
Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

The Basics of Computation

Shamini Biju, ZZ Zhang, and Sherri Wu

MIT Primes Circle

May 18, 2025

1 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

2 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

3 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction

• Computation theory uses different machines to explore what computers can and cannot
do by recognizing different classes of languages

4 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Machines

5 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction

Definition of a Machine

A machine is a mathematical model that processes inputs based on a set of rules to produce
outputs. It follows specific instructions, step-by-step, to determine whether a given input is
accepted or rejected.

• Computation theory uses different machines to explore what computers can and cannot
do by recognizing different classes of languages

• Finite Automata are the simplest machines, recognizing basic patterns in strings

• More advanced machines like CFGs, PDAs, and Turing Machines handle complex
structures and algorithms

6 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction

Definition of a Machine

A machine is a mathematical model that processes inputs based on a set of rules to produce
outputs. It follows specific instructions, step-by-step, to determine whether a given input is
accepted or rejected.

• Computation theory uses different machines to explore what computers can and cannot
do by recognizing different classes of languages

• Finite Automata are the simplest machines, recognizing basic patterns in strings

• More advanced machines like CFGs, PDAs, and Turing Machines handle complex
structures and algorithms

7 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

8 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.
• Each recipe is a string of instructions

made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.

9 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.
• Each recipe is a string of instructions

made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.

10 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.
• Each recipe is a string of instructions

made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.

11 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.

• Each recipe is a string of instructions
made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.

12 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What Is a Language?

Regular Language Example:
String over the alphabet (0,1) that end in
01

What types of strings might be in this
language?

Definition of a Language

A language is a set of strings over a specified
alphabet, where an alphabet is a nonempty
finite set of symbols.

• Think of a language like a recipe book.
• Each recipe is a string of instructions

made up of a specific set of ingredients
(symbols).

• A language defines which strings are
”valid” inputs for a computational
problem.

• It only ”accepts” recipes (strings) that
follow the defined format.

13 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Language Venn Diagram

Figure: We will be talking about regular languages today.
14 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

15 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic

16 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic

17 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic

18 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic

19 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Introduction to Finite Automata

• Recognizing a language: a machine takes an input and determines whether the string
belongs to the language

• Finite Automata are the simplest model out of more advanced machines used to solve
computability

• It doesn’t have a memory, therefore, only having the ability to recognize the basic class
of languages: regular languages

• There are two types of finite automata: Deterministic and Nondeterministic

20 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

21 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What is a DFA?

Figure: DFA Example

• States: Possible positions of the
machine (e.g., q, q0, q00, q001).

• Transitions: Arrows indicating state
changes based on input (e.g., q → q0
on input 0).

• Start State: Initial state, marked by
an incoming arrow (e.g., q).

• Accepting States: States where input
is accepted, denoted by double circles
(e.g., q001).

22 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What is a DFA?

Figure: DFA Example

• States: Possible positions of the
machine (e.g., q, q0, q00, q001).

• Transitions: Arrows indicating state
changes based on input (e.g., q → q0
on input 0).

• Start State: Initial state, marked by
an incoming arrow (e.g., q).

• Accepting States: States where input
is accepted, denoted by double circles
(e.g., q001).

23 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

DFA Definition

Figure: DFA Example

Definition of a DFA

A finite automata is a 5-tuple, which means it
is defined by five components:

M = (Q,Σ, δ, q,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the DFA can
read),

3. δ : Q × Σ → (Q) is the transition function, which tells
the DFA how to move from one state to another,

4. q ∈ Q is the start state, where the DFA begins, and

5. F ⊆ Q is the set of accepting states.

24 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

DFA Definition

Figure: DFA Example

Definition of a DFA

A finite automata is a 5-tuple, which means it
is defined by five components:

M = (Q,Σ, δ, q,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the DFA can
read),

3. δ : Q × Σ → (Q) is the transition function, which tells
the DFA how to move from one state to another,

4. q ∈ Q is the start state, where the DFA begins, and

5. F ⊆ Q is the set of accepting states.

25 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

DFA Definition

Figure: DFA Example

Definition of a DFA

A finite automata is a 5-tuple, which means it
is defined by five components:

M = (Q,Σ, δ, q,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the DFA can
read),

3. δ : Q × Σ → (Q) is the transition function, which tells
the DFA how to move from one state to another,

4. q ∈ Q is the start state, where the DFA begins, and

5. F ⊆ Q is the set of accepting states.

26 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

DFA Definition

Figure: DFA Example

Definition of a DFA

A finite automata is a 5-tuple, which means it
is defined by five components:

M = (Q,Σ, δ, q,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the DFA can
read),

3. δ : Q × Σ → (Q) is the transition function, which tells
the DFA how to move from one state to another,

4. q ∈ Q is the start state, where the DFA begins, and

5. F ⊆ Q is the set of accepting states.

27 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

28 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What is a NFA?

Figure: NFA Example

• States: Possible positions of the
machine

• Transitions: Arrows indicating state
changes based on input

• Start State: Initial state, marked by
an incoming arrow

• Accepting States: States where input
is accepted, denoted by double circles

29 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

What is a NFA?

