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ABSTRACT. Orbital integrals are central to the representation theory of reduc-
tive groups, with applications to the trace formula, isogeny classes of elliptic
curves, and the (relative) Langlands program. Yet explicit computations are
difficult beyond GL3. Building on methods of Gekeler and Achter—Gordon,
we extend finite counting techniques for orbital integrals to GL,(Qp) and
SLn(Qp). For GL,, we relate orbital integrals to limits of density ratios over
finite quotients of Z;, yielding explicit formulas with respect to the geometric
measure. We further treat arbitrary bi-GLy, (Zp)-invariant spherical test func-
tions that detect distinct double cosets. For SL,,, we introduce new conjugacy
criteria and a modified ratio that accounts for orbit splitting. In the case of
SL2, we show that these limits recover orbital integrals for both geometric and
canonical measures. In all settings, we prove that the corresponding ratios
converge to the desired orbital integrals.

CONTENTS

1. Introduction

Acknowledgements

2. Background

3. Relating orbital integrals to local ratios in GL,,
4. Integrating general spherical functions

5. A characterization of SL,-conjugacy

6. A local ratio for SL,, rational orbits

7. Explicit computations for SLs local ratios

8. Convergence of local ratios

9. Conclusion

References

Appendix A. Computing local ratios
Appendix B. Detecting rational conjugacy in SLo



2 MICHAEL MIDDLEZONG, LUCAS QI, AND THOMAS RUD

1. INTRODUCTION

Background and motivation. Orbital integrals are key objects of study in the
representation theory of reductive groups as well as the theory of automorphic
forms [ ]. Specifically, let GL,, be the algebraic group of invertible matrices
and let Q, denote the field of p-adic numbers (where p is an odd prime). We are
interested in the computation of integrals of certain test functions over conjugation
orbits of (regular semisimple) matrices in GL,(Qp). An important example is the
orbital integral of the characteristic function 1gy,,(z,). Given a linear transforma-
tion v: Qp — Qp, this integral measures the “volume” of the set of bases of Q)
with respect to which the matrix of v has integer coefficients.

These orbital integrals play an important role in the representation theory of

L,(Qp) [ ]. They show up, historically, in trace formulas like the Arthur-
Selberg trace formula | |, where orbital integrals encode contributions from
conjugacy classes on the geometric side of the trace formula. They can also be used
to calculate the cardinality of an ordinary isogeny class of elliptic curves over F,,
as a consequence of Langlands and Kottwitz’s description of points on a Shimura
variety over a finite field [ ]

Orbital integrals also play an important role in recent active areas such as the
Beyond Endoscopy conjectures | ] and the relative Langlands program as a
whole [ , ], where they are used to isolate contributions from
specific Langlands- functorlal transfers. Furthermore, many problems of represen-
tation theory and harmonic analysis on p-adic groups can be reduced to the ex-
plicit evaluation of a family of orbital integrals. They control character values,
the Plancherel formula | ], and spectral decompositions on adelic quotients, so
computational techniques for orbital integrals have wide-ranging consequences in
modern number theory.

Statement of the problem. Despite their important role, explicit computations
of orbital integrals are notoriously difficult. Even more so, they have been shown to
be difficult to compute; for example, | ] establishes relations between orbital
integrals and point counts on hyperelliptic curves which are known to be hard
to compute and not expressible as polynomials. Most existing research has been
concentrated in simple cases such as integrals over GLs.

In the case of GLa, Achter and Gordon | ] related some specific orbital
integrals over GL3 to local densities introduced by Gekeler in | ]. Specifically,
they establish a powerful method for computing the orbital integral of a regular
semisimple element v € GL2(Q)) against the characteristic function of the maximal
compact subgroup:

/ Lar,z,) (9~ vg) dp.
Orb(v)

This method was further extended in [ ] to work with the more general
group GSp,,. However, the Achter-Gordon approach, both for GLs and GSp,,,
was restricted to a specific orbit and test function.

The present paper aims to significantly broaden the applicability of this method
by extending the theory to the linear algebraic groups GL,, and SL,. This cre-
ates a more widely applicable framework for computing orbital integrals via their
connection to finite counting problems.
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Overview of results. The main results for GL,, include an explicit formula relat-
ing the limit of the local ratios to the orbital integral under a measure known as the
geometric measure. For SLg, a new local ratio is introduced in order to deal with
a phenomenon where stable orbits split into multiple rational orbits in SL2(Q,).
Then, the limit of these ratios is explicitly connected to orbital integrals under both
the geometric and canonical measures.

In Section 2, we collect necessary background knowledge about topics such as
orbits, measures, the Steinberg map, and local ratios.

In Section 3, we extend Achter and Gordon’s method from GLs to GL,,, com-
puting the explicit factor relating the orbital integral to the limit of the local ratios.

In Section 4, we further extend their result to arbitrary bi-GL,, (Z,,)-invariant test
functions rather than just the characteristic function of GL,,(Z,), thereby detecting
arbitrary double cosets. Specifically, for some A\; > --- > A, let

S == GL,(Z,) diag(p™,p*2,...,p*) GL,(Z,).
We demonstrate the following:

Theorem 4.4. Lety € S be reqular semisimple, and let ¢ denote the characteristic
function of S. Then,

n%—1
— o= (n=1)(A1t-+An) D Ogeom
v(y) = . , Dx).
(V) =p Z ST F,) CoL, (7, 6
In Section 5, we explore conjugacy of matrices in SL, (Q,) and establish a cri-
terion that we will later add as an extra local condition on the densities to isolate
the SL,-conjugacy class within a GL,-conjugacy class.

Theorem 5.15. Let v € SL,(Q,) be regular semisimple. An element g in the
stable orbit of v is in the same SL,-orbit as v if and only if

det (v |yv |-+ [y tv) =det (v ] gv |- | g" ") (mod Nppyr(FRH]™)),
where v is any common cyclic vector for v and g.

In particular, in the case of SLy, conjugacy requires the matching of the norm
class of the top-right elements of the matrices in addition to GL,-conjugacy. We
also give a more direct and elementary proof of this in Appendix B.

In Section 6, we use the results from Section 5 to define a local ratio for detecting
conjugacy in SL, (Qp). We explore how the definition can be modified to be more
explicit in the cases of n =2 and n = 3.

In Section 7, we relate the limit of the SLs ratios to the values of orbital integrals
over SLy under the canonical measure (and the geometric measure). We establish
the following relation:

Theorem 7.8. The relation between the limit of the ratios and the orbital integral
under the canonical measure is given by

) =p - (1—xp~ ") O(y),
where § and x are defined as in Section 7.
This also allows us to provide an explicit formula for the limits of the SLs ratios.

Finally, Section 8 shows that the limits involved in local ratios all eventually
stabilize. Furthermore, we can predict when the sequence of ratios will stabilize,
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and we establish an exact formula for orbital integrals as a finite point count instead
of the limit of point counts:

Theorem 8.15. Let v € GL,(Z,) be a reqular semisimple element. Then for all
k > 25 +n we have

#Sk(C(V)) pn2—1 geom

Rl v(y) = ST () Oar. (vslav,(z,))-

In particular,

O™ (v, 1aL, (z,)) = m#&c(c(v)).

where 6 = §(7y).
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2. BACKGROUND

2.1. Preliminaries. This section details definitions and preliminary results that
will be used throughout the paper. In this paper, we fix an odd prime p. We denote
the field of p-adic numbers by Q,, and the ring of p-adic integers by Z,,.

Remark 2.1. The arguments in this paper extend to any nonarchimedean local field
K of characteristic 0 with ring of integers O and maximal ideal p. We work over
Q,, for notational simplicity, using the fact that Z,/ kap =~ 7,/p*Z. For general K,
the quotients O /p* are finite local rings of size ¢*, where ¢ = |Ok /p|, and need
not be isomorphic to Z/q¢*7Z.

2.1.1. Rational orbits and stable orbits. A central consideration in this paper, when
dealing with SL,,, is the phenomenon of conjugation orbits (conjugacy classes)
splitting when passing from the algebraic closure down to the base field.

Let G be a reductive group' over a field F, and let v € G(F).

The rational orbit (also conjugation orbit or just orbit) of v is the set of elements
in G(F) conjugate to v by an element of G(F):

Orb(y) = {g™'vg: g € G(F)}.
This set can be identified with the quotient space G, (F)\G(F'), where

Gy ={9€G:gv=g}
is the centralizer of 7. Elements in Orb(v) are said to be rationally conjugate to ~.
The stable orbit of ~y is the set of elements in G(F’) conjugate to v by an element
of G(F):
Orb™(v) ={g 'vg: g € G(F)} NG(F).
Here F denotes the algebraic closure of F. Elements in Orb™(v) are said to be
stably conjugate to .

LA reductive group is a linear algebraic group whose unipotent radical is trivial, i.e., it has no
nontrivial connected normal unipotent subgroup.



ORBITAL INTEGRALS OVER LINEAR GROUPS AS LOCAL DENSITIES 5

The definitions imply that Orb(y) € Orb®*(v). The potential difference between
these two sets is a subtle but important phenomenon.

This distinction arises from the action of the Galois group Gal(F/F). Consider
the orbit of v over the algebraic closure,

Orb(y) = {9~ 'v9: g € G(F)}.
The Galois group acts on this larger pointed set by acting on the matrix entries of
the elements. We have the following;:

e An element belongs to the stable orbit if it is part of Orb(v) and its entries
are individually fixed by the Galois action (which is simply the condition
that its entries lie in F).

e An element belongs to the rational orbit only if it can be written as g~ 'vg
where the matrix g itself has entries in F.

The key point is that an element h = g~ 'vg can have all its entries in F even if
the matrix g used to form it does not. This discrepancy can be measured using
Galois cohomology. Example B.2 displays two matrices stably conjugate but not
rationally conjugate.

In this paper, the algebraic group G will either be GL, or SL,. While the
distinction between orbit types is crucial for SL,,, the situation simplifies for GL,,.

Proposition 2.2. Rational orbits and stable orbits in GL,(F) are equal.

Proof. We follow the sketch of the proof in [ , p-406]. This is a consequence of
Galois descent and Hilbert’s Theorem 90, applied to the following exact sequence
of pointed sets with Galois action:

1= G4(F) = G(F)—=(G,\G)(F) — 1.
The key observation is that maximal tori of GL,, are quasi split, hence cohomolog-
ically trivial. Indeed, maximal tori correspond to centralizers of regular semisimple
elements. Given such an element v, its centralizer can be identified with F[y]*,
or in other words, its centralizer is Resp,,r Gy, which is a quasi split torus and
therefore cohomologically trivial by Shapiro’s lemma and Hilbert 90. We get the
following sequence
1= G, (F) = G(F) B (G\G)(F) » H(F,G,(F)) = 1
and we may conclude that
Orb™(7) = (G;\G)(F) = Im(p) = Orb(7),

thus showing that rational orbits are equal to stable orbits in GL,, (F). O

This greatly simplifies considerations in the case of GL,,. This proposition does
not hold true in general for SL,,, however, as is shown in Appendix B.

