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How Can We Understand the Symmetry of this Shape?

What is the set of all the symmetries of this square, and how can
they be composed?
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Figure: A beautiful red square

Jianing Huang, Sylvia Lee Introduction to Group Theory



Definition of Groups

Definition

A group is a set G associated with an operation · that satisfies the
following axioms:

1 Closure. For all elements a, b ∈ G , ab ∈ G .

2 Associativity. (ab)c = a(bc) for all a, b, c ∈ G .

3 Identity. There exists an identity e ∈ G such that
ae = ea = a.

4 Inverse. For all a ∈ G , there is an element b ∈ G such that
ab = ba = e. b is the inverse of a, denoted b = a−1.
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Definition of Order

Definition

The order of a group G , denoted |G |, is the number of elements
in G .

Definition

The order of an element a, denoted |a|, is the smallest positive
integer n such that an = e.

Jianing Huang, Sylvia Lee Introduction to Group Theory



Definition of Order

Definition

The order of a group G , denoted |G |, is the number of elements
in G .

Definition

The order of an element a, denoted |a|, is the smallest positive
integer n such that an = e.

Jianing Huang, Sylvia Lee Introduction to Group Theory



Examples of Groups

Examples

The set of integers Z under addition.

Closure: The sum of two integers is always an integer.

Associativity: Addition is associative.

Identity: 0

Inverse: n−1 = −n

The group Z has infinite order.
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Examples of Groups

Examples

The dihedral group D4 is the set of all symmetries of a square
{I ,V ,H,D1,D2,R90,R180,R270} with composition as the
operation.
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Figure: D4 has order 8.
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Examples of Groups

Examples

The dihedral group D4 is the set of all symmetries of a square
{I ,V ,H,D1,D2,R90,R180,R270} with composition as the
operation.

Closure: The composition of any two transformations always
results in another transformation that preserves the square’s
shape.
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Figure: R90 + H = D1.
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Examples of Groups

Examples

Associativity: Composition is associative.
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Figure: R90 + (R180 + R270) = (R90 + R180) + R270 = I .
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Examples of Groups

Examples

Identity: The identity I is the original, untransformed square.

STOP

Figure: The “do nothing” operation.

Inverse: Each transformation can be “undone” by the
opposite transformation.
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Figure: R90 + R270 = I , so (R90)
−1 = R270.
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Examples of Groups

Examples

Identity: The identity I is the original, untransformed square.

STOP

Figure: The “do nothing” operation.

Inverse: Each transformation can be “undone” by the
opposite transformation.
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Figure: R90 + R270 = I , so (R90)
−1 = R270.
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Definition of Subgroups

Definition

A subgroup H of a group G is a group such that all elements of H
are also elements of G , and the operation is the same.

Example

The set of rotations {I ,R90,R180,R270} in the group of
transformations D4 = {I ,V ,H,D1,D2,R90,R180,R270} on a square
is a subgroup, where the operation is composition.

Example

The set {1, 2, 4} under multiplication is a subgroup of
Z /7Z× = {1, 2, 3, 4, 5, 6}.
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Definition of Cyclic Groups

Definition

A group G is cyclic if G = {an | a ∈ G , n ∈ Z}, i.e. the powers of
one element a in G covers the whole group. We can denote this as
G = ⟨a⟩, where element a is a generator of G .

Example

The integers Z under addition is an infinite cyclic group Z = ⟨1⟩.
Negative integers can be generated by the element 1−1 = −1.
The order of Z is infinite.
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Examples of Cyclic Groups

Example

The set of nonzero remainders mod 7, Z /7Z×