Introduction to Group Theory

Jianing Huang, Sylvia Lee

MIT PRIMES Circle

May 18, 2025

Jianing Huang, Sylvia Lee Introduction to Group Theory

(ロ) (部) (E) (E) (E)

How Can We Understand the Symmetry of this Shape?

What is the set of all the symmetries of this square, and how can they be composed?

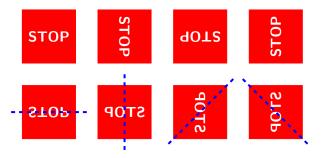


Figure: A beautiful red square

A **group** is a set *G* associated with an operation \cdot that satisfies the following axioms:

э

A **group** is a set *G* associated with an operation \cdot that satisfies the following axioms:

1 Closure. For all elements $a, b \in G$, $ab \in G$.

イロト イポト イヨト イヨト

A **group** is a set *G* associated with an operation \cdot that satisfies the following axioms:

- **1** Closure. For all elements $a, b \in G$, $ab \in G$.
- 2 Associativity. (ab)c = a(bc) for all $a, b, c \in G$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

A **group** is a set *G* associated with an operation \cdot that satisfies the following axioms:

- Closure. For all elements $a, b \in G$, $ab \in G$.
- 2 Associativity. (ab)c = a(bc) for all $a, b, c \in G$.
- 3 *Identity.* There exists an identity $e \in G$ such that ae = ea = a.

イロト イポト イヨト イヨト

A **group** is a set *G* associated with an operation \cdot that satisfies the following axioms:

- Closure. For all elements $a, b \in G$, $ab \in G$.
- 2 Associativity. (ab)c = a(bc) for all $a, b, c \in G$.
- Identity. There exists an identity e ∈ G such that ae = ea = a.
- Inverse. For all a ∈ G, there is an element b ∈ G such that ab = ba = e. b is the inverse of a, denoted b = a⁻¹.

イロト イポト イヨト イヨト

The order of a group G, denoted |G|, is the number of elements in G.

The order of a group G, denoted |G|, is the number of elements in G.

Definition

The order of an element a, denoted |a|, is the smallest positive integer n such that $a^n = e$.

イロト イヨト イヨト

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

Jianing Huang, Sylvia Lee Introduction to Group Theory

・ロト ・ 四ト ・ ヨト ・ ヨト

э

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

• Closure: The sum of two integers is always an integer.

・ 同 ト ・ ヨ ト ・ ヨ ト

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

- Closure: The sum of two integers is always an integer.
- Associativity: Addition is associative.

< 同 > < 三 > < 三 > -

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

- Closure: The sum of two integers is always an integer.
- Associativity: Addition is associative.
- Identity: 0

イロト イポト イヨト イヨト

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

- Closure: The sum of two integers is always an integer.
- Associativity: Addition is associative.
- Identity: 0

• Inverse:
$$n^{-1} = -n$$

イロト イポト イヨト イヨト

The set of integers $\ensuremath{\mathbb{Z}}$ under addition.

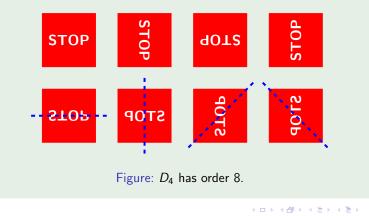
- Closure: The sum of two integers is always an integer.
- Associativity: Addition is associative.
- Identity: 0
- Inverse: $n^{-1} = -n$

The group $\ensuremath{\mathbb{Z}}$ has infinite order.

・ロト ・回ト ・ヨト ・ヨト

Examples

The dihedral group D_4 is the set of all symmetries of a square $\{I, V, H, D_1, D_2, R_{90}, R_{180}, R_{270}\}$ with composition as the operation.

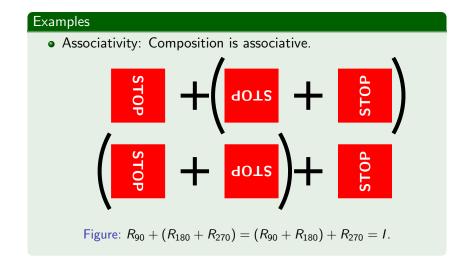


Examples

The dihedral group D_4 is the set of all symmetries of a square $\{I, V, H, D_1, D_2, R_{90}, R_{180}, R_{270}\}$ with composition as the operation.

• Closure: The composition of any two transformations always results in another transformation that preserves the square's shape.

Figure:
$$R_{90} + H = D_1$$
.



(日)

Examples

• Identity: The identity I is the original, untransformed square.

Figure: The "do nothing" operation.

Examples

• Identity: The identity I is the original, untransformed square.

Figure: The "do nothing" operation.

• Inverse: Each transformation can be "undone" by the opposite transformation.

Figure:
$$R_{90} + R_{270} = I$$
, so $(R_{90})^{-1} = R_{270}$.

Definition of Subgroups

Definition

A subgroup H of a group G is a group such that all elements of H are also elements of G, and the operation is the same.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Definition of Subgroups

Definition

A subgroup H of a group G is a group such that all elements of H are also elements of G, and the operation is the same.

Example

The set of rotations $\{I, R_{90}, R_{180}, R_{270}\}$ in the group of transformations $D_4 = \{I, V, H, D_1, D_2, R_{90}, R_{180}, R_{270}\}$ on a square is a subgroup, where the operation is composition.

Definition of Subgroups

Definition

A subgroup H of a group G is a group such that all elements of H are also elements of G, and the operation is the same.

Example

The set of rotations $\{I, R_{90}, R_{180}, R_{270}\}$ in the group of transformations $D_4 = \{I, V, H, D_1, D_2, R_{90}, R_{180}, R_{270}\}$ on a square is a subgroup, where the operation is composition.