Figure: NFA Example

• States: Possible positions of the
machine

• Transitions: Arrows indicating state
changes based on input

• Start State: Initial state, marked by
an incoming arrow

• Accepting States: States where input
is accepted, denoted by double circles

30 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

NFA Definition

Figure: NFA Example

Definition of a NFA

The definition of a nondeterministic finite
automata is a 5-tuple, which means it is
defined by five components:

M = (Q,Σ, δ, q1,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the NFA can
read),

3. δ : Q × Σϵ → P(Q) is the transition function

4. q1 ∈ Q is the start state, where the NFA begins, and

5. F ⊆ Q is the set of accepting states.

31 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

NFA Definition

Figure: NFA Example

Definition of a NFA

The definition of a nondeterministic finite
automata is a 5-tuple, which means it is
defined by five components:

M = (Q,Σ, δ, q1,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the NFA can
read),

3. δ : Q × Σϵ → P(Q) is the transition function

4. q1 ∈ Q is the start state, where the NFA begins, and

5. F ⊆ Q is the set of accepting states.

32 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

NFA Definition

Figure: NFA Example

Definition of a NFA

The definition of a nondeterministic finite
automata is a 5-tuple, which means it is
defined by five components:

M = (Q,Σ, δ, q1,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the NFA can
read),

3. δ : Q × Σϵ → P(Q) is the transition function

4. q1 ∈ Q is the start state, where the NFA begins, and

5. F ⊆ Q is the set of accepting states.

33 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

NFA Definition

Figure: NFA Example

Definition of a NFA

The definition of a nondeterministic finite
automata is a 5-tuple, which means it is
defined by five components:

M = (Q,Σ, δ, q1,F )

1. Q is a finite set of states,

2. Σ is the input alphabet (the symbols the NFA can
read),

3. δ : Q × Σϵ → P(Q) is the transition function

4. q1 ∈ Q is the start state, where the NFA begins, and

5. F ⊆ Q is the set of accepting states.

34 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

35 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Different, But Equivalent: DFA vs NFA

Definition of Equivalence

Equivalence means that two different
types of machines (like a DFA and an
NFA) can recognize exactly the same set
of strings or languages.

States: Both consist of states that process
input symbols, with a start and one or more
accepting states.

Pathways: DFA : Exactly one path per
state-symbol pair (like a single-lane road).
NFA : Multiple or zero paths per state-symbol
pair (like a choose-your-own-adventure book).

Acceptance: DFA: Accepts if a single path
leads to an accepting state.
NFA: Accepts if any path leads to an accepting
state.

36 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Different, But Equivalent: DFA vs NFA

Definition of Equivalence

Equivalence means that two different
types of machines (like a DFA and an
NFA) can recognize exactly the same set
of strings or languages.

States: Both consist of states that process
input symbols, with a start and one or more
accepting states.

Pathways: DFA : Exactly one path per
state-symbol pair (like a single-lane road).
NFA : Multiple or zero paths per state-symbol
pair (like a choose-your-own-adventure book).

Acceptance: DFA: Accepts if a single path
leads to an accepting state.
NFA: Accepts if any path leads to an accepting
state.

37 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Example of an Equivalent DFA and NFA

The set of all strings over the alphabet a,b that contain the substring “ab”

38 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Example of an Equivalent DFA and NFA

The set of all strings over the alphabet a,b that contain the substring “ab”
39 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Overview

1. Introduction

2. Languages

3. Finite Automata

4. Deterministic Finite Automata

5. Nondeterministic Finite Automata

6. Different, But Equivalent: DFA vs NFA

7. Real World Applications

40 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Real World Applications

• All these may seem very abstract, but they’re the fundamentals to understanding larger
issues in computer science

• Finite automata and other machines: programming languages and parsing

• Finally, the theory of computation allows us to determine whether a problem is solvable or
unsolvable

41 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Real World Applications

• All these may seem very abstract, but they’re the fundamentals to understanding larger
issues in computer science

• Finite automata and other machines: programming languages and parsing

• Finally, the theory of computation allows us to determine whether a problem is solvable or
unsolvable

42 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Real World Applications

• All these may seem very abstract, but they’re the fundamentals to understanding larger
issues in computer science

• Finite automata and other machines: programming languages and parsing

• Finally, the theory of computation allows us to determine whether a problem is solvable or
unsolvable

43 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Real World Applications

• All these may seem very abstract, but they’re the fundamentals to understanding larger
issues in computer science

• Finite automata and other machines: programming languages and parsing

• Finally, the theory of computation allows us to determine whether a problem is solvable or
unsolvable

44 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

A Brief Introduction to TOC

This is Sherri’s section on an introduction to TOC: Watch Video

45 / 47

https://drive.google.com/file/d/1fjpM8F_OaX6Gwynje05kj_G8J9r2Z1-u/view?usp=sharing


Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

References

Michael Sisper (2013)

Understanding the Theory of Computation 3rd ed.

46 / 47



Intro Languages Finite Automata DFA NFA Equivalence Real World Applications

Thank you to...

Katherine Taylor for guidance
Our wonderful research group

Everyone listening!

47 / 47


	Introduction
	Languages
	Finite Automata
	Deterministic Finite Automata
	Nondeterministic Finite Automata
	Different, But Equivalent: DFA vs NFA
	Real World Applications