2.1.2. Cartan decomposition. To describe the test functions we integrate, we recall
the Cartan decomposition. Using Gaussian elimination over Z,, we can write

GL.(Q) = || GL.(Z,)diag(p,...,p*") GLA(Zp),
A1> >Ny

where each \; € Z. This is the Cartan decomposition.
Given A = (A1,..., ) € Z", we let p* denote the matrix

diag(p™,...,p*) € GL,(Q,).
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When X satisfies Ay > --- > ), it is called a dominant coweight. Let Z™% denote
the set of dominant coweights. Furthermore, let K,, := GL,(Z,). We can rewrite
the Cartan decomposition as

(2'1) GLn(QP): |_| KnpAKn-
AEZ™+

In this paper, we will study orbital integrals of bi-K,-invariant functions with
compact support (i.e., functions f : GL,(Q,) — C such that f(kigks) = f(g) for
all g € GL,(Q,) and k1, ks € K,,). By the Cartan decomposition, functions of the
form 1x, 2k, span the space of such functions, and thus, it suffices to compute
integrals of characteristic functions of each double coset.

2.1.3. Regular and semisimple elements. In this section, we define the type of ele-
ments we will study. Assume that F is a perfect field.
Given X € M, (F), we let Gx denote its centralizer in GL,,.

Definition 2.3. Let X € M, (F). We say that X is semisimple if its orbit is a
closed subspace of GL,,.
Equivalently, the matrix X is semisimple when it is diagonalizable when viewed

as an element of M, (F).

Example 2.4. If x € F'* is not a square, then the matrix ((1) g) is semisimple

b
is isomorphic to the group Resp( z)/p Gm(F) = F(y/x)*. Tts orbit is the set
of matrices of trace 0 and determinant —z, which is a closed condition. This

but not diagonalizable over F'. Its centralizer is the set of matrices (a b;) which

. b S .
corresponds to matrices <(CZ ) such that a?+bc = z, which gives us a geometric

interpretation of the orbit as a conic in F3.
For any X € M, (F'), we may define its regularity as

_ dimGx —rank(GL,) dimGx —n
N 2 B 2 ’

Definition 2.5. We say that X is regular if rx = 0.

Equivalently, regular elements are elements with centralizers of minimal dimen-
sion.

In particular, X € M, (Q,) is regular semisimple if its characteristic polynomial

has n distinct roots over Q.

rXx

Example 2.6. When n = 2, we have rx € {0,1} and therefore all nonscalar
matrices are regular.

For example for any z € Q,, the matrix (g 3;) is semisimple but not regular,

0
istic polynomials but they are not conjugate.

. 1\ . -
the matrix (x x) is regular but not semisimple. They have the same character-
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Example 2.7. In GL3, the following matrices are all representatives of the unipo-
tent conjugacy classes of regularity 0, 1,3 respectively.

1 10 1 0 1 1 00

01 1}),10 1 0}, (0 1 O

0 0 1 0 0 1 0 0 1
The centralizers are respectively matrices of the form

T Yy z T Yy =z * Kk x

0 =z y|,10 s t], | ~ x|,

0 0 =z 0 0 =« * ok ok

which have dimension 3, 5,9 respectively.

Note that those are all GL3 unipotent orbits, classified by their Jordan blocks,
of type (3),(2,1),(1,1,1) respectively. Therefore, there is no unipotent matrix of
regularity 2.

Remark 2.8. More generally, if G is a connected reductive group acting on a homo-
geneous space X, we say that x is semisimple if the stabilizer is closed, and regular
if that stabilizer has minimal dimension.

In particular, the notions of semisimple and regular are valid for X € Lie(G).
In this exposition we use the fact that GL,, embeds in its Lie algebra to define the
terms simultaneously on the group and its Lie algebra.

Next, we recall the Jordan decomposition.

Proposition 2.9 (Jordan decomposition). Let v € GL,(F). We may write v =
YsVYu = YuYs Where s is semisimple and v, is unipotent.

Similarly, if X € M, (F), we can decompose X = X+ X,, where X, is semisim-
ple and X,, is nilpotent, and [Xs, X,,] = 0.

It is clear that if X € M, (F) we have exp(X)s = exp(X;) and exp(X), =
exp(Xy).

The reason why we tend to restrict our attention to regular semisimple matrices
is because criteria for conjugacy are nicer in the case of regular semisimple matrices,
as shown by the following lemma.

Lemma 2.10. Let v € GL,,(F) be regular semisimple. For all M € GL,(F), we
have that M € Orb(y) if and only if M has the same characteristic polynomial as

v.

Proof. The forward direction is true as characteristic polynomials are invariant
under conjugation (this is well-known).

For the backward direction, we will begin by showing that M € Orb™(y) and
conclude using Proposition 2.2.

If two matrices X and Y are semisimple and have the same characteristic poly-
nomial y, then they are both similar (in GL,(F)) to the diagonal matrix whose
diagonal entries equal the multiset of the roots of y. Thus, they are stably conjugate
(i.e. conjugate by a matrix in GL,(F)).

Therefore, it suffices to show that if M has the same characteristic polynomial
as v, then it is semisimple. Since M has n distinct eigenvalues, each eigenvalue
has geometric multiplicity 1, meaning that M is diagonalizable in GL, (F). We
conclude that M is semisimple. [
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2.1.4. The Steinberg quotient. The Steinberg map ¢: M, — A™ maps an element
X € M, to the coefficients of its characteristic polynomial:

o(X) = (tr(X),...,det(X)).

The codomain of ¢|qy,, is called the Steinberg quotient of GL,,, which we will denote
by
AL, = -\ G-

Remark 2.11. The map c¢ is sometimes called the “Chevalley map,” hence the no-
tation.

As seen in Lemma 2.10, the Steinberg quotient characterizes the space of con-
jugacy classes for regular semisimple elements in GL,,(F'), as these elements are
conjugate if and only if their characteristic polynomials are equal. However, it does
not fully characterize the space of conjugacy classes in SL,, (F). In addition, an ele-
ment’s image in the Steinberg quotient of GL, (F') does not determine the element’s
inclusion in a given double coset. Thus, the Steinberg quotient will be extended
in Section 4 in order to encapsulate the extra information needed to differentiate
between conjugacy classes as well as double cosets.

Let us list a few straightforward properties of the Steinberg quotient.

Lemma 2.12. Let X € M, (F). We have ¢(X) = ¢(X;) and ¢(X,) = (0,...,0).
If v € GL,(F), then c(yu) = ((—1)*(} where v, 1s the unipotent part of
in the Jordan decomposition.

))1§k,§n’

Proof. The characteristic polynomial of any nilpotent matrix is A™ whereas the
characteristic polynomial of a unipotent matrix is

S (S

k=0
thus concluding the proof. |

Lemma 2.13. For all x € F", the set ¢ '(x) contains a unique (open) regular
orbit as well as a unique (closed) semisimple GL,, (F')-orbit.

2.1.5. Orbital integrals and measures. A major focus of the paper is computing
orbital integrals over GL,(Q,). A central task is to define a suitable measure
on Orb(y). When the group G = GL,(Q,) acts on itself by conjugation, the orbit
Orb(v) can be identified with the Q,-points of the homogeneous space G, \G, where
G, is the centralizer of .

Since both G and G, are locally compact topological groups, they admit Haar
measures | ], allowing us to endow the orbit Orb(y) with a G-invariant quotient
measure. The properties of this measure depend crucially on the normalization of
the Haar measures on G and G. Two important normalizations are used in the
literature:

e The canonical measure, denoted pus*™ (or p"), is the quotient measure on

G, \G obtained by equipping both G and G, with Haar measures normal-

ized to give the standard maximal compact subgroups measure 12. This

2This generally depends on a choice of integral model over Zy. In our case, when G and G~ split
over an unramified extension, we normalize the measures so that the maximal compact subgroups
G(Zp) and G~ (Zp) have volume 1. The only exception is when G~ splits only over a ramified
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normalization is standard in the theory of automorphic forms and is used
in [ ].

e The geometric measure, denoted p&*™ (or u#°™), is defined via the Stein-
berg map ¢: GL, — Agp,. For regular semisimple 7, the orbit Orb(v)
is the fiber ¢=!(¢(7)). Fix Haar measures dg on G = GL,(Q,) and da on
Agr, (Qp). Then there is a unique measure p&°°™ on each fiber ¢~!(a) such
that the disintegration formula

[wa= [ ( / l(a)f(x)duicom(x)> da

holds for all compatible test functions f. We write p£°™ := ,uf(e;’;n . This

normalization is convenient for the local ratios considered below.

Remark 2.14. There is an equivalent, concrete way to describe u&®°™. Fix Haar
measures dg on G = GL,,(Q,) and da on Agy,, (Q,). For a € Agr,, (Q,) and any
small open neighborhood B of a, set

volg(¢7*(B))
VOIAGL"(B) '
As B shrinks to {a} (e.g., along p-adic balls), the ratios R(B) converge to the

pgeom—measure of the fiber ¢=!(a). In fact, this method can be extended to support
the following. Let £ C GL,(Q,) be an open set. Then,
volg(¢"H(B) N E)

li = 12" (¢~ @) N E).
Bg?a} VO]AGLH(B) pa (e (a) )

R(B) =

This fact will be used repeatedly in proofs regarding the convergence of local ratios.

Orbit of v !
1

A 4

/«///,',‘;/;//\B
\ SN

()

AgL,

FigUure 1. Illustration of Remark 2.14
Equipped with these measures, we can now define the orbital integrals.

extension (equivalently, when « has eigenvalues in a ramified field). In that case the canonical
measure is defined so that the maximal compact of the Néron model has volume 1, which may
differ slightly from G- (Zp); see Remark 7.2 for the precise adjustment.
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Definition 2.15. Let v € GL,,(Q)) be regular semisimple. Its centralizer, denoted
T = G, is a maximal torus in G. Let ¢: GL,(Q,) — C be a compactly sup-
ported and locally constant function. The orbital integrals of ¢ with respect to the
geometric and canonical measures are:

OZL. (v,0) = A9~ vg) dpEeem,

/T(Qp)\ GLn (Qp)

&, 0n6) = [ blg~199) dus™,
T(Qp)\ GLn(Qp)

In this paper, we will be dealing with specific test functions. When it is clear which
test function (or measure) is being used, we may use a shorthand notation such as

O(7)-

2.1.6. Gekeler’s ratios. The ratios used in this paper are motivated by a powerful
heuristic introduced by Gekeler in his work studying isogeny classes of elliptic curves
over finite fields | ]. A central object associated with an elliptic curve is its
Frobenius endomorphism. The Frobenius endomorphism can be represented as a
conjugacy class of matrices in GLa(Zy) (for £ # p), whose characteristic polynomial
is X? —tX + p =0, where ¢ is the trace of Frobenius.

Gekeler’s idea was to assume that the distribution of these Frobenius conjugacy
classes was uniform among all possible matrix conjugacy classes. This assumption
implies that the proportion of elliptic curves with a given Frobenius trace ¢ should
be proportional to the number of all matrices that have trace ¢t and determinant
p. This transforms a difficult arithmetic question into a more tractable problem of
counting matrices with a prescribed characteristic polynomial.

