
Timeout Strategies for
Distributed Systems

Govind Velamoor

Mentors: Lan (Max) Liu, Zhaoqi (Roy) Zhang,
Prof. Raja Sambasivan

MIT PRIMES Spring Conference, 5/18/2025

1

Distributed systems are powerful but complex

2

Netflix’s distributed systems

Challenge:
Debugging and failure-tolerance

Benefits:

Scaling

Performance

Why are timeouts important for distributed systems?

Service A Service B

Normal Request
Service A Service B

Request

Response

Request

Response

Failed Request

3Request with a timeout
Service A Service B

Request, 5 ms
time limit

Response

Challenges with setting timeouts
Other ways latency can change:

- Cache hit or miss.
- Systems can get overloaded.

4

Service
A

Service
B

Original average
latency

Service
A

Service
B

Request’s average latency
increases

Developers can change services’ implementation

Nonconstant latency

Service
A

Service
B

Time 1

5 ms

Service
A

Service
B

Time 2

4 ms

Service
A

Service
B

Time 3

6 ms

5 ms
avg

10 ms
avg

Optimal
Timeouts

- ALTO: Analyzer of Latency for Timeout Optimization
- 40% faster than industry standard in worst-case
- Send “diagnostic” requests, those without timeout values, to monitor the real

state of each service

Previous work: Why ALTO is optimal

5

t=
2

t=
4

t=
8

t=
16

Distribution for which exponential backoff is optimal Arbitrary distribution and optimal timeouts
computed by ALTO

t=
3.

5

t=
6.

7

Current work: Research Goals

1. Determining optimal timeout values

6

A

F
D

E
B C

3. Efficiently computing timeout
values across the entire distributed
system

2. Fast timeout adaptability

ALTO

A B

Global implementation of ALTO in our testbed

7

A

B

USER

Admin

C

Distributed
System

Admin

Computing timeouts globally & adapting to new situations

8

1. Find distributions from all services
2. Compute timeouts to each service based on distributions
3. Determine contribution from each service

F
D

E
A B C

Proposed evaluation

- Evaluate whether the global approach is faster-adapting and more
resource-efficient than the local approach

- Consider:
- The number of timed out requests (measure of lag in adapting timeout values)
- The closeness of the timeout value to latency

9

E
C

D

A
Methodology

- Use my custom application
- Inject latency increases/decreases
- See how long services take to adapt

B

Future Work

- Implement ALTO global in Social Network, a larger and industry-standardized
distributed system

10

Conclusions

11

Exponential Backoff

(Industry standard)

ALTO

(previous work)

ALTO, Global

(current work)

Optimal timeout values

Efficient computation

Fast adaptability

Goal

Timeout Algorithm

Please reach out! gvelamoor@gmail.com

Acknowledgements

My mentors Max, Roy, and Prof. Sambasivan

12

MIT PRIMESMy family and friends

References

13

[1] Barroso L. A. Dean, J. The tail at scale. Communications of the ACM, 56:74–80, 2013.

[2] E. Troubitsyna. Model-driven engineering of fault tolerant microservices. Fourteenth Int. Conf. Internet Web Appl. Serv, 2019.

[3] Martinek P. Al-Debagy, O. A comparative review of microservices and monolithic architectures. 18th IEEE International Symposium on Computational Intelligence and Informatics, pages 000149–000154, 2019.

[4] Ojdowska A. Przybylek A. Blinowski, G. Model driven engineering of fault tolerant microservices. Fourteenth Int. Conf. Internet Web Appl. Serv, pages 1–6, 2019.

[5] Vishal Varshney Anton Ilinchik. All you need to know about timeouts: How to set a reasonable timeout for your microservices to achieve maximum performance and resilience. Zalando Engineering Blog, 2023.

[6] Tcp congestion control algorithms. https://www.tetcos.com/pdf/v13/Experiments/TCP-Congestion-Control-Algorithms.pdf

[7] B. Gregg. Frequency trails. https://www.brendangregg.com/FrequencyTrails/modes.html

[8] pyms. https://python-microservices.github.io/home/

[9] J. Richards. wrk2. https://github.com/giltene/wrk2

[10] The second law of latency: Latency distributions are never normal.

[11] Li Q. Yang, B. Enhanced particle swarm optimization algorithm for sea clutter parameter estimation in generalized pareto distribution. Appl. Sci., 2023.

[12] He J. Zhang, W. Modeling end-to-end delay using pareto distribution. Second International Conference on Internet Monitoring and Protection (ICIMP 2007), 2007.

[13] Zhang Y. Cheng D. Shetty A. et al. Gan, Y. Death star bench repository.

[14] Zhang Y. Cheng D. Shetty A. et al. Gan, Y. An open-source benchmark suite for microservices and their hardware-software implications for cloud edge systems. ASPLOS ’19: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, 2019.

https://python-microservices.github.io/home/

Backup Slides

14

Our previous work, ALTO performs significantly better than
industry standard

15

Exponential Backoff ALTO

Local algorithms operate strictly
between two services

Local vs Global timeout algorithms

16

Global algorithms have data
about the entire distributed
system

- As systems evolve, timeouts change.

- An optimal timeout is a timeout that results in the minimal possible average

amount of time before a response is received.
- Too short wasting work since we have to reissue requests

- Too long wasting time when request should have been discarded

- We continuously update the timeout values to adapt accordingly.

When is a timeout optimal?

17

Increasing timeout values allow for precise hedging

18

A B
5 ms

Normal timeouts

A B
a1 ms

Sequential timeouts

a2 ms

an ms

…

Failure conditions
- Temporary increase
- System failure

Increase timeout value
- Sensitivity reduction
- Failure confirmation

Mathematical Model for Latency

19

Curve
Fitting

Expected
latency
function

Probability density
function

Cost Function:
Increase in latency due to
increase in timeout value

Extensions
to

sequences
Inputs

Final
integration

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

Latency

Math behind mathematical model (1)

20

Latency

Expected
Latency

Latency

Normalized
Probability
Density

Math behind mathematical model (2)

21

Case where we time out Case where the request
is successful

Cost function

Derivation

22

Performance (,)

Time

Expected
Latency

Time

Normalized
Probability

23

Performance (,)

Time

Expected
Latency

TimeNormalized
Probability

24

Performance (chi squared,)

Time

Expected
Latency

Time

Normalized
Probability

25

Extensions to a sequence of timeouts

Let’s define a sequence of timeouts

We can modify the original equation in the following way:

From now on, let where

And

 (these are both functions of only t_n) 26

(Derivation for a_n)

27

Extensions to a sequence of timeouts

The problem with the current equation is that it never ends.

So, let’s define a “terminal” timeout : it’s the last timeout in the list, and the
timeout will never increase past it.

We now have the piecewise function
28

Extensions to a sequence of timeouts

How do we actually compute the timeouts?

 is a function of every timeout, and we need to minimize it over

29

Finding minima

30

Finding minima

31

Finding minima

32

Finding minima

33

Math behind mathematical model (3)

34

10

0.78 3.63 4.93 7.06

5.63 6.44 5.34 6.70

Testbed Architecture

35

Global Architecture

36

37

