16. Note that we can adapt the formula above to integrals of character-
istic functions of double cosets GLn(Zp)p

λGLn(Zp) by increasing k by |λ| (the sum
of the entries of the weight λ).

9. Conclusion

In this paper, we extended the methods of Achter and Gordon [AG17] for com-
puting orbital integrals using local ratios. Our contributions are fourfold:

(1) We generalized the method from GL2 to GLn for regular semisimple el-
ements in the maximal compact subgroup GLn(Zp), showing that their
geometric orbital integral can be computed as a limit of finite counting
problems.

(2) We extended the class of test functions from the characteristic function of
GLn(Zp) to that of any double coset in the Cartan decomposition, allowing
for the computation of orbital integrals for nonintegral elements.

(3) We initiated the study of orbital integrals in SLn(Qp). We use a lattice
method to prove a set of criteria for conjugacy in SLn(Qp). Based on this,
we defined a new local ratio for SLn.

(4) We related the SL2 local ratios explicitly to SL2 orbital integrals.

With the case of linear groups fully covered, it would now be interesting to adapt
these methods to other split classical groups, or forms of the linear groups such as
unitary groups.
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Appendix A. Computing local ratios

Below, we provide samples of Python code used to compute local ratios using a
brute-force approach.

1 import itertools

2 import math

3 import numpy as np

4

5 p = 3

6 n = 2

7 gamma = ((44, 27), (57, 35))

8

9 def coeffs(matrix, mod):

10 return [int(c % mod) for c in np.rint(np.poly(np.array(matrix, dtype=float

))).astype(int)]

11

12 def conjugate(matrix, gamma_coeffs, mod):

13 # first check trace

14 trace = sum([matrix[i][i] for i in range(n)]) % mod

15 if (trace + gamma_coeffs[1]) % mod != 0:

16 return False

17

18 return coeffs(matrix, mod) == gamma_coeffs

19

20 for k in range(1, 6):

21 mod = p ** k

22 print(f"mod: {mod}")

23 ring = set(range(mod))

24 gamma_coeffs = coeffs(gamma, mod)

25 count = 0

26 for matrix in itertools.product(itertools.product(ring, repeat=n), repeat=

n):

27 if conjugate(matrix, gamma_coeffs, mod):

28 count += 1

29 num_GLn = p ** ((k - 1) * n * n) * math.prod([p**n - p**i for i in range(n

)])

30 if num_GLn % (p**k - p**(k - 1)) != 0:

31 raise Exception

32 num_SLn = num_GLn // (p**k - p**(k - 1))

33 if num_SLn % (p**k) != 0:

34 raise Exception

35 denominator = num_SLn // (p**k)

36 print(f"GLn ratio: {count/denominator}")

Listing 1. Python code for computing GLn ratios

1 from functools import lru_cache

2

3 @lru_cache(maxsize=None)

4 def hilbert_symbol(a: int, b: int, mod: int) -> int:

5 a %= mod

6 b %= mod

7
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8 for x in range(mod):

9 for y in range(mod):

10 for z in range(mod):

11 if x % p == 0 and y % p == 0 and z % p == 0:

12 continue

13 if (a * x ** 2 + b * y ** 2 - z ** 2) % mod == 0:

14 return 1

15 return -1

16

17 def is_same_norm_class(a, b, D, mod):

18 return hilbert_symbol(a, D, mod) == hilbert_symbol(b, D, mod)

19

20 for k in range(1, 6):

21 mod = p ** k

22 print(f"mod: {mod}")

23 ring = set(range(mod))

24 gamma_coeffs = coeffs(gamma, mod)

25 trace = gamma_coeffs[1]

26 discriminant = (trace ** 2 - 4) % mod

27 print("discriminant: ", discriminant)

28

29 for i in range(mod):

30 print(f"hilbert symbol for ({i}, {discriminant}): {hilbert_symbol(i,

discriminant, mod)}")