Definition 2.16. Let v € GL,,(Q,) N M, (Z,). We define
Sk(7) = {g € GLn(Zy/P"): ¢(7) = ¢(g) mod p"},
and the local ratios
vi(y) = #5 :
# GLi(Zp/P*)/##AcL, (Zp/P*)
Also, define v() to be the limit of these ratios, i.e.,

v(y) = kli_>120 v (7).

Note that when the context is clear and -y is fixed, we will occasionally omit « and
only write S, and vy.

Since we may be dealing with many Gekeler-style ratios, when context is unclear,

the above ratio may be called v (v) for more specificity.

2.1.7. Hensel’s lemma. In order to show convergence of finite-level symbols, we will
make use of strong versions of Hensel’s lemma in the multivariate case.

Proposition 2.17 ([Con]). For a = (a1,az,...,aq) in Qf, define
Jall, = ma a],.
If f(X1,...,Xq) € Zy[X4,...,X4] and some a € Zﬁ satisfies

@), < 1(VF) @
then there is an o € Z% such that f(e) =0 and |[ec — all, < [[(Vf) (a)],-
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Theorem 2.18 (Multivariate Hensel’s lemma | , Corollary 2-3, p. 225]). Let
fi, oo fr € Zp[Xa, ..., X, withr < n. Define the Jacobian of f as the r xn matriz

Jr(x) = (36);;1] (x)) where x € Zy. Assume that there are a = (ay,...,a,) € Zy,

and I = {j1,...,jr} so that the corresponding r X r minor

min(valf;(a))1<i<, > 2val < 0f: (a)> =2e
- ank 1<i,k<r

for all i. In other words, there is e so that one of the minors of J¢(a) is nonzero
modulo p¢ and f(a) =0 (mod p?°).
o Ife =0 then there is a unique X = (21,...,T,) € Zy so that f;(x) =0 for
alli and x; = a; ifi ¢ I, and x; = a; (mod p) ifi € I.

o (Implicit functions theorem) In general, there are power series ¢, ..., o,
with no constant terms so that for all t = (t;)icq1,...np1 € (Z;)"7" we
have

e B B (bi (t) el
flact (e =0, unere o(6) = { Y 17

3. RELATING ORBITAL INTEGRALS TO LOCAL RATIOS IN GL,,

In this section, we expand upon the work in | ] by extending the space of
matrices from GL3 to GL,,. Let v be a regular semisimple element of GL,,(Z,). To
relate the local ratios to the orbital integrals, we must first consider the subset of
G(Z,) as defined below:

Vi(7) = {g € GLn(Zy): c(g) = ¢(7) mod p"}.
Furthermore, let
(3.1) V(y) =) V()
E>1

Similarly define Uy (c(7y)) be the neighborhood of ¢(v) in Agr,, (Z,) defined by
Ur(e(v) = {z € Acw, (Zy): = = () mod p"}.

We define the auxiliary ratio

() volygn (Vi(v))  voluge (Vi(y))
T NolU(e() o
Now, we take the limit of these ratios and relate it to the limit of the local ratios
and the orbital integrals.

Proposition 3.1. We have

. — ogeom (1 .
ki}H;O uk<7) GL, ('Y» GLn(Zp)>

Proof. Notice that V(v), acting as a limit for Vj(v), becomes the intersection of
Orb(v) and GL,,(Z,) as equality of characteristic polynomials implies conjugacy in
CL (@),

Then O™ (v, 1aL, (z,)) is just the volume of V(7) as a subset of Orb(y) with
respect to the geometric measure. Let ag = ¢(y) € Agr, (Z,). Notice that we can
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write Vi (v) = ¢} (Uk(ag)) N GL,(Z,). Thus,

lim wug(y) = lim volj,. (¢ (Ux(ao)) N GL(Zp))

k—o0 k—o0 V01|MA‘(U1€(CL0))
= vol|geom| (Vi (7))
by the definition of the geometric measure (see Remark 2.14). (]

Now we relate this auxiliary ratio to our local ratios.

Proposition 3.2. We have

= #O) ) = [[0-p7)- v,

=2

lim wg(7)

k—o0 p
Proof. Let 7 = WSL"I GL,(Z,) — GL,(Z,/p*) be the reduction map mod p*.
Note that V;, = 7rk_1(5’;€).

Notice that for each root of ¢(g) = ¢(v) in GL,,(Z,/p"), we have a fiber of volume
(10_’“)”2 in V. Thus, we only need to count the number of fibers in Vj, which is
#5S), meaning we have:

#Sk
VO]H%ailn (Vk) = W
By the definition of ug (), we have

voluesn (V(7)) 48, - p~

Ue\v) = —nk —kn
p p
p(n27n)k # SL,, (]Fp) . an(kfl)pfkn+1pn271
#SL,,(F
= E3al) o).
pn

Because limg_,o0 vk (7) = v(7y), we have that

| #SLa(E)

g (y) preE, (v) = g(l -p ") v(v)
This concludes the proof. O

Combining Proposition 3.1 and Proposition 3.2, we get the following:

Theorem 3.3. The local ratios relate to the orbital integrals via

n?—1
p eom
V)= L oEem(y g :

where # SL,, (F,) = p 1 T[1_, (1 — p~).

Remark 3.4. In general, we expect stable orbital integrals with the geometric mea-

sure over more general split groups G (like GL,,) with simply connected semisimple
dim(Gder)
P

#Gder (]Fp) .
Note that what “local ratio” would mean in that case is ambiguous. Indeed, for

such groups, the maximal tori are no longer cohomologically trivial, so stable orbits
may be strictly larger than rational orbits, and simple equality of characteristic
polynomials will not suffice. Even for stable orbital integrals, we do not want to

derived subgroup to differ from the local ratios by a factor of
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count matrices in M, (Z/p*Z) since they do not all lift to elements of G(Q,). A
candidate could be the tangent space of G at ~.

4. INTEGRATING GENERAL SPHERICAL FUNCTIONS

Recall the Cartan decomposition for GL,,(Q,) in (2.1). For M € M, (Z,) such
that det(M) = 0 (mod p), the matrix M doesn’t lie in GL,(Z,) as the determi-
nant isn’t invertible in Z,. This implies that the intersection of the Orb(M) with
GL,,(Z,) is empty. Thus, the double coset here K.p*K,, acts as a replacement for
GL,(Z,) so that the volume isn’t 0.

In this case, the characteristic polynomial of an element isn’t sufficient to deter-
mine which double coset the element is in. To remedy this, we must extend the
definition of the Steinberg quotient to record the dominant coweights. First, we
define the function:

Definition 4.1. Let
inv: GL,(Q,) — Z™*
be the Cartan invariant map, mapping v € GL,(Q,) to the unique A € Z™* such

that v € K,,p* K,,. Note, we compute inv(y) by Gaussian elimination with row and
column operations reducing 7 to diagonal form.

Now, we can extend our Steinberg map:

Definition 4.2. Define the extended Steinberg map,
Cinv: GL, = A" x G, x Z™T,
by
v = (tr(y),. .., det(y), inv(y))

We also let
Ay = A" 1 x G, x Z™F

be the extended Steinberg quotient.

Since local ratios involve computations modulo p*, we require a reduction map
for our extended Steinberg map, like before:

T AM(Zy) x 20— A™(Z, /pF) x (Z)k U {oo})™ T
As before, the map reduces the coefficients of the characteristic polynomial modulo

p* and the elements of A such that if 0 < \; < k, it gets sent to itself, and if \; > k,
it gets sent to co. With this, we can define our local ratio.

Definition 4.3. Let v be a regular semisimple element in GL,,(Q,). Define

St = {g € Ma(Zp/p"): 7 (e (9)) = T4 (einv (7))}
The local ratio is thus
#S,ifnv )
v = , lim (v, =v(y).
Y L@, R, Ty ) = 0)
Theorem 4.4. Let v be a regular semisimple element in GL,,(Q,) such that v €

K.p K, where A\ = (A1, Aa, ..., \y) € Z™. Let ¢y denote the characteristic func-
tion of K,p*K,,. Then,

pv !
—(n=1)A1t-+An) . S (v, da)-

v(y)=p MOGLn
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Proof. Let 7 : M, (Z,) — M,(Z,/p") be the reduction map mod p*, so we can
define .
Vi = (nl) 7 (SE)
We define the set
Ui = {9 € Ainv(Zy): mi™ (g) = mp™ (1)}
as the (p~*)™ neighborhood around the image of v under the Steinberg map. For
k > val(det(v)), we have that Vj, C K, p*K,, and thus,
Vi = Gy (1) N Knp K
We can therefore express our orbital integral as

o Uk) N KnpAKn)

VOIHCC‘;afn ( inv(

O&L (v, 62) = lim

k—oo VOIH?H (Uk)
oy et volug, (6w (Ur) N Knp K y)
T e [det(y)] =L vol, ez (Up)

—kn? Sinv
lim m

_ p(n—l)(xl+~~+/\n) .
k—o0 pfnk

(n=1)(M+-4+An) # SL” (Fp) I/(’Y)

=p pn271

Rearranging, we get

n%—1

— (=Dt rn) P Ogeom
v(y)=p F ST () V6t (7, &)

O

Remark 4.5. Note that for n = 2, to have invg(y9) = invg(y) is equivalent to
|det(y0)| = |det(v)| and min(val(vp)) = min(val(y)), where min(val(v)) denotes the
minimum valuation of the entries of , because the minimum valuation is preserved
under conjugation by GL,(Z). Therefore, for local ratios in n = 2, we can replace
invg with min(val) for a more efficient computation.

5. A CHARACTERIZATION OF SL,-CONJUGACY

This section was inspired by the explicit results in Appendix B regarding SLo
conjugacy. The goal of this section is to make sense of the criterion mentioned
in Theorem B.7 as a generalization of the orientation of a basis, and extend it to
higher-dimensional examples.

Fix a dimension n > 2. Let F be a field and let V = F®". Let G = GL(V)
and S = SL(V). For v € G, we let Orbg(y) (resp. Orbg(y)) denote the G-orbit
(resp. S-orbit) of 7.

Given g € G and v € V, define the n-tuple A4(v) as

Ay(v) = (v, gv,...,g" o).
Note that G acts on n-tuples in V" via
g (V1. 0n) = (gU1,...,90,).
Lemma 5.1. Let v € G. For all g € G we have
Ay (gv) = ghg-1,4(v).
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Proof. The proof is by direct application of the definitions. ([

Define the set C C G' x V of cyclic pairs
C={(g,v) €GxV : SpangpAy(v) =V}.

Definition 5.2. Given an n-tuple of vectors (vi,...,v,) € V™, we define its
(signed) volume to be

vol((vi,...,v,)) =det (w1 [v2 |-+ |vn ).

Corollary 5.3. If g commutes with v, then Ay(gv) = gA,(v). In that case, we
have

vol(A (gv)) = det(g) vol(A (1)).
Given v € G, let G, denote its centralizer in G.

Corollary 5.4. Let g,h € G such that g~'~vg = h~'~h. Then,
vol(A(gv)) = vol(Ay(hv)) (mod det (G5)).

