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Introduction

• Computation theory uses different machines to explore what computers can and cannot
do by recognizing different classes of languages
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Introduction

Definition of a Machine

A machine is a mathematical model that processes inputs based on a set of rules to produce
outputs. It follows specific instructions, step-by-step, to determine whether a given input is
accepted or rejected.

• Computation theory uses different machines to explore what computers can and cannot
do by recognizing different classes of languages

• Finite Automata are the simplest machines, recognizing basic patterns in strings

• More advanced machines like CFGs, PDAs, and Turing Machines handle complex
structures and algorithms
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What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.
• Each recipe is a string of instructions

made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.
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Language Venn Diagram

Figure: We will be talking about regular languages today.
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Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic
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What is a DFA?

Figure: DFA Example

• States: Possible positions of the
machine (e.g., q, q0, q00, q001).

• Transitions: Arrows indicating state
changes based on input (e.g., q → q0
on input 0).

• Start State: Initial state, marked by
an incoming arrow (e.g., q).

• Accepting States: States where input
is accepted, denoted by double circles
(e.g., q001).
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DFA Definition

Figure: DFA Example

Definition of a DFA

A finite automata is a 5-tuple, which means it
is defined by five components:

M = (Q,Σ, δ, q,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the DFA can
read),

3. δ : Q × Σ → (Q) is the transition function, which tells
the DFA how to move from one state to another,

4. q ∈ Q is the start state, where the DFA begins, and

5. F ⊆ Q is the set of accepting states.
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What is a NFA?

Figure: NFA Example

• States: Possible positions of the
machine

• Transitions: Arrows indicating state
changes based on input

• Start State: Initial state, marked by
an incoming arrow

• Accepting States: States where input
is accepted, denoted by double circles

29 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What is a NFA?

Figure: NFA Example

• States: Possible positions of the
machine

• Transitions: Arrows indicating state
changes based on input

• Start State: Initial state, marked by
an incoming arrow

• Accepting States: States where input
is accepted, denoted by double circles

30 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

NFA Definition

Figure: NFA Example

Definition of a NFA

The definition of a nondeterministic finite
automata is a 5-tuple, which means it is
defined by five components:

M = (Q,Σ, δ, q1,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the NFA can
read),

3. δ : Q × Σϵ → P(Q) is the transition function

4. q1 ∈ Q is the start state, where the NFA begins, and

5. F ⊆ Q is the set of accepting states.
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Different, But Equivalent: DFA vs NFA

Definition of Equivalence

Equivalence means that two different
types of machines (like a DFA and an
NFA) can recognize exactly the same set
of strings or languages.

States: Both consist of states that process
input symbols, with a start and one or more
accepting states.

Pathways: DFA : Exactly one path per
state-symbol pair (like a single-lane road).
NFA : Multiple or zero paths per state-symbol
pair (like a choose-your-own-adventure book).

Acceptance: DFA: Accepts if a single path
leads to an accepting state.
NFA: Accepts if any path leads to an accepting
state.
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Example of an Equivalent DFA and NFA

The set of all strings over the alphabet a,b that contain the substring “ab”
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Real World Applications

• All these may seem very abstract, but they’re the fundamentals to understanding larger
issues in computer science

• Finite automata and other machines: programming languages and parsing

• Finally, the theory of computation allows us to determine whether a problem is solvable or
unsolvable
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A Brief Introduction to TOC

This is Sherri’s section on an introduction to TOC: Watch Video
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