
Pick’s Theorem

Hannah Ahn and Carolena Douglas
MIT PRIMES Circle

May 18, 2025

Figure 1: We can calculate the area of this shape using Pick’s Theorem.
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What’s the area of this triangle?

Figure 2: The depicted triangle has the following vertices: (0, 0), (2, 4), and (5, 2).
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Strategy 1: Enclose in a box

Figure 3: We can find the box’s area and the areas of three three small triangles and
subtract the sum of their areas from the box’s area.

▶ The box has an area of 20, the triangle on the left has an area of 4, the one
on the top right is 3, and the bottom one is 5

▶ By adding their areas up, we get 4 + 3 + 5 = 12

▶ We subtract 12 from the area of the entire box, 20− 12 = 8, to get that the
area of the original triangle is 8
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Strategy 2: Heron’s Formula

Figure 4: A triangle with side lengths a, b, c will have a perimeter of a+ b + c and a
semiperimeter of a+b+c

2
, which we will define as s. Using the values of the variables for

this particular triangle with Heron’s formula
√

s(s − a)(s − b)(s − c) we find that the
area is 8.
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Strategy 3: Cut the Triangle in Half

Figure 5: The area of each of the smaller triangles is 4∗2
2
, which equals 4; so, when

adding the areas together, we can deduct that the area of the original triangle is 8.
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Strategy 4: Determinant Formula

Figure 6: If we form a matrix

(
5 2
2 4

)
using the vertices (5,2) and (2,4), with the

determinant formula ad − bc for a 2 by 2 matrix

(
a c
b d

)
we get 20− 4 = 16. The area

of a polygon is half the determinant, so the area of this triangle is 8.
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Strategy 5: Pick’s Theorem

Figure 7: Pick’s Theorem uses the formula A = i + b
2
-1, and b = 4, the number of

boundary (orange) points, and i = 7, the number of interior (green) points. So, when we
plug in b and i into the equation, A = 7 + 4

2
-1, we get that A = 8.
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Statement of Pick’s Theorem

Theorem
Consider a simple polygon with lattice points as vertices, i interior lattice points,
and b boundary lattice points, the area A of the polygon is A = i + b

2 − 1.

Figure 8: Depicted above is a polygon with 8 boundary lattice points shown in orange
and 7 interior lattice points shown in green, so the area is A = 7 + 8

2
− 1 = 10.
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The lattice point hypothesis in Pick’s Theorem

Figure 9: A square with vertices (−1/2,−1/2), (1/2,−1/2), (1/2, 1/2), and
(−1/2, 1/2), and an area of 1.

▶ Has 1 interior lattice point, so i = 1, and 0 boundary lattice points, so b = 0

▶ Applying Pick’s Theorem: area is i + b/2− 1 = 0, but this statement is false

▶ Therefore important for the polygon to have lattice points as vertices
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The simple polygon hypothesis in Pick’s Theorem

Theorem
Consider a polygon with lattice points as vertices, with i interior lattice points, b
boundary lattice points, and h holes, then the area A of the polygon is
A = i + b

2 + h − 1.

Figure 10: Depicted above is a polygon with a hole. The number of interior lattice points
i=2, boundary lattice points b=12, and holes h=1. So, A = i + b

2
+ h − 1 = 2 + 6 = 8.
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Proof of Pick’s theorem

Theorem

Let ∆ be a triangle that contains no boundary or interior lattice points except for
the three vertices. Then ∆ has area 1/2. We call ∆ a special triangle.

Figure 11: A triangle can be subdivided into 16 special triangles and regarded as a graph.
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Proof of Pick’s theorem (Cont.)

Figure 12: A triangle can be subdivided into 16 special triangles and regarded as a graph.

Theorem
In a planar graph G, let v be the number of vertices, e the number of edges, and
f the number of faces. Then G has Euler characteristic χ = v − e + f = 2.

Using Euler’s characteristic v − e + f = 2 and the expressions v = i + b,
f = 2A+ 1, and e = 6A+b

2 from 6A = 2e − b, we can find Pick’s theorem.
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