Proof. Let ¢ = gh™'. From g~'yg = h™'vh, we get ¢y = ¢, so c € G,.
Then,
vol(A,(gv)) = vol(A (chv)) = det(c) vol(A, (hv)),
which yields the desired result. O

Recall that given a regular semisimple element v € G, the F-algebra F[y] has no
torsion (by regularity) and is therefore an n-dimensional F-vector space. We may
identify V with F'[] so that the action of 7 is the same, seen as an element of GL(V)
or F[y]*. Without the semisimplicity assumption, we would get an identification
of the semisimple part of v in G with v € F[y].

Under this identification, we have G, = F[y]* and det(z) = Npjyj,p(z) for all
x € F[y]*. We can therefore establish the following.

Proposition 5.5. Assume v € G is reqular semisimple. We have
det(G) = Nppyr(F[]").
Definition 5.6. Let v € G be a regular semisimple element. Define the map
Vy: V= F/NF[,Y]/F(FMX)7 v = vol(Ay(v)) (mod NF[,Y]/F(FMX)).

Corollary 5.3 is telling us that V,(G,v) = {V,(v)} and therefore V, factors
through the finite quotient V/G,.

Definition 5.7. Let mg and 7y denote the usual projection maps from C C G x V'
to G and V, respectively.

Proposition 5.8. Let v € G be a regular semisimple element. Under our identifi-
cation, we have

mv(rg' (7)) = Fly*.

Proof. Since 7 is regular semisimple, its characteristic polynomial is also its minimal
polynomial. Therefore, the set A, (1) = (1,7,...,7" ') must have rank n. By
Corollary 5.3 we get that all elements in F[y]* = G-, - 1 belong to my (75" (7)).
Conversely, if ¢ F[y]* then dim(F[y]z) < n and therefore A, (z) cannot have
full-rank. (]
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Corollary 5.9. Let v € G, be a regular semisimple element. Then the map V. is
constant on Ty (75 (7)).

Remark 5.10. Let G* C G the set of regular semisimple elements v so that F[y]
is a field. Then Proposition 5.8 tells us that G°* x V\{0} C C.

Example 5.11. Assume n = 2 and v € G is regular semisimple. We have that
F[y] & F & F when v is diagonalizable, and F'[v] is a field otherwise. Consequently,
we can write
VG, = {{0}, F'* x {0},{0} x F*,F[y]*} if 7 is diagonalizable
T {0}, Fly)*} else

In the second case, the zero vector generates a rank 0 lattice, whereas any vector in
Fv]* gives rise to a basis of V. In the first case, vectors in F* x {0} and {0} x F'*
are eigenvectors for v and therefore their images under powers of  generate 1-
dimensional eigenspaces.

Definition 5.12. Let v € G be a regular semisimple element. Define the map
wy: Orbg(y) = F*/Nppy)yr (Fly]*) by

_ vol(Ay(0))
00 = o8, ()
(v

)

Proposition 5.13. The map w, is well-defined.

(mod Nppy/r(FH]™)),

where v € Ty (75" (7)) Ny (75!

Proof. Firstly, let us observe that the set my (75" (7)) N7y (75" (7)) is nonempty
because F[y]* and F[y']* are both Zariski open sets and therefore must intersect.

Since 7,7 are conjugate then det(G,) = det(G+/) = Npp,j/p(F[y]*) and there-
fore w.(7") does not depend on the choice of v. O

Example 5.14. Let p = 3. Consider the two matrices

00 -2 00 0 —2/3
00 —1 , o3 0 -1
1o ol loo1 o
00 1 0 000 1

O = O

Both matrices are semisimple and have characteristic polynomial A* + A2 + 2. Pick
v=1®06¢ 00 which is a cyclic vector for both matrices, and

volAy(v) =1, vol Ay (v) = 27.
We get that w.,(v") = 27.
Theorem 5.15. We have Orbs(y) = w; ' (1). In other words, given v € SL,(Q))

a regular semisimple element and g in the stable orbit of v, g and ~y are in the same
SL,,-orbit if and only if

det (v ‘ Y ‘ ‘ 7" tv) = det (v ‘ gu ‘ ‘ g"tv)  (mod Npp/r(F[7]™)),
where v is any common cyclic vector for v and g.

Proof. Let 4/ € Orbg(y) and let g € G so that 4" = g~!vg. By Proposition 5.1 we
know that

Ay(gv) =g Ay (v).
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We get two facts out of this: firstly gv € 71'\/(7761(7)) since the set generated by gv
is a basis, and secondly V,(gv) = det(g)V, (v). However, Proposition 5.8 tells us
that gv and v are both in F[y]* and therefore V,(gv) = V,(v). We obtain that

det(g~1)Vy (gv)
wy(7') =
! Vy(v)
Therefore, if 4" € Orbg(y) then we may assume that g € S and therefore w(y') =

=det(g)™" (mod Npp)/r(FH]™)).

1.
Conversely, assume that det(g) = Nppy)/r(x) for some z € F[y]* = G,. Define
h=a2"1g € S. We have det(h) = det(z) ' det(g) = 1 and h='yh = g layz~'g =
——
=y
g tvg = 7. Therefore, we conclude that 7' € Orbg(7). O

Example 5.16. Continuing Example 5.14, we find that v and 4/ are conjugate in
SL4(Qs) if and only if 27 is a norm in E = Q3[\]/(A* + A? + 2). The polynomial
A + A2 + 2 defines a degree 4 extension of F3 hence the extension E is the unique
degree 4 unramified extension of Q3. Since v3(27) = 3 is not divisible by 4, it is
not a norm hence v and 4" are GL4(Q3) conjugate but not SL4(Q3)-conjugate.

Corollary 5.17. Let v € G be a regular semisimple element so that v has an
eigenvector v € V.. Then Orbg () = Orbg(7y).

Proof. Let A € F be an eigenvalue of v corresponding to v. Then write the char-
acteristic polynomial of v as p,(t) = (t — A) f(¢) for some polynomial f(t). By the
Chinese Remainder Theorem we have

Fy) = Flt]/(py (1)) = Ft]/(t = X) @ F[t]/(f(t)) = F & F[t]/((1)).

Under this decomposition, the norm of an element (x,1) where x € F is itself,
hence Ny, r(F[]*) = F* and therefore the map w, is trivial. O

Remark 5.18. Note that if v € G then Orb¥ () = Orbg (7). Let S, be the central-
izer of v in SL,, seen as an algebraic torus. We know that the number of S-orbits
inside Orb () is equal to |[H'(F, S, (F))|. Write F[y] = Fy @ --- @ F, be a decom-
position of F[y] as sum of fields. Consider the exact sequence on the F-points of
the sequence

- N
1_>S'y_>HReSFi/FGm IMF] Gm—)].,
i=1

=G,
where Resp, /- denotes the Weil restriction of scalars. The middle term is cohomo-
logically trivial and therefore
H'(F,S.(F)) = Coker(H’(F, G (F))—H°(F,F "))
= F* [Nppyr(F]°).
Therefore we already know that the index of Npp,j,p(F[y]*) in F* is equal to the

number of S-orbits in the G-orbits. The upshot of Theorem 5.15 however, is that
it gives us an explicit way to sort elements of Orbg(7y) into S-orbits.

Corollary 5.19. Assume that vy € G is reqular semisimple and that F[v] is a field.
Then v € Orbg(y) if and only if the two following conditions hold:

1) The characteristic polynomials o and v are equal.
poly Y Y q
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n—1

det(v‘yv‘---‘fy v)

det (v [yv |- | ()" )
be any nonzero vector in V.

(i)

€ Nppyp(F[y]™), where v can be taken to

Proof. We have seen that the first condition ensures that 4’ € Orbg (). The second
condition is a reformulation of Theorem 5.15. The condition that F[v] is a field
means that F[y]* = F[y]* = V\{0} hence V, and V,  are constant on V\{0}
hence the result does not depend on the choice of v. (I

a b

Corollary 5.20. Assume that n = 2 and v = (c d> € G be an elliptic regular

Y

t) € G. The following are equivalent:

semisimple element. Let v = (f

v'); Tr(y) = Tr(v'), and ¢ = s (mod Nppy)/p(F[v]*));
et(7'), Tr(y) = Tr(y'), and b =y (mod Npp/r(F[]*)

> then

~— —

S =

Proof. This is a reformulation of Corollary 5.19. Indeed, if we take v = (

1 a
det(v’yv)_det<0 c)_c

det(vw’v)_det<1 x> s
s

0
which proves (i) < (7).

shows () < (). O

Similarly, taking v = <(1))

Example 5.21. Let v = (? 01) and 7' = <_01 (1)) If v = (a, b) is any nonzero

vector, then
vol (A(v,7)) = a® + b2, and vol (A(v,7')) = —(a® + b?).

Therefore, we get that v and 4/ are conjugate in SLy(Q,) if and only if —1 is a
norm of Q, (7).

Corollary 5.22. Assume that n = 3 and v = (’yij) be an elliptic reqular

1<i,j<3

semisimple element. Let~y' = ('yz’»j) If v and ' share the same characteristic

1<i,j<3°
polynomial, then they are S-conjugate if and only if

2 2
731732 + V21731733 — V21722731 — 723’)’??1 =y ’Yéz + ’Yél’YéfYés - ’Yéﬂéﬂél - ’Yé:ﬂél
mod FX/NF[,Y]/F(F[’}/]X).

Proof. This is following the same method as the previous corollary, taking v =
1
0 |. Note that if F[y]/F is not a field extension of degree 3, then F[y] must be
0

isomorphic to F®3 or F @ E, where E/F is a quadratic extension. In both cases,

we have that Np(y)/r(F[y]*) = F* so the equation holds by default. O
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6. A LOCAL RATIO FOR SL,, RATIONAL ORBITS

In this section, we define a local ratio for matrices in SL,, which aims to detect
rational conjugacy as in Theorem 5.15.

6.1. Defining the ratio in general. Recall that ¢: SL,,(Q,) — Agy,,, the Stein-
berg map, takes a matrix to the n-tuple of coefficients of its characteristic polyno-
mial.

Let Ry = Z,/p"Z, and let v € (R;)". Then, for each h € SLy,(Ry,), we call (h, v)
a cyclic pair if {v, hv,...,h" v} spans R}, or equivalently if

vol(Ap(v)) =det( v | hv | --- | k"o ) € R,

We have Ri[h] C M, (Ry). Then, the determinant-of-multiplication defines a mul-
tiplicative norm map

Ng,n/r.: R[] = R}, o+ det(mg: Rip[h] — Ry[h]).
If we fix any cyclic v for h, then we can define the invariant norm class
Ve = [vol(An(v))] € By /Nryin)/ry (Ri[h] ™).

Since existence of a cyclic v is not guaranteed, we work over the cyclic locus, defined
as

SLy, (Ri)¥ == {h € SL,(Rs): Jv with vol(Ax(v)) € R} }.
For v € SL,,(Z,), let
Fi(y) = {h € SL,(Ry): ¢(h) = ¢(v) mod p*}

and intersect
Fr(7)¥ = Fi(v) N SLn (R )*.

Definition 6.1. Let v € SL,,(Z,) be regular semisimple. We define the local ratio
l/SLn (’Y) — # {h’ € ‘Fk(’}/)cyc: Vh,k = V"/,k} ]

k EFO)
Furthermore, we define
v (y) = lim 2t (7)
k—o00

whenever the limit exists.