31

32 count = 0

33 for matrix in itertools.product(itertools.product(ring, repeat=n),

repeat=n):

34 if conjugate(matrix, gamma_coeffs, mod) and is_same_norm_class(

matrix[0][1], gamma[0][1], discriminant, mod):

35 count += 1

36 num_GLn = p ** ((k - 1) * n * n) * math.prod([p ** n - p ** i for i in

range(n)])

37 if num_GLn % (p ** k - p ** (k - 1)) != 0:

38 raise Exception

39 num_SLn = num_GLn // (p ** k - p ** (k - 1))

40 if num_SLn % (p ** k) != 0:

41 raise Exception

42 denominator = num_SLn // (p ** k)

43 print(f"SLn ratio: {count / denominator}")

Listing 2. Python code for computing SLn ratios (must follow
Listing 1)

The above brute-force approach of computing the Hilbert symbol can potentially
be sped up using the following:

Theorem A.1 ([Ser73, Theorem 1, p. 20]). Let a, b ∈ Q×
p where p > 2 is prime.

Write a = pmu and b = pnw for some m,n ∈ Z and u,w ∈ Z×
p . Then,

(a, b)p =

(
−1

p

)mn(
u

p

)n(
w

p

)m

,

where
(

·
p

)
denotes the Legendre symbol.
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Appendix B. Detecting rational conjugacy in SL2

This section provides an elementary proof of criteria for SL2(Qp) conjugacy also
mentioned in Corollary 5.20. As such, we use νp to denote the p-adic valuation.
This is not to be confused with the notation νp(γ) for the local ratio.

B.1. Square classes, norm classes, and the Hilbert symbol. For an odd
prime p, the structure of the multiplicative group Q×

p modulo squares is well-

understood. Every element x ∈ Q×
p can be uniquely written as x = pku, where

k = νp(x) and u ∈ Z×
p is a p-adic unit. An element is a square in Q×

p if and only if
its valuation k is even and its unit part u is a quadratic residue modulo p.

This gives rise to the group of square classes Q×
p /(Q×

p )
2 ∼= (Z/2Z)2. This group

has four elements, for which we can choose the representatives {1, ϵ, p, pϵ}, where ϵ ∈
Z×
p is a unit whose reduction modulo p is a quadratic nonresidue. Consequently, we

will refer to elements of Q×
p as being squares, ϵ-type, p-type, or pϵ-type, respectively.

Next, we explore norm classes as they relate to SL2. Let γ ∈ SLn(Qp). We write
Qp[γ] for the smallest subring of the matrix ring Mn(Qp) containing Qp and γ. We
have

Qp[γ] ∼= Qp[X]/mγ(X),

where mγ is the minimal polynomial of γ.
Now, restricting our focus to n = 2, we can examine Qp[γ] with more specificity.

We also restrict our scope to regular semisimple matrices, so the minimal polynomial
always equals the characteristic polynomial.

Let t be the trace of γ. If t2 − 4 is a square in Qp, then the minimal polynomial
splits over Qp, meaning

Qp[γ] ∼= Qp ⊕Qp.

Furthermore, the norm map N : Qp[γ]
× → Q×

p given by (x, y) 7→ xy is surjective.

However, if t2 − 4 is not a square, then the minimal polynomial is irreducible,
and

Qp[γ] ∼= Qp

(√
t2 − 4

)
.

It can be shown that the norm map N : Qp[γ]
× → Q×

p given by

a+ b
√
t2 − 4 7→ a2 − b2(t2 − 4)

has cokernel isomorphic to Z/2Z. The cosets of the image of this norm map will
be referred to as “norm classes” in Q×

p .
The Hilbert symbol can be used to represent the norm class of an element:

Definition B.1. For a local field K, the Hilbert symbol (a, b)K for a, b ∈ K×

is defined to be +1 if the equation z2 = ax2 + by2 admits a nontrivial solution
(x, y, z) ∈ K3, and−1 otherwise. Equivalently, the symbol (a, b)K equals 1 precisely
when b is the norm of an element of K[

√
a]. In the case that K = Qp, we write

(a, b)p := (a, b)Qp
.

