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Distributed systems are powerful but complex

2

Netflix’s distributed systems

Challenge:
Debugging and failure-tolerance

Benefits:

Scaling

Performance 



Why are timeouts important for distributed systems?
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Challenges with setting timeouts
Other ways latency can change:

- Cache hit or miss.
- Systems can get overloaded. 
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- ALTO: Analyzer of Latency for Timeout Optimization
- 40% faster than industry standard in worst-case 
- Send “diagnostic” requests, those without timeout values, to monitor the real 

state of each service 

Previous work: Why ALTO is optimal
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Current work: Research Goals

1. Determining optimal timeout values
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2. Fast timeout adaptability
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Global implementation of ALTO in our testbed
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Computing timeouts globally & adapting to new situations
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1. Find distributions from all services
2. Compute timeouts to each service based on distributions
3. Determine contribution from each service
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Proposed evaluation

- Evaluate whether the global approach is faster-adapting and more 
resource-efficient than the local approach

- Consider:
- The number of timed out requests (measure of lag in adapting timeout values)
- The closeness of the timeout value to latency
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- Use my custom application
- Inject latency increases/decreases
- See how long services take to adapt
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Future Work

- Implement ALTO global in Social Network, a larger and industry-standardized 
distributed system
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Conclusions
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Our previous work, ALTO performs significantly better than 
industry standard
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Exponential Backoff ALTO



Local algorithms operate strictly 
between two services

Local vs Global timeout algorithms
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Global algorithms have data 
about the entire distributed 
system



- As systems evolve, timeouts change. 

- An optimal timeout is a timeout that results in the minimal possible average 

amount of time before a response is received. 
- Too short             wasting work since we have to reissue requests

- Too long              wasting time when request should have been discarded

- We continuously update the timeout values to adapt accordingly.

When is a timeout optimal?
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Increasing timeout values allow for precise hedging 
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Mathematical Model for Latency
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Math behind mathematical model (1)

20

Latency

Expected
Latency

Latency

Normalized 
Probability
Density



Math behind mathematical model (2)
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Derivation
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Extensions to a sequence of timeouts      

Let’s define a sequence of timeouts 

We can modify the original equation in the following way:

From now on, let                                        where

And

                                       

   (these are both functions of only t_n) 26



(Derivation for a_n)
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Extensions to a sequence of timeouts

The problem with the current equation is that it never ends.

So, let’s define a “terminal” timeout     : it’s the last timeout in the list, and the 
timeout will never increase past it. 

We now have the piecewise function
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Extensions to a sequence of timeouts

How do we actually compute the timeouts?

      is a function of every timeout, and we need to minimize it over 
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Finding minima
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Finding minima
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Finding minima
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Finding minima
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Math behind mathematical model (3)
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Testbed Architecture
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Global Architecture
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