This definition is general, but it is impractical to work with and compute because
of the mystery surrounding V}, ;. In the following subsections, we aim to provide
simpler definitions of the ratio for low values of n (the dimension).

6.2. A concrete definition in SLs; using the Hilbert symbol. First, we define
a local version of the Hilbert symbol for Z,/p*.

Definition 6.2. Let a,b € Z,/p", and define (a,b), to be 1 if there exists a
solution (z,v, ) to 22 = ax? + by?, where z,y, 2 € Z,/p* and at least one of z,y, 2
is a unit in Z,/p*, and —1 otherwise. If a,b € Z, \ {0}, then we define (a,b), s ==
(@, 5)1,) » where @ and b represent a and b reduced modulo p*, respectively.

Lemma 6.3. Let a,b € Z, \ {0}. As k — oo, the symbol (a,b), r converges to the
usual Hilbert symbol (a,b),.
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Proof. The Hilbert symbol (a, b), is 1 if and only if the equation
F(x,y,2) = 2% —az® —by?> =0

has a nontrivial solution in @Q,. By clearing denominators and common factors of
p, this is equivalent to the existence of a primitive solution in Z,, i.e., a solution
(z,y,2) € ZZ where at least one of x,y, z is a unit.

Suppose (a,b), = 1. Then, there is a primitive solution (xo,yo,z20) € ZE’) to
F(z,y,z) = 0. Taking this solution mod p* yields (a,b), s = 1 for all k > 1, so the
desired result is true in this case.

The other case is (a,b), = —1. This means that the equation F(z,y,z) = 0 has

no primitive solution in Z,. We will show that (a,b),, = —1 for all sufficiently
large k.
We claim that some K exists such that (a,b), x = —1. Suppose to the contrary

that (a,b), , = 1 for all k. This implies, for each k, the existence of an approximate
solution v = (k, Yk, z) € Z3 that satisfies |F(vg)], < p~* and [[vil, = 1.
The gradient is

VFE(vy) = (—2azxy, —2byg, 22i).
Let M = |[VF(vi)|l,- Specifically, since ||vi|, = 1, we have
M = 2|, - max(|azkp, [byk|p, |zk]p) = [2]p - min(lalp, [b],, 1).

The lifting condition is |F(vy)|, < M2, which becomes p=* < M?. Since M is
bounded below by a positive constant that does not depend on k, we can certainly
find a large enough k such that p—* < M?2. For such a k, Proposition 2.17 guarantees
the existence of a true solution o € Zg to F(a) = 0. This contradicts the statement
(a,b), = —1.

Thus, there must exist some integer K such that

(a,b)pyK =—1.
Furthermore, if (a,b),  for some k > K, then such a solution would reduce to a
primitive solution mod p¥, contradicting the fact that (a,b), x = —1. So, we have
(a,b)pr = —1 for all k > K, and thus it stabilizes to —1. O

We define this Hilbert symbol in order to preserve the fact that everything in
the local ratio is a finite count. However, in practice, there are efficient ways to
compute the Hilbert symbol directly, so one does not need to rely on this finite-level
Hilbert symbol. An example is given in Appendix A.

Proposition 6.4. Let vy € SLy(Z,,) be regular semisimple. Then,

_<(h) = ¢(y) mod p*,
) # {h < St/ (hi2, D)p 1 = (’712’D)p»’<}

v # SLo(Z,y /97 [#As1, (Zy [ 7F)

(Here, the notation ~ denotes having the same limit as k — o0.)

I/SLQ(

Proof. Follows from Corollary 5.20. (]
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6.3. An invariant for SL3. Let vy = (%-j) be an elliptic regular semisimple

element in SL3(Zy). Define

1<4,5<3

k(y) = ”/%1732 + Y217Y317Y33 — V21722731 — 723732,1-

According to Corollary 5.22, if v and 4’ have the same characteristic polynomial
and k(y) = k(7)) (mod Q) /No, /0, (Qp[7]*)), then they are conjugate. With
this, we state the SL3 ratio:

Proposition 6.5. Let v € SL3(Z,,) be regular semisimple. Then,
(k) = c(7) mod p,
# 4 h € SLs(Zy/p*): % %
") k(h) = k(7y) mod R;7 /N, n)/r, (Ri[h] ™)
# SLa(Rk)/#AsL, (Ri)

7. EXPLICIT COMPUTATIONS FOR SLo LOCAL RATIOS

IJSLB (

Because computations are much simpler in SLo, we are able to use experimental
data (see Appendix A) to conjecture the following as an explicit formula of these
SLs ratios, which we will prove in this section:

Proposition 7.1. Let v € SLa(Q,) be regular semisimple and have trace t. Let
D = t2 — 4 be the discriminant of the characteristic polynomial. Let § = L%J,

: 25 : 2 - _ (Dp* -
i.e., p°° is the highest power of p* that divides D. Let x = > (this is the

Legendre symbol). We have

% ;pf? x =1
_ 1
VSLQ(’Y):pé' %'pp_117 X:O7
p_ . p’—1 p_ . pt -1 _
pr1 et O o XL
The two cases for x = —1 represent the two different conjugacy classes that v may

be in.

7.1. Relating the ratio with the orbital integral. This section aims to prove
Proposition 7.1 by relating the ratio with an orbital integral with known values.

7.1.1. Formulating the problem in terms of existing results. Fix choices of Haar
measures on SLy(Q,) and T(Q,) (the centralizer); suppose they are dg and dg.,
respectively. Let dg = ddg% be a measure on T'(Q,)\ SL2(Q,). For regular semisimple
v € SLy(Z,), define

O(v) = Ls,(z,) (9~ ' vg) dg.

/T(@p)\ SL2(Qp)
The value of this orbital integral depends on the specific Haar measures chosen. In
this section, we denote by O(7) the integral using the canonical measure, denoted
" (see Section 2.1.5).

Remark 7.2. In this case, the canonical measure is gotten by first letting dg be
the Haar measure on SLy(Q,) giving SLy(Z,) volume 1. Then, the measure on
the centralizer T'(Q,) depends on whether it is split or elliptic. In the split case,
we choose the measure giving T'(Z,) volume 1. In the elliptic case, the connected
component of the identity (denoted T°(Q,)) is assigned a volume of 1.
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Theorem 7.3 (] ). For regular semisimple v € SLo(Z,), suppose v has

distinct eigenvalues a,b € Qp(y) where Q,(7y) is the smallest field containing the
etgenvalues of . Let
a
dy =val (1- ),
L, =va 2

where val is normalized with val(p) = 1. Then,

ph, x =1 (hyperbolic),
d 1
O()=4q3" %47 . x =0 (ramified elliptic),
Ppi_ll or ;71_1, x = -1 (unramified elliptic).
Remark 7.4. The measure used in [ | differs from p°" in the ramified case.
Specifically, the measure p°" is half the measure on the orbit used in [ ]
This factor arises because the measure used in | | gives the entire centralizer

volume 1, which consists of two connected components in the ramified case. We
have appropriately scaled the cited value of O() to match our use of ™.

val(D)J )

We begin by explicitly relating the quantities d, and § := |~

Lemma 7.5. We have

d. = 57 XE{*LI},
Y 1 _
5"‘5, X—O.

Proof. Suppose x~(z) = x? —tx + 1 is the characteristic polynomial of . Then we
have

abziﬂi@zzﬁbfa:iJE

’ 2

dWVM(IZ)VM<b;a>

= val <\/T)> = 1Vaul(D) — val(b).

Then,

b 2

Since x4 € Zp[x] and it is monic, the roots a and b are integral over Z,. Hence,
they both have nonnegative valuation. However, at the same time, we get val(a) +
val(b) = val(ab) = val(1) = 0, so val(a) = val(b) = 0. Thus,

1

dy = 3 val(D).
By the definition of ¢, we have § = |d, |. Notice that x € {—1,1} whenever val(D)
is even and x = 0 whenever val(D) is odd. This yields the desired result. O

Using this result, we can rewrite the values for O(7) as follows:

P, x =1,
0(7) = %5' P 1 (;+1 X = 0,
pp:ll or ppilil’ X = —1.
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This reduces Proposition 7.1 to showing that

Lo x=1,
V2(y)=p?-0(y)-{1, x=0,
s X =L

7.1.2. Proving Proposition 7.1. We first relate the limit of the ratios to the orbital
integral with the geometric measure, and then we relate the geometric and canonical
measures.

Lemma 7.6. Let O9°°™(~) be the rational orbital integral with the geometric mea-
sure. We have 1502 (7y) = 09%°™ ().

Proof. We first introduce notation. Let G = SL(Q,), K denote its maximal com-
pact subgroup SL2(Z,), and Gy, = SL2(Z,/p*).

Let t = tr(v). Let m: K — G}, be the reduction map mod p*.

We define the following subsets of K to reflect the two conditions required for
rational conjugacy.

. =t mod p”, }
(a(h), D)y = (a(7); D)p

Next, define

k>1

By Lemma 6.3, the set V(7) consists precisely of all of the matrices in the rational
orbit of v who also have integer coefficients. In other words,

V(vy) = Orb(y) N K.

For convenience, we define S;(y) to be the set referenced in the numerator of
the definition of vy (7):

tr(h) = t mod p*,
@W@mﬂ@ﬂ%&c%

Because of this shorthand, we can write the following;:

SLo, oy #5%(7)
Vk (7) - #Gk/pk

Because ug(K) =1 and Haar measures are left/right invariant, the fibers of m,
each have measure ﬁ Thus,

Sk(y) =7(Vk(v)) = {h € Gy:

S
poel) = L) s ey - LeUAD))
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Now, let Ug(y) =t + p¥Z,, (recall that t is the trace of ). Normalizing the Haar
measure on Q, to give Z, volume 1, we have puz, (Ux(7)) = p~*. Then,

i SLo = lim M = lim M
klggo Vk (P)/) o klaoo p_k k:1~>oo MZP (Uk(’y))
— lim HJG(Cil(Uk(’Y)) ﬁBk(’Y)) __, geom
= lim vz (U (1) = =" (V).

The last step is by the definition of the geometric measure (see Remark 2.14). Since
V() consists of all the elements in K that satisfy the trace and Hilbert symbol
condition, it is the intersection of K and the rational orbit of . The measure of
this is O™ (). O

Next, in order to relate O8°°™ () to O(+) which uses the canonical measure, we
must relate p&°°™ and p".

Theorem 7.7. We have

Mgeom 3 L
—=p? (1—xp )"

w

Proof. Let |A(v)| = +/|D(7)lp. From | , Eq. 36], we get
lugcom — ‘A(7)| Can.
voly, (T°)
From | , Example 2.8], we have

lwr| =/ Ap/q, - W™,

where Ap/q, is the discriminant of £/Q,.
In general, according to | , Thm 2.6], we have

_ #T(Fy)

voluew (T°) = 0002,

In our case, the torus T has dimension 1. Thus,

geom __ |A(’Y)| D lucan.
\ AE/QP . #T(Fp)

Now, we do the cases separately:

(7.1) 1

e Case y =1 (T is split): In this case,
[A()| = p~ P2 = p2,

Also, note that Ag /g, = 1. Since T is the split torus {diag(a,a™")}, taking
IF)-points gives T'(F,) ~ F), so #T(F,) = p — 1. Putting this together
with (7.1) yields the desired result.

e Case x = 0 (T is ramified elliptic): In this case, we have |A(y)| = p~
Also, we have Ag /g, = p. To count the number of elements in T'(IF,), note
that T' = ReS}E/Qp Gy, It can be shown that #T(F,) = p for a ramified
extension. Putting this together with (7.1) yields the desired result.

