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Distributed systems are powerful but complex

Netflix’s distributed systems

Benefits:
Scaling

Performance

Challenge:
Debugging and failure-tolerance




Why are timeouts important for distributed systems?
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Challenges with setting timeouts

Nonconstant latency Other ways latency can change:

% % m - Cache hit or miss.
5ms 4 ms 6 ms - Systems can get overloaded.
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Previous work: Why ALTO is optimal

- ALTO: Analyzer of Latency for Timeout Optimization

- 40% faster than industry standard in worst-case

- Send “diagnostic” requests, those without timeout values, to monitor the real
state of each service
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Current work: Research Goals

1. Determining optimal timeout values 3. Efficiently computing timeout
values across the entire distributed
AIE system

2. Fast timeout adaptability e G




Global implementation of ALTO in our testbed
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Computing timeouts globally & adapting to new situations

1. Find distributions from all services
2. Compute timeouts to each service based on distributions

3. Determine contribution from each service
C(N) = — ) D(n

neN.V



Proposed evaluation

- Evaluate whether the global approach is faster-adapting and more
resource-efficient than the local approach
- Consider:

- The number of timed out requests (measure of lag in adapting timeout values)
- The closeness of the timeout value to latency

e Methodology
- Use my custom application
G - Inject latency increases/decreases

G - See how long services take to adapt



Future Work

- Implement ALTO global in Social Network, a larger and industry-standardized
distributed system
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Conclusions

Timeout Algorithm

Goal

Exponential Backoff

(Industry standard)

ALTO

(previous work)

ALTO, Global

(current work)

Optimal timeout values

Efficient computation

Fast adaptability
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Our previous work, ALTO performs significantly better than
Industry standard

Exponential Backoff ALTO
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Local vs Global timeout algorithms

Local algorithms operate strictly
between two services

Global algorithms have data
about the entire distributed
system

ADMIN
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When is a timeout optimal?

- As systems evolve, timeouts change.

- An optimal timeout is a timeout that results in the minimal possible average

amount of time before a response is received.

- Too short . Wasting work since we have to reissue requests

- Toolong ——p wasting time when request should have been discarded

- We continuously update the timeout values to adapt accordingly.
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Increasing timeout values allow for precise hedging

= Ozl

a2 ms

Normal timeouts

an ms

Failure conditions Sequential timeouts

- Temporary increase
- System failure

Increase timeout value
- Sensitivity reduction

- Failure confirmation .



Mathematical Model for Latency

Distance service latency (10000 tests total)

= Best-fitting chi squared distribution
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Math behind mathematical model (1)

Expected
Latency
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Probability
Density

Latency
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Math behind mathematical model (2)

/ f(z)dz

E(t) = (t+ E(t))
f )dz

f z)dz /'rf( \dz

+ g(

0

0

f )dz / f(z)dx
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Case where we time out

\

Case where the request
is successful

T

Cost function
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Derivation

L(t)_/ f(zdz / Jix)de / flz)dz / zf(z)dz
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E(t) 1—/ o) [ tors /f"’d’ ECS
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(5)
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Extensions to a sequence of timeouts

Let’s define a sequence of timeouts {tn}nzo

We can modify the original equation in the following way:

tr tn
/ f(z f(z)dz / xf(m)da:
t + En+1

/ e / f()da / P

From now on, let E,=a,+b,E,;; Wwhere

. /On:cf(z)d::c+ [ /t" f(w)d:r+g(tn) And / f(z)dz
/0 f(z)dz / f(z)dz

(these are both functions of only t_n)

9(ta)
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(Derivation for a_n)

/ f(@)da / fae [ asto
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" | s
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+ g(t,)
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Extensions to a sequence of timeouts

The problem with the current equation is that it never ends.

En = an + bnEn+1

So, let’'s define a “terminal” timeout ¢, : it's the last timeout in the list, and the

timeout will never increase past it.

F,=a,+bF,
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Extensions to a sequence of timeouts

How do we actually compute the timeouts?

E, is a function of every timeout, and we need to minimize it over %o, %1,%2," -

Eo = ao + bo <a1+b1 <a2+b2 (1“_—,)»)

o0

/0 " e f@)dz + /too f(z)de f(z)de

An = oo + 9(tn) by, = iz
/0 f(z)dz
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Finding minima

We require that VE, = 0.

_ 0By _ 9By _  _ 9By _9Ey _,
0ty Oty ey Ot
8E0 0 ((10 + bOEl) dao 3E1 dbo dao db()
Oto Oto dto +% dto T dto dto T dtg
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Finding minima

Thus,
0Ey

ot;

As b; are strictly positive.

daz-
dt;

+ FE;

db;
dt;
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Finding minima

Welll what are (clial and %”
G 4 | et@e st [ s i
dt; dt; / F()d
e, () + (=) / f(z)da
= - +9'(t:)
dt; / f(@
e / f( a:)dw
a&; /
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G s ] [ s
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Finding minima

/:C f(z)dz
/000 f(z)dx

So,

< g,(t + Ez+1

—f(t:)

/ f(z)dz

/t’oo f(z)dz + g'(ti)/o f(x)dz — f(t;)Ei41 =0

Ei+1 —

/ ioof(-'r)dw+g’(tz-) | @

As we know t,,, and have that F, =
to determine all ¢;.

lb’

f(t:)

we can thus work our way backwards
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Math behind mathematical model (3)
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Testbed Architecture

Triangle Area

Circumradius

Distance

Perpendicular
Bisector

Intersect

Slope Midpoint




Global Architecture

Monitoring Architecture,
Service Representation

Triangle Area
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Hosted Services
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