The notion of the Hilbert symbol is used in the paper for describing local ratios
for SL2(Qp).
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B.2. An elementary view of conjugacy in SL2. Next, we develop criteria to
ascertain whether two regular semisimple matrices in SL2(Qp) are conjugate in
SL2(Qp). In general, two regular semisimple matrices are conjugate in GLn(Qp) if
they have the same characteristic polynomial. Unfortunately, this is not true when
considering conjugacy in SL2(Qp), as we can see in the following example.

Example B.2. The matrices A =

(
0 1

2
−2 0

)
and B =

(
0 3

2
− 2

3 0

)
are not conjugate

in SL2(Q3). To see why, if we let M =

(
a b
c d

)
, then MAM−1 = B =⇒ MA =

BM yields c = − 4
3b and d = 1

3a after expanding and solving. Plugging this into
ad− bc = 1, we eventually get

a2 + (2b)2 = 3.

Note that a2 and (2b)2 have even 3-adic valuations. Since the 3-adic valuation of the
right side is odd, the 3-adic valuations of a2 and (2b)2 must be equal, so we can write
ν3(a

2) = ν3((2b)
2) = 2k for some integer k. From this, we get ν3(a) = ν3(2b) = k,

so we can write a = 3ku and 2b = 3kv where u and v are units in Zp. Now,

a2 + (2b)2 = 32ku2 + 32kv2 = 32k(u2 + v2).

Since u and v are units, we have u2 + v2 ≡ 1 + 1 ≡ 2 (mod 3). So,

ν3(a
2 + (2b)2) = ν3(3

2k(u2 + v2)) = 2k = ν3(3) = 1,

which is a contradiction.

Since SL2(Qp) is a subset of GL2(Qp), two matrices that are conjugate in SL2(Qp)
must have the same trace (and determinant). However, as the above example
shows, there must be an additional criterion placed on the two matrices to ensure
conjugacy. It turns out that the criteria for conjugacy depend on the shared trace
of the matrices.

Lemma B.3. Let M and N be matrices in SL2(Qp) with common trace t. If
D = t2 − 4 is a nonzero square in Qp, then M and N are conjugate in SL2(Qp).

Proof. Since D is the discriminant of the characteristic polynomial and is a nonzero
square, we know that the characteristic polynomial splits over Qp. Thus, it must
have two roots λ and λ−1 in Qp (since the roots multiply to 1). Let v and w be
eigenvectors corresponding to these roots. Let P =

(
v w

)
be the 2 × 2 matrix

with columns v and w. Then,

M = P

(
λ 0
0 λ−1

)
P−1.

Since scalar multiples of eigenvectors are still eigenvectors, we can scale v in such a

way that P has determinant 1, and thus M is conjugate to

(
λ 0
0 λ−1

)
in SL2(Qp).

Similarly, the matrix N is also conjugate to

(
λ 0
0 λ−1

)
, so M and N are conjugate.

□

If t2 − 4 ̸= 0 is not a square, then the stable orbit (the set of matrices with trace
t) splits into two conjugacy classes. This can be seen via the following result:
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Lemma B.4. Let t ∈ Qp such that t2 − 4 is not a square in Qp. Let α ∈ Qp such

that α is not a square in Qp(
√
t2 − 4). Let s = (−1)νp(α), i.e., it is 1 if νp(α) is

even and −1 if it is odd. Then, the matrices 1
2

(
t 1

t2 − 4 t

)
and 1

2

(
t sα

t2−4
sα t

)
are

GL2(Qp)-conjugate but not SL2(Qp)-conjugate.

Proof. If we let M =

(
a b
c d

)
, then MAM−1 = B =⇒ MA = BM yields the

following system of equations after expanding:

t

2
a+

t2 − 4

2
b =

t

2
a+

sα

2
c

1

2
a+

t

2
b =

t

2
b+

sα

2
d.