-1
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e Case y = —1 (T is unramified elliptic): In this case, we get |A(y)| = p~2.
Also, we get Ap/g, = 1. To count the number of elements in T'(F,), note
that T = Res}, /0, Gm. We have the exact sequence of tori

N e
1 — Res%/@p Gm — Resg/g, G B Gy — 1

Since E/Q, is unramified, taking F,-points yields

N]FPQ /Fp

FX —1.

1 — T(Fp) — ]F;Q s

Thus, we may count #7T(F,) = ’;2%11 = p + 1. Putting this together

with (7.1) yields the desired result.

This concludes the proof. ([l
This yields the final result of this section, which also proves Proposition 7.1.
Theorem 7.8. Let v € SLy(Q,) be regular semisimple and have trace t. Let
D = t? — 4 be the discriminant of the characteristic polynomial. Let § = L%(D)J
i.e., p?° is the highest power of p* that divides D. Let x = (%pw) (this is the

Legendre symbol). The relation between the limit of the ratios and the orbital integral
under the canonical measure is given by

() =p0 - (L—xp~ )7 O().
Corollary 7.9. We have

7

)

P’ x=1,
S - —1y— S+l
W) =p - (1—xp™ ") {3, x =0,
5_q S+1_4
’;_1 orpp_l , = —1.

8. CONVERGENCE OF LOCAL RATIOS

In this section, we let F' = Q, (although everything works with a more general
p-adic field). In this context, the local ratios we defined can be rephrased as a
valuation (and therefore open) condition on F'.

By the theory of Igusa zeta functions, we know that given a variety X defined

over Spec(Z,) as the zero locus of a function f € Z,[X;, ..., X,], the ratios
#(X ><Spec(Z,,) SpeC(Zp/kaP)) o #(f_l(pkzp)/pkzp)
pkdim X - pF(=1)

do not necessarily stabilize when X is singular. Note that on the left-hand side we
use # to mean the number of rational points.

Example 8.1. Let f(z) = (z +y)%. We have that #(f~*(p*Z,)/p*2,) = p**+1¥/2)

and therefore _ .
#(~ (p"Zy) /" Lp) _ pliv2]
k b
p

which never stabilizes.

We wish to show that the orbit of a regular semisimple v € GL,(F) has a
very “tame” singularity, and not only do ratios converge, they stabilize for k large
enough.
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A0

8.1. A low-dimensional example. Let X = (0 M) € Ms(F') where A # p and

min(val(A), val(u)) = 0.
The local ratios boil down to counting matrices of the form

(”5” f) € My(Z/p*Z)

such that © +t = A+ p (mod p¥) and ot — ys = Ap (mod p¥). Using the trace
condition, this is equivalent to counting
€ Y k y 2 k
(z At ;v) € Ms(Z/p”Z) such that 2\ + xp —2° — zy = Ap (mod p®).
Let f: Z; — Zy be defined by f(x,y,2) = xA + xu — 2% — 2y — Au. The zero
locus of f is exactly the GLa(F)-conjugacy class of X and f~1(p*Z,) = Vi (X) as
defined in (3.1). Write Sy = {M € My(Z/p*Z): f(M) = 0 (mod p*)}. We want

to check that if,} stabilizes.

Example 8.2. We give an example illustrating the method in | ]. Take
A=1+p™and p=1—p™ for m > 1. Then X = I, (mod p), which is its own
conjugacy class. The set of elements in My(Z/pZ) with the same characteristic
polynomial as X modulo p corresponds to solutions of (2 —z) —yz =1 (mod p),
or equivalently,

yz=—(r—1)* (mod p).

If £ = 1 then either y or z are trivial modulo p, so there are 2p — 1 solutions.
If x # 1 then the set of solutions {(z,y, —@) : x # 1 (mod p)} which has
cardinality (p — 1)2. This yields #S; = p°.

The set of solutions split into two conjugacy classes: {I,}, and the remaining
p? —1 solutions. We can verify the point count through the orbit-stabilizer theorem,
the (Z) of any element of the second class has p(p — 1) elements and we have
p(p—1) x (p* = 1) = (p* = )(p* — p) = #GL2(Z/pZ).

If £ > 1 then again, all elements that are nonscalar modulo p are conjugate and
their centralizer has smooth reduction modulo p hence cardinality p**~D#7 =
p?R=1(p—1) = p?* —p?*~1. We will treat the remaining cases in Examples 8.3 and
8.5, after a few general observations. By the orbit stabilizer theorem, the number
of nonscalar matrices with the prescribed characteristic polynomial is p?¥ — p2(k—1),

‘We have

A4 p—2x
Vi(z,y,z) = —z
-y
A—p
Note that f(A,0,0) = f(u,0,0) = 0 and Vf(\,0,0) = 0 = -Vf(,0,0).
0

Since A # p we do have
[F(X,0,0)[p = 0 < [[VF(X,0,0)[[7 = [A = ul5.
Example 8.3. Continuing Example 8.2. Modulo p, the solution (1, 0,0) is the only

element of S; so that Vf(x,y,z) =0 (mod p). For all other solutions, either z or
y is nonzero modulo p hence any lift of a mod p solution Z, will satisfy |V f| = 1.
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We can then use Hensel’s lemma to say that there are exactly p?* lifts of nonscalar
matrices mod p to roots of p modulo p¥. Write Sy, = AU Bj, where A;, are elements
of S, that are scalars modulo p, and By, the rest. We get that #B), = p?*#B; for
all k£ > 2. In particular #;i"' is constant. In Example 8.5, we finish the analysis by

studying Ay.

Remark 8.4. Although one might be tempted to use Hensel’s Lemma in its more
general forms when 0 < [|[Vf|loo < 1, we must observe that not every matrix
M € My(Z/p*Z) (for k > 1) lifts to a root of f over Z,. Indeed, for all e > 1 one

may define
M, =X+ (Oe P )
p¢ 0

If e < k and 2e > k then f(M.) =0 (mod p*). Indeed, any lift of M, to Z, is of
the form X " P U e carity of the trace, the trace of such
e form X + 0+ sp 1 . By linearity of the trace, the trace of suc
a matrix is equal to the one of X if and only if the trace of the right summand is
zero, or in other terms, we have x + ¢ = 0. There is however a problem with the
determinant, the determinant of this lift is A + p?® (mod p?¢*1) and therefore no

lift of M, to Zj, is conjugate to X.

Example 8.5. We continue Examples 8.2 and 8.3. We have shown in Example 8.2
that Ay = 1. Therefore, elements of Ay are of the form Iy + pM where M €
My (Z/p*~1Z). Computing the trace and determinant, we also get the conditions

ptr(M) =0 (mod p*), 14 ptr(M) 4 p*det(M)=1—p*™ (mod p¥).

If k£ = 2 then we only have one condition, namely tr(M) = 0 (mod p) and we get
# Ay = p. Now assume that k& > 2. Simplifying the equations, we get tr(M) = 0
(mod p*~1) and det(M) = —p*™~2 (mod pF~2).

The idea is that the condition above gives us a condition on the characteristic
polynomial of M € M(Z/p*~17Z), which lets us proceed by induction. If m = 1
then M cannot be a scalar modulo p, therefore we are reduced to a counting of the
form #By, (for a different characteristic polynomial). We make this explicit in the
proposition below.

Proposition 8.6. For allt € Z, and d € Z,; define
Si(t,d) = {M € My(Z/p*Z) : tr(M) =t (mod p*), det(M)=d (mod p*)}.
Write By(t, d) for the subset of Sk(t,d) consisting of matrices whose reduction mod-

ulo p are scalars, and Ag(t,d) = Si(t,d)\By(t,d). Let X = 3\ where A #
and min(val(\),val(p)) = 0 and define 6 = val(\ — p). We have the following:

(1) #ARN + p, M) = p?F T AL N + 1, Ap),

(2) If 6 =0 then Si(A+ p, Ap) = Ag(N + p, Ap),

(3) If k > 26 then p~ 2 #Bir(\ + p, A\u) and p=2F#S, (A + u, \i) are constant.

Proof. For part (1), note that Ay(t,d) is always a single orbit. Let Zj denote the
stabilizer of an element of the orbit. Since elements of A(t,d) are regular, their
stabilizer is a space of dimension 2 (a torus or a product of a torus and an affine
space), hence Zj1 = p?Z, and the result follows.

Part (2) is immediate since if 6 = 0 then By (A + p, Ap) =0
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To show part (2) we proceed by induction on § > 1.

(6 = 0) This follows from (1) and (2).

(6 > 1) Write p = A\ + pu with u € Z, . We have By = {Alz (mod p)}. Write
N = Mo+ pM € Ap(\+ p, Ap). Computing the characteristic polynomial of N,
we get the necessary and sufficient conditions

ptrM =p’u  (mod p¥), p*det(M)=0 (mod p*).
We get that

p
B (A + p, Ap) = |_| Sk—1(p°u, iph?).

The valuation of the discriminant of a matrix of trace up®~! and determinant ip*—2
with u,i € Z) is

1

3 val (u2p2(5 b 4ipk_2) =6—-1
since k > 2J. Therefore we can use the induction hypothesis to determine that

#Bk()\Jr,u,)\,LL Z#Sk 1 6 1 k 2)

is constant. O

Remark 8.7. Note that this approach extends verbatim to nondiagonal matrices and
the counts of Sy can be written explicitly. This is done in | , §4]. However,
we only care about the convergence, hence we could simplify the arguments and
motivate the next section.

8.2. A general approach. Let us write gl,, = M,, and t C gl,, its Cartan subal-
gebra of diagonal matrices.

Recall that ¢ : gl,, — A" is the Steinberg quotient, mapping a matrix to the
coeflicients of its characteristic polynomial.

It is known ([ , Chapter 5, §5]) that the Jacobian of ¢ evaluated at a t has
only one nonzero Jacobian, whose determinant

det(Jc|¢) Ha
acdt

up to a unit, where ®* is the set of positive roots associated to t. Let j. be that
determinant.
For a general X, by conjugation invariance, we have

[det(J)(X)| = [] le(X

acdt

A semisimple element X € gl,,(F) is regular whenever j.(X) # 0.

Lemma 8.8. Viewing gl,,(Z,) as the points of a Z,-scheme, the smooth locus of ¢
i j:l(Z;), i.e. the space of points whose reduction modulo p is reqular.

Proof. This is just the criterion for smoothness by looking at the special fiber. [

Remark 8.9. This result is more general than the case of gl,,. In our case, we have

[det J (M) =[] In—Al

1<i<j<n
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where A1,..., A\, € F®°P are the eigenvalues of M.
Indeed, the only nonzero minor of J.(diag(z1,...,z,))
1 -1
s1(za, ..., xy) s1(x1y .0, Tpeq)
(=D)"sp—1(z2,...,zn) -+ (=1)"sp_1(x1,...,Tpn-1)
where s; = Z H Xk, € Z[X1,...,Xy] is the degree i elementary sym-

1<ki<-<k;<nm=1
metric polynomial in n variables. An easy induction (removing the last column to
the others) shows that its determinant is the expected one.

