Adaptive Order Radau Methods

 $\bullet \bullet \bullet$

Shreyas Ekanathan

Mentor: Dr. Chris Rackauckas MIT PRIMES October Conference 5/18/25

Table of Contents

- 1. Background on the Problem and Runge-Kutta Methods
- 2. Radau Methods
- 3. Complex Transformation
- 4. Adaptivity
- 5. Results

Problem

- Stiff Ordinary Differential Equations

A	$\xrightarrow{0.04}$	B	(slow)
B + B	$\xrightarrow{3\cdot 10^7}$	C+B	(very fast
B+C	$\xrightarrow{10^4}$	A+C	(fast)

A:	$y_1^\prime = - 0.04 y_1 + 10^4 y_2 y_3$	$y_1(0) = 1$
B:	$y_2'= 0.04y_1-10^4y_2y_3 \ -3\cdot 10^7y_2^2$	$y_2(0) = 0$
C:	$y'_3 = 3 \cdot 10^7 y_2^2$	$y_3(0) = 0.$

What Exactly is a Runge-Kutta Method?

- Generalized collocation methods to numerically approximate solutions to first order differential equations

Mathematical Formulation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y,t)$$
$$y(t_0) = y_0$$

Approximate solution at time $t = t_0 + dt$ as:

 $y(t) = y_0 + dt \Sigma_{i=1}^s b_i k_i$

Where k_{p} is defined as:

$$k_p = f(y_n + \sum_{i=1}^{p-1} A_{pi}k_i, t_n + c_p dt)$$

$\frac{4-\sqrt{6}}{10}$	$\frac{88-7\sqrt{6}}{350}$	$\frac{296 - 169\sqrt{6}}{1800}$	$\frac{-2+3\sqrt{6}}{225}$
$\frac{4+\sqrt{6}}{10}$	$\frac{296+169\sqrt{6}}{1800}$	$\frac{88+7\sqrt{6}}{350}$	$\frac{-2-3\sqrt{6}}{225}$
1	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36}$	$\frac{1}{9}$
	$\frac{16-\sqrt{6}}{36}$	$\frac{16+\sqrt{6}}{36}$	$\frac{1}{9}$

Benefits of Radau

• A-

$$\lim_{w\to\infty}g(w)=0$$

Important for solving stiff equations and DAEs

Building a Radau Method

- Tableau: Evaluate constants for our method.
- Time-stepping: Simulate one time-step of the method, determining the value of u at t = t₀+dt

Linear System

- When performing a time-step in a Radau method, we need to evaluate the solution to a costly linear system involving A⁻¹.
- Optimize: Find a rigid structure for A⁻¹!
- Goal: Find a transformation matrix T that sends A⁻¹ into a nice form.

What can we do better than a naive implementation?

Transformation of the solver to use the complex eigenbasis to simplify the most costly part of the computation!

This means that a solver for real-valued ODEs can be accelerated by using computations in the complex plane!

- A⁻¹ is a square matrix that has 1 real eigenvalue and several complex conjugate pairs of eigenvalues.

0.196815	-0.0655354	0.023771
0.394424	0.292073	-0.0415488
0.376403	0.512486	0.111111 /

2.6811 - 3.05043*i* 2.6811 + 3.05043*i* 3.63783

1-	-0.128458 + 0.0273087i	-0.128458 - 0.0273087 <i>i</i>	0.0912324	
	0.185636 - 0.348249 <i>i</i>	0.185636 + 0.348249i	0.241718	
	0.909404	0.909404	0.966048	

Transformation Matrix

Take a basis (r, u, v)!

$\begin{pmatrix} -0.128458 + 0.185636 - 0.0000 \\ 0.9094 \end{pmatrix}$	0.0273087 <i>i</i> —0.:).348249 <i>i</i> 0.1 104	128458 — 0.0273087 <i>i</i> 185636 + 0.348249 <i>i</i> 0.909404	0.0912324 0.241718 0.966048	0.196815 0.394424 0.376403	-0.0655354 0.292073 0.512486	0.023771 -0.041548 0.111111	88)
$ \begin{pmatrix} 0.0\\ 0.2\\ 0.2\\ 0.9 \end{pmatrix} $	912324 —0. 241718 0.1 966048 0.9	128458 0.02730 .85636 0.34824 009404 0.90940	87 19 04	$ \begin{pmatrix} 3.637 \\ 0 \\ 0 \end{pmatrix} $	0 2.6811 3.0504	0 -3.0504 2.6811	

Solving the System

- Now, instead of explicitly multiplying to solve the linear system, we can utilize our rigid structure of A⁻¹
- Each block of A^{-1} is represented as:

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

- Then, we can utilize this structure to decouple our computation into the simultaneous solution of several smaller linear systems.
 - Allows for parallelization!

Time

Idea: high order methods are only more efficient for smaller time steps, so mix order adaptivity with time step adaptivity

Building on Existing Work

- No hard-coded coefficients
 - The methods can generate the coefficients (A, b, c, T, etc) on the fly.
- Full Adaptivity
 - Existing methods are constrained to orders 5, 9, and 13, but our implementation stretches to any order desired.
- Modernized algorithm
 - Improved linear algebra integrations
 - Parallelized computation
 - Mixed-precision capabilities

Performance Analysis

Acknowledgements

I would like to thank:

- My mentors, Dr. Chris Rackauckas and Mr. Oscar Smith
- MIT PRIMES
- My family

Thank You!

 $\bullet \bullet \bullet$

Questions?

References

The previous state of the art work was done by Ernst Hairer, who developed many of the techniques used in this presentation.

Much of the theory is cited from *Solving Ordinary Differential Equations II*, by Ernst Hairer and Gerhard Wanner.

In addition, the paper <u>Stiff differential equations solved by Radau methods</u> was very helpful.

Hairer's scripts can be found online at <u>here</u>, while my scripts can be found <u>here</u>.

Our full paper can be found at https://arxiv.org/abs/2412.14362