Example

The set $\{1,2,4\}$ under multiplication is a subgroup of $\mathbb{Z}\,/7\,\mathbb{Z}^\times=\{1,2,3,4,5,6\}.$

イロト イボト イヨト イヨト

A group G is **cyclic** if $G = \{a^n \mid a \in G, n \in \mathbb{Z}\}$, i.e. the powers of one element a in G covers the whole group. We can denote this as $G = \langle a \rangle$, where element a is a **generator** of G.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A group G is **cyclic** if $G = \{a^n \mid a \in G, n \in \mathbb{Z}\}$, i.e. the powers of one element a in G covers the whole group. We can denote this as $G = \langle a \rangle$, where element a is a **generator** of G.

Example

The integers \mathbb{Z} under addition is an infinite cyclic group $\mathbb{Z} = \langle 1 \rangle$. Negative integers can be generated by the element $1^{-1} = -1$. The order of \mathbb{Z} is infinite.

イロト イヨト イヨト イヨト

Examples of Cyclic Groups

Example

The set of nonzero remainders mod 7, $\mathbb{Z}/7\mathbb{Z}^{\times}$, is the cyclic group $\langle 3 \rangle$ with generator 3.

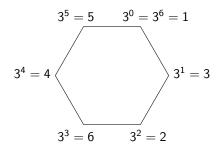


Figure: All nonzero remainders mod 7 are generated by every set of six consecutive powers of 3.

イロト 不得 トイヨト イヨト 二日

Theorem (Fundamental Theorem of Cyclic Groups)

Let G be a finite cyclic group $\langle a \rangle$ with order n, then every subgroup H of G must satisfy the following:

- *H* is also cyclic. Specifically, $H = \langle a^m \rangle$.
- **2** |H| is a divisor of n. In particular, if $H = \langle a^m \rangle$, then $|H| = \frac{n}{m}$.
- If the order of H is known, then H is unique.

・ロト ・回 ト ・ ヨト ・ ヨト …

Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power.

Jianing Huang, Sylvia Lee Introduction to Group Theory

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power. Consider any element $b \in H$. Since $H \subseteq G$, $b = a^k$ for some k.

Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power. Consider any element $b \in H$. Since $H \subseteq G$, $b = a^k$ for some k. Express k = mq + r, where r < m.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power. Consider any element $b \in H$. Since $H \subseteq G$, $b = a^k$ for some k. Express k = mq + r, where r < m. Then $a^k = a^r \cdot a^{mq}$. By closure $a^r \in H$.

- 4 同 ト 4 回 ト -

Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power. Consider any element $b \in H$. Since $H \subseteq G$, $b = a^k$ for some k. Express k = mq + r, where r < m. Then $a^k = a^r \cdot a^{mq}$. By closure $a^r \in H$. Wait! m was the smallest positive number such that $a^m \in H$. Thus, r = 0 and k = mq.

イロト イポト イヨト イヨト

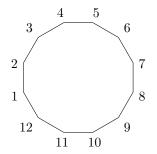
Let $G = \langle a \rangle$, then H must contain some power of a. Let m be the smallest such non-zero power. Consider any element $b \in H$. Since $H \subseteq G$, $b = a^k$ for some k. Express k = mq + r, where r < m. Then $a^k = a^r \cdot a^{mq}$. By closure $a^r \in H$. Wait! m was the smallest positive number such that $a^m \in H$. Thus, r = 0 and k = mq. So for all $b \in H$, $b = a^k = a^{mq} = (a^m)^q$ for some q. i.e. all elements in H is a power of a^m , so $H = \langle a^m \rangle$.

イロト イヨト イヨト イヨト

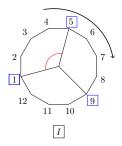
Theorem in Application - D_{12}

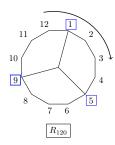
Example

Consider a regular dodecagon (12 sides) and its dihedral group D_{12} , which includes all potential transformations, where the subgroup of rotations is a cyclic group of order 12, let's call this *G*.



Can you find a subgroup of G with order 3? Let's verify that it is also cyclic, and that it is unique.

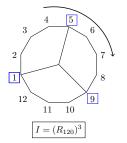


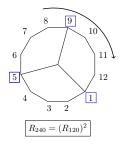


This is the cyclic subgroup $\langle R_{120} \rangle$. Note that R_{240} would generate the same group. $R_{120} = (R_{30})^4$, where R_{30} is the generator of the whole group, and $4 = 12 \div 3$.

<ロ> (日) (日) (日) (日) (日)

æ





Can you find a subgroup of G with order 5?

Jianing Huang, Sylvia Lee Introduction to Group Theory

・ロト ・回ト ・ヨト ・ヨト

э

Can you find a subgroup of G with order 5?

The answer is no!

Jianing Huang, Sylvia Lee Introduction to Group Theory

・ロト ・回ト ・ヨト ・ヨト

э

Can you find a subgroup of G with order 5?

The answer is no! Since 5 is not a divisor of 12, you cannot find a subgroup with order 5 in a cyclic group with order 12, as shown by the Fundamental theorem.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Gallian, Joseph A. Contemporary Abstract Algebra. Brooks/Cole, 2010.

Robertson, Edmund, and John J. O'Connor. "Abstract Groups." MacTutor History of Mathematics Archive, University of St. Adrews.

Kleiner, Israel. A History of Abstract Algebra, 2007.

• (1) • (

Thank you to the PRIMES CIRCLE program and to our mentor June Kayath for providing us with this opportunity! Thank you all for listening!