Let us establish some notation: Given x € Ly, we let

0(x) =valj(X) € %Z, where X € ¢~1(x),

(M) = (M) — x,

Sk(x) = {M € gl (Z/p*Z) : ¢x(M) =10 (mod p*)},
Sp(x) ={M € Si(x) : ryy =r}, where M = M (mod p).
Si" (%) = Upz, Sk ()-

Let us list a few straightforward facts.

Lemma 8.10. For any x € Zy and k > 1 we have that SY(x) is a single conjugation
class and #S9(x) = pk=Dn(n=1.69 (%),

Proof. By definition of Sp, any M € SJ(x) reduces to a regular element. Since
M (mod p) is regular, the centralizer Zj, of M is a space of fixed dimension n, so

’7l2
# 21 = p"#Zk hence #S))_,(x) = ’;—n#Sg(x) as desired. O

Lemma 8.11. Let X € gl,(Z,) be a regular semisimple element and let x = ¢(X).
The following are equivalent:

(1) 6(x) =0,

(2) X is regular modulo p,

(3) ST°(x) =0,

(4) SZ°(x) = 0 for all k,

(5) Si(x) = SP(x),

(6) #Sk(x) = pF= D50 (x).
Proof. The equivalences (1) & (2) & (3) & (4) & (5) < (6) are clear since if
0(x) = 0 then any element in g[,,(IF,) with characteristic polynomial x (mod p) is
conjugate to X (mod p). Then note that j.(X) € Z, for any lift of M to gl,(Zy).
This lets us use part (1) of Hensel’s lemma with f = ¢y stated in Theorem 2.18. O

Proposition 8.12. Let v € GL,,(Z,) be a regular semisimple element. Let k =
#{a e dt : Ja(y)| <1} and x = ¢(X). We have

k
Se(x) = | | Si(x).
i=0
Proof. For any X € S1(x), we have Gx C Gx_ and since X is semisimple, we get

dim(Gx) <dim(Gx,)=n+#{a € ® : a(X;) =0} =n+2#{a € DT : a(X;) =
0}. O
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Let us define the residual regularity of X € M, (Z,) the integer r where X = X
(mod p).

Proposition 8.13. Let v € GL,,(Z,) be a regular semisimple element.
For all k > 26(c(y)) +n. We may decompose

ST el = ] S,

where the number of sets is independent of k and SZ(nfl)/z(xi) =0 for all i

Proof. We may assume that the residual regularity of v is n(n—1)/2 since otherwise
SZ("_l)/ %(¢(y)) = 0. Since v is regular and its residue modulo p must be scalar, we
may write ¥ = A, + p*Y where £ = min(val(a(7))) > 1. The residual regularity of
Y is strictly smaller than the one of X.

Let x = ¢(y) and A, + pM € S,?(nfl)/z(x). By definition of Sy, we have

XL+ : (1) = Xpur (t = A) = x4 (1) = xpey (= A) - (mod p*).
Call ¢; the map giving the n — ith coefficient of the characteristic polynomial.
We have ¢;(pM) = p*c(M) By previous equation we get

(M) =c¢(p™'Y) (mod p"™"), 1<i<n.
We get
(M) e {(cl(pé_lY),cz(pZ_lY) +apt?, .. o € Z/piZ} (mod pk_l),
and therefore
i = ] S ((0Y) + i)

We use ap = 0 above. If £ = 1 then the residual regularity of any element of
Sk_1 ((cZ(Y) + aipk*i)?:l) is at most the residual regularity as Y which is strictly
smaller than n(n — 1)/2.

If £ > 2 then we may apply the induction hypothesis on each set in the disjoint

union above and conclude. O

Proof. The second part follows from the fact that #Sk(x) = #Ak(x) + #Bk(x)
and p~Fr(r=D# A, (x) is constant by Lemma 8.10.

For the first part, we will prove it by induction on §(x).

(0(x) =0) #Bi(x) =0 for all k.

(8(x) > 1) Let N € Agx(x) and N € A;(x) its residue modulo p. We can write
N = N + pM with M € gl,(Z/p*~'7Z). O

Corollary 8.14. Letvy € GL,,(Z,) be a regular semisimple element. Ifr =r(¥) > 0
and k > 20 + n then Sy (c(vy)) = |_|Sk(xi), where Skzr(xi) =0, and the number of

x;’s is independent of k.

Proof. This is obtained by induction using the previous proposition. If » = n(n —
1)/2 then we use the previous proposition, otherwise decompose v = X + p‘Y
where X (mod p) is a “block-scalar” matrix. Then use Proposition 8.13 on each
block. 0

This means that we can decompose the local density sets Sy in a union of regular
sets, and we obtain the following.
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Theorem 8.15. Let v € GL,(Z,) be a regular semisimple element, and let 6 =
0(7). Then for all k > 20 + n we have

#Sk(C(’y)) pn271 eom

(D v(y) = FSTaF) O™ (v, 1er, (z,))-

In particular,

m H:l: (1 _p_l)
O™ (v 1aL, (z,)) = m#sk(cﬁ))

Proof. This is just a restatement of Theorem 3.3 with the knowledge of stabilization
of ratios. 0

Remark 8.16. Note that we can adapt the formula above to integrals of character-
istic functions of double cosets GLy,(Z,)p*GL,(Z,) by increasing k by |A| (the sum
of the entries of the weight \).

9. CONCLUSION

In this paper, we extended the methods of Achter and Gordon | | for com-
puting orbital integrals using local ratios. Our contributions are fourfold:

(1) We generalized the method from GLy to GL,, for regular semisimple el-
ements in the maximal compact subgroup GL,(Z,), showing that their
geometric orbital integral can be computed as a limit of finite counting
problems.

(2) We extended the class of test functions from the characteristic function of
GL,,(Z,) to that of any double coset in the Cartan decomposition, allowing
for the computation of orbital integrals for nonintegral elements.

(3) We initiated the study of orbital integrals in SL,(Q,). We use a lattice
method to prove a set of criteria for conjugacy in SL,,(Q,). Based on this,
we defined a new local ratio for SL,,.

(4) We related the SLg local ratios explicitly to SLs orbital integrals.

With the case of linear groups fully covered, it would now be interesting to adapt
these methods to other split classical groups, or forms of the linear groups such as
unitary groups.
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APPENDIX A. COMPUTING LOCAL RATIOS

Below, we provide samples of Python code used to compute local ratios using a
brute-force approach.

import itertools
import math
import numpy as np

p=3
n=2
gamma = ((44, 27), (57, 35))

def coeffs(matrix, mod):
return [int(c % mod) for c in np.rint(np.poly(np.array(matrix, dtype=float
))) .astype(int)]

def conjugate(matrix, gamma_coeffs, mod):
# first check trace
trace = sum([matrix[i] [i] for i in range(n)]) % mod
if (trace + gamma_coeffs[1]) % mod != O:
return False

return coeffs(matrix, mod) == gamma_coeffs

for k in range(1, 6):
mod = p ** k
print (f )
ring = set(range(mod))
gamma_coeffs = coeffs(gamma, mod)

count = 0
for matrix in itertools.product(itertools.product(ring, repeat=n), repeat=
n):

if conjugate(matrix, gamma_coeffs, mod):
count += 1
num_GLn = p ** ((k - 1) * n * n) * math.prod([p**n - p**i for i in range(n
aD
if num_GLn % (p**k - p*x(k - 1)) != O:
raise Exception
num_SLn = num_GLn // (p**k - px*(k - 1))
if num_SLn % (px*k) != O:
raise Exception
denominator = num_SLn // (p**k)
print (£ )

LisTING 1. Python code for computing GL,, ratios

from functools import lru_cache

@lru_cache (maxsize=None)

def hilbert_symbol(a: int, b: int, mod: int) -> int:
a %= mod
b %= mod
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for x in range(mod):
for y in range(mod) :
for z in range(mod):
ifx%p==0andy’%p==0andz?%p-==0:

continue
if (a % x ** 2 + b x y %% 2 - z **k 2) ¥ mod ==
return 1
return -1
is_same_norm_class(a, b, D, mod):

return hilbert_symbol(a, D, mod) == hilbert_symbol(b, D, mod)

k in range(1l, 6):

mod = p ** k

print (£ )

ring = set(range(mod))

gamma_coeffs = coeffs(gamma, mod)
trace = gamma_coeffs[1]

discriminant = (trace ** 2 - 4) % mod
print( , discriminant)

for i in range(mod):

print (£
)
count = 0
for matrix in itertools.product(itertools.product(ring, repeat=n),
repeat=n) :

if conjugate(matrix, gamma_coeffs, mod) and is_same_norm_class(
matrix[0] [1], gamma[0][1], discriminant, mod):
count += 1
num_GLn = p ** ((k - 1) * n * n) * math.prod([p ** n - p ** i for i in
range(n)])
if num GLn % (p ** k - p *x (k - 1)) != 0:
raise Exception
num_SLn = num_GLn // (p ** k - p ** (k - 1))
if num_SLn % (p ** k) != 0:
raise Exception
denominator = num_SLn // (p ** k)
print (£ )

Li1STING 2. Python code for computing SL,, ratios (must follow
Listing 1)

The above brute-force approach of computing the Hilbert symbol can potentially
be sped up using the following:

Theorem A.1 (| , Theorem 1, p. 20]). Let a,b € Q) where p > 2 is prime.
Write a = p™u and b= p"w for some m,n € Z and u,w € Z; . Then,

wn=(5) G (G)

p

where (7) denotes the Legendre symbol.
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APPENDIX B. DETECTING RATIONAL CONJUGACY IN SLo

This section provides an elementary proof of criteria for SL2(Q,) conjugacy also
mentioned in Corollary 5.20. As such, we use v, to denote the p-adic valuation.
This is not to be confused with the notation v,(v) for the local ratio.

B.1. Square classes, norm classes, and the Hilbert symbol. For an odd
prime p, the structure of the multiplicative group Q) modulo squares is well-
understood. Every element z € Q can be uniquely written as x = pFu, where
k= vy(z) and u € Z;; is a p-adic unit. An element is a square in Q, if and only if
its valuation k is even and its unit part u is a quadratic residue modulo p.

This gives rise to the group of square classes Q) /(Q))? = (Z/2Z)*. This group
has four elements, for which we can choose the representatives {1, €, p, pe}, where € €
Z, is a unit whose reduction modulo p is a quadratic nonresidue. Consequently, we
will refer to elements of Q,; as being squares, e-type, p-type, or pe-type, respectively.

Next, we explore norm classes as they relate to SLg. Let v € SL,(Q,). We write
Q7] for the smallest subring of the matrix ring M,,(Q,) containing Q, and v. We
have

Qplv] = Qp[X]/m4 (X),

where m., is the minimal polynomial of .

Now, restricting our focus to n = 2, we can examine Q,[y] with more specificity.
We also restrict our scope to regular semisimple matrices, so the minimal polynomial
always equals the characteristic polynomial.