Solving yields c = t2−4
sα b and d = a

sα .
Plugging this into ad− bc = 1 yields

a2

sα
− (t2 − 4)b2

sα
= 1.

We can rearrange to get

(B.1) a2 − (t2 − 4)b2 = sα.

The remainder of the proof aims to show that this equation has no solutions (a, b)

(i.e. sα is not a norm in Qp(
√
t2 − 4)), and thus there is a contradiction.

Note that squares and ϵ-type elements (see Section B.1) have even p-adic valu-
ations, while p-type and pϵ-type elements have odd p-adic valuations.

Continuing with the proof, we do casework on the square class of t2 − 4.

• If t2 − 4 is ϵ-type, then for α to not be a square in Qp(
√
t2 − 4), it must be

either p-type or pϵ-type. This means sα = −α has odd p-adic valuation.
Since t2 − 4 has even p-adic valuation, (t2 − 4)b2 and a2 both have even
p-adic valuation. Since the p-adic valuation of the right side of (B.1) is
odd, we must have

νp(a
2) = νp((t

2 − 4)b2) = 2k

for some integer k. From this, we can write a2 = p2ku and (t2−4)b2 = p2kv
where u and v are units in Zp. Note that u is a quadratic residue while v
is a nonquadratic residue. Our equation is now

p2k(u− v) = −α.

Noting that the right side has a p-adic valuation greater than 2k, we can
divide both sides by p2k and take the equation mod p to get that u− v ≡ 0
(mod p), or u ≡ v (mod p). However, only u is a quadratic residue, so this
is impossible.

• If t2 − 4 is p-type, then α must be either ϵ-type or pϵ-type. If α is ϵ-type,
then s = 1. Consider the p-adic valuation of the terms of (B.1). We have
that νp(a

2) is even, νp((t
2 − 4)b2) is odd, and νp(α) is even. Thus,

νp((t
2 − 4)b2) > νp(a

2) = νp(α) = 2k
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for some integer k. Doing a similar thing to before, we eventually get to

a2

p2k
≡ α

p2k
(mod p).

The left side is a quadratic residue, but the right side is not. Thus, this is
impossible.

The other case is if α is pϵ-type. Then s = −1. Similarly, we get

νp(a
2) > νp((t

2 − 4)b2) = νp(−α) = 2k + 1

for some integer k, and then

(t2 − 4)b2

p2k+1
≡ α

p2k+1
(mod p).

The left side is a quadratic residue, but the right side is not. So, this case
is also impossible.

• If t2 − 4 is pϵ-type, then by an argument extremely similar to the one for
the case where t2 − 4 is p-type, we reach a contradiction.

So, no matter the square class of t2− 4, there are no solutions (a, b, c, d). Thus, the
matrices are not conjugate by an element of SL2(Qp). □

When t2 − 4 is not a square, the two conjugacy classes are closely linked to the
two norm classes in Qp with respect to K = Qp(

√
t2 − 4) (also see Section B.1).

The elements that are norms are of the form w2 − x2(t2 − 4) for some w, x ∈ Qp.
The following lemmas explain why the norm class is relevant.

Lemma B.5. Suppose t2 − 4 is not a square in Qp. A matrix

M =

(
a b
c t− a

)
∈ SL2(Qp)

is conjugate to 1
2

(
t 1

t2 − 4 t

)
if and only if 2b is a norm in Qp(

√
t2 − 4).

Proof. To show that the condition is necessary, note that conjugating 1
2

(
t 1

t2 − 4 t

)
by an arbitrary matrix N =

(
w x
y z

)
with determinant 1 yields

N

[
1

2

(
t 1

t2 − 4 t

)]
N−1 =

1

2

(
t− wy + xz(t2 − 4) w2 − x2(t2 − 4)

z2(t2 − 4)− y2 t+ wy − xz(t2 − 4)

)
.