Let t be the trace of . If t* — 4 is a square in Q,, then the minimal polynomial
splits over QQ,,, meaning

Qp[r] = Qp © Qp.

Furthermore, the norm map N: Q,[y]* — Q) given by (z,y) + xy is surjective.
However, if t? — 4 is not a square, then the minimal polynomial is irreducible,

and
Q1 =Qp (V t2 _4> :

It can be shown that the norm map N: Q,[y]* — Q. given by

a+bVt2 — 4 a® — b2 (12 —4)

has cokernel isomorphic to Z/2Z. The cosets of the image of this norm map will
be referred to as “norm classes” in Qg.
The Hilbert symbol can be used to represent the norm class of an element:

Definition B.1. For a local field K, the Hilbert symbol (a,b)i for a,b € K*
is defined to be +1 if the equation z? = ax? + by? admits a nontrivial solution
(r,,2) € K3, and —1 otherwise. Equivalently, the symbol (a, b) x equals 1 precisely
when b is the norm of an element of K[y/a]. In the case that K = Q,, we write

(a,b)p = (a,b)q,.

The notion of the Hilbert symbol is used in the paper for describing local ratios

for SL(Qp).
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B.2. An elementary view of conjugacy in SL,. Next, we develop criteria to
ascertain whether two regular semisimple matrices in SLy(Q,) are conjugate in
SL2(Qp). In general, two regular semisimple matrices are conjugate in GL,(Q,) if
they have the same characteristic polynomial. Unfortunately, this is not true when
considering conjugacy in SL2(Q),), as we can see in the following example.

1 3
Example B.2. The matrices A = <_0 2) and B = < 02 2) are not conjugate

in SL2(Q3). To see why, if we let M = <c then MAM~' =B = MA =

d )
BM yields ¢ = —%b and d = %a after expanding and solving. Plugging this into
ad — bc = 1, we eventually get

a® + (2b)? = 3.

Note that a? and (2b)? have even 3-adic valuations. Since the 3-adic valuation of the
right side is odd, the 3-adic valuations of a? and (2b)? must be equal, so we can write
v3(a?) = v3((2b)?) = 2k for some integer k. From this, we get v3(a) = v3(2b) = k,
so we can write a = 3*u and 2b = 3¥v where u and v are units in Z,. Now,
a? + (2b)% = 3% u? + 3%F0? = 3% (42 + 0?).
Since u and v are units, we have u? +v?> =1+ 1 =2 (mod 3). So,
v3(a? + (2b)?) = v3(3%F (u? + v?)) = 2k = 15(3) =1,

which is a contradiction.

Since SL2(Q),) is a subset of GL2(Q),), two matrices that are conjugate in SL2(Q))
must have the same trace (and determinant). However, as the above example
shows, there must be an additional criterion placed on the two matrices to ensure
conjugacy. It turns out that the criteria for conjugacy depend on the shared trace
of the matrices.

Lemma B.3. Let M and N be matrices in SLa(Q,) with common trace t. If
D =12 — 4 is a nonzero square in Q, then M and N are conjugate in SL2(Q,).

Proof. Since D is the discriminant of the characteristic polynomial and is a nonzero
square, we know that the characteristic polynomial splits over Q,. Thus, it must
have two roots A and A~! in @, (since the roots multiply to 1). Let v and w be
eigenvectors corresponding to these roots. Let P = (v w) be the 2 x 2 matrix
with columns v and w. Then,

(A0
M_P<0 A_1>P .

Since scalar multiples of eigenvectors are still eigenvectors, we can scale v in such a

way that P has determinant 1, and thus M is conjugate to <8 )\(_)1> in SL2(Qp).

), so M and N are conjugate.
|

Similarly, the matrix NN is also conjugate to (3 /\91

If 2 — 4 # 0 is not a square, then the stable orbit (the set of matrices with trace
t) splits into two conjugacy classes. This can be seen via the following result:
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Lemma B.4. Let t € Q, such that t* — 4 is not a square in Q,. Let a € Q, such

that o is not a square in Q,(VtZ —4). Let s = (1)) e it is 1 if vy(a) is
e, ) 1 4 1 1 t sa

even and —1 if it is odd. Then, the matrices 5 (t2 4t and 5 t";;4 ; are

GL2(Q,)-conjugate but not SLa(Q,)-conjugate.

a b
d )
following system of equations after expanding:

Proof. If we let M = then MAM~! = B = MA = BM yields the

t 2 —4 t sa

gttt Ty b= gat e
1 t t sa

Solving yields ¢ = ti—;‘lb and d = .

0%

Plugging this into ad — be = 1 yields

@@ (P-4
s s -
We can rearrange to get
(B.1) a® — (1 — )b = sa.

The remainder of the proof aims to show that this equation has no solutions (a, b)
(i.e. sa is not a norm in Q,(vt? —4)), and thus there is a contradiction.

Note that squares and e-type elements (see Section B.1) have even p-adic valu-
ations, while p-type and pe-type elements have odd p-adic valuations.

Continuing with the proof, we do casework on the square class of 2 — 4.

e If t — 4 is e-type, then for a to not be a square in Q,(v/#2 — 4), it must be
either p-type or pe-type. This means s = —a has odd p-adic valuation.
Since t2 — 4 has even p-adic valuation, (t> — 4)b? and a? both have even
p-adic valuation. Since the p-adic valuation of the right side of (B.1) is
odd, we must have

vp(a?) = v, ((1* — 4)b?) = 2k

for some integer k. From this, we can write a? = p**u and (2 —4)b? = p**v
where u and v are units in Z,. Note that u is a quadratic residue while v
is a nonquadratic residue. Our equation is now

P (u—v) = —a.

Noting that the right side has a p-adic valuation greater than 2k, we can
divide both sides by p?* and take the equation mod p to get that © —v =0
(mod p), or u = v (mod p). However, only u is a quadratic residue, so this
is impossible.

o If t> — 4 is p-type, then o must be either e-type or pe-type. If « is e-type,
then s = 1. Consider the p-adic valuation of the terms of (B.1). We have
that v,(a?) is even, v,((t? — 4)b?) is odd, and v,(«) is even. Thus,

vp((t2 — )b%) > v,(a?) = vp(a) = 2k
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for some integer k. Doing a similar thing to before, we eventually get to
2

a @
— = —— (mod p).
p2k T p2

The left side is a quadratic residue, but the right side is not. Thus, this is

impossible.
The other case is if « is pe-type. Then s = —1. Similarly, we get
vp(a?) > v, (12 — 4)b?) = vp(—a) = 2k + 1
for some integer k, and then

(2 -4 «
pZRHL ke (mod p).

The left side is a quadratic residue, but the right side is not. So, this case
is also impossible.

e If t> — 4 is pe-type, then by an argument extremely similar to the one for
the case where t2 — 4 is p-type, we reach a contradiction.

So, no matter the square class of 2 — 4, there are no solutions (a, b, ¢,d). Thus, the
matrices are not conjugate by an element of SL2(Q,). O

When t2 — 4 is not a square, the two conjugacy classes are closely linked to the
two norm classes in Q, with respect to K = Q,(vt? —4) (also see Section B.1).
The elements that are norms are of the form w? — 2%(t?> — 4) for some w,x € Q,.
The following lemmas explain why the norm class is relevant.

Lemma B.5. Suppose t*> — 4 is not a square in Q,. A matriz

v=(t,0,) esu@)

—a

is conjugate to % < ¢ 1> if and only if 2b is a norm in Q,(Vt? —4).

2 —4 ¢

e . . 1
Proof. To show that the condition is necessary, note that conjugating % ( 2 t_ 4 t)

by an arbitrary matrix N = (7:: j) with determinant 1 yields

N 1 t 1 Nl 1 (t—wy+zz(t? — 4) w? — 2%(t? — 4)
2\t2—4 t T2\ 2P —-4) -y ttwy—z2(t?-4))°
t

So, if M is conjugate to 3 <t2 4

1
t)’ we must have

1
b= 5[102 —22(t? —4)] = 2b=w? - 22(t* - 4)

for some w,x € Q.
To show that the condition is sufficient, suppose 2b = w? — z2(t? — 4) for some

w,z € Qp. Since t? — 4 is not a square, the matrix M is not diagonalizable over
Qp, so b # 0. If we define

w x
T= z(t?—4)—w(2a—t) w—=z(2a—t) | >
2b 2b
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then explicit computation yields
1 t 1 -1 a b
(et )7 =0, 0)
We can also note that T has determinant 1, thus concluding the proof. (I

Lemma B.6. Using the notation from Lemma B.J, a matriz

w=(2 ") esta@)

t
is conjugate to % <t2_4

1o}

8:) if and only if 2b is not a norm in Q,(Vt% —4).

Proof. To show that the condition is necessary, let & = sa and note that conjugating

t k
% <t2 4 t) by an arbitrary matrix N = <1:;) i) with determinant 1 yields

E
1 t k 1 _ t2—4 27, . 2t2—4
N [ <t24 )} N7t =3 ! ;Ut:gl_{;:_ :EZ2 X vk 112—4 :
. . . 1 t k
So, if M is conjugate to 5 ( ,2_, . | we must have
2
1 2 —4
b= = |w?k — 22—
2 k

Rearranging this equation gives

Howe 3 e
This means that % is a norm in Q,(v/t2 —4). From the proof of Lemma B.4, we
know that k is not a norm in Q,(v/t?> —4), so this means that 2b is not a norm.
To show that the condition is sufficient, suppose 2b is not a norm. Since k is
not a norm, we know 22 is a norm, so we can write 22 = 23 — 23(t? — 4) for some
T1,22 € Qp. Since t? — 4 is not a square, the matrix M is not diagonalizable over

Qp, so b # 0. If we define w = z1 and « = kxo, and construct the matrix

w X
— 2
T= -t —w(2a—t)  wk—z(2a—t) |
2b 2b

then explicit computation yields

1 t k -1 a b
(e )=
We can also note that T has determinant 1, thus concluding the proof. [l

This leads us to the following conclusion:

Theorem B.7 (Criterion for SLy(Q,) conjugacy). Let p be an odd prime, and
let M,N € SL2(Q,) be regular semisimple matrices, both with trace t. Assume
D=1t>—-4+#0. If D is a square in Q,, then M and N are conjugate in SLa(Qp).
If D is not a square in Qp, then M and N are conjugate in SL2(Qp) if and only if
the quotient of the top-right elements is a norm in Q,(vVt? —4).
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Proof. Since the matrices are regular semisimple, we must have D # 0. If D is
a square, then we are done by Lemma B.3. Assume D is not a square. Based
on Lemma B.5 and Lemma B.6, the norm class of twice the top-right element
determines which of the two representatives in Lemma B.4 the matrix is conjugate
to.

If the quotient of the top-right elements of M and N is a norm, then the top-
right elements are in the same norm class, and so is twice the top-right elements.
So, they are both conjugate to the same representative, and thus conjugate to each
other.

If the quotient of the top-right elements of M and N is not a norm, then they
are not in the same norm class. Each is then conjugate to a different representative,
and by Lemma B.4, they are not conjugate to each other. ]

Therefore, Theorem B.7 details the additional criterion that must be checked
when determining conjugacy in SLg(Q)).
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