So, if M is conjugate to 1
2

(
t 1

t2 − 4 t

)
, we must have

b =
1

2
[w2 − x2(t2 − 4)] =⇒ 2b = w2 − x2(t2 − 4)

for some w, x ∈ Qp.
To show that the condition is sufficient, suppose 2b = w2 − x2(t2 − 4) for some

w, x ∈ Qp. Since t2 − 4 is not a square, the matrix M is not diagonalizable over
Qp, so b ̸= 0. If we define

T =

(
w x

x(t2−4)−w(2a−t)
2b

w−x(2a−t)
2b

)
,
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then explicit computation yields

T

[
1

2

(
t 1

t2 − 4 t

)]
T−1 =

(
a b
c t− a

)
.

We can also note that T has determinant 1, thus concluding the proof. □

Lemma B.6. Using the notation from Lemma B.4, a matrix

M =

(
a b
c t− a

)
∈ SL2(Qp)

is conjugate to 1
2

(
t sα

t2−4
sα t

)
if and only if 2b is not a norm in Qp(

√
t2 − 4).

Proof. To show that the condition is necessary, let k = sα and note that conjugating

1
2

(
t k

t2−4
k t

)
by an arbitrary matrix N =

(
w x
y z

)
with determinant 1 yields

N

[
1

2

(
t k

t2−4
k t

)]
N−1 =

1

2

(
t− wyk + xz t2−4

k w2k − x2 t2−4
k

z2 t2−4
k − y2k t+ wyk − xz t2−4

k

)
.

So, if M is conjugate to 1
2

(
t k

t2−4
k t

)
, we must have

b =
1

2

[
w2k − x2 t

2 − 4

k

]
.

Rearranging this equation gives

2b

k
= w2 −

(x
k

)2
(t2 − 4).

This means that 2b
k is a norm in Qp(

√
t2 − 4). From the proof of Lemma B.4, we

know that k is not a norm in Qp(
√
t2 − 4), so this means that 2b is not a norm.

To show that the condition is sufficient, suppose 2b is not a norm. Since k is
not a norm, we know 2b

k is a norm, so we can write 2b
k = x2

1 − x2
2(t

2 − 4) for some

x1, x2 ∈ Qp. Since t2 − 4 is not a square, the matrix M is not diagonalizable over
Qp, so b ̸= 0. If we define w = x1 and x = kx2, and construct the matrix

T =

(
w x

x t2−4
k −w(2a−t)

2b
wk−x(2a−t)

2b

)
,

then explicit computation yields

T

[
1

2

(
t k

t2−4
k t

)]
T−1 =

(
a b
c t− a

)
.

We can also note that T has determinant 1, thus concluding the proof. □

This leads us to the following conclusion:

Theorem B.7 (Criterion for SL2(Qp) conjugacy). Let p be an odd prime, and
let M,N ∈ SL2(Qp) be regular semisimple matrices, both with trace t. Assume
D = t2 − 4 ̸= 0. If D is a square in Qp, then M and N are conjugate in SL2(Qp).
If D is not a square in Qp, then M and N are conjugate in SL2(Qp) if and only if

the quotient of the top-right elements is a norm in Qp(
√
t2 − 4).
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Proof. Since the matrices are regular semisimple, we must have D ̸= 0. If D is
a square, then we are done by Lemma B.3. Assume D is not a square. Based
on Lemma B.5 and Lemma B.6, the norm class of twice the top-right element
determines which of the two representatives in Lemma B.4 the matrix is conjugate
to.

If the quotient of the top-right elements of M and N is a norm, then the top-
right elements are in the same norm class, and so is twice the top-right elements.
So, they are both conjugate to the same representative, and thus conjugate to each
other.

If the quotient of the top-right elements of M and N is not a norm, then they
are not in the same norm class. Each is then conjugate to a different representative,
and by Lemma B.4, they are not conjugate to each other. □

Therefore, Theorem B.7 details the additional criterion that must be checked
when determining conjugacy in SL2(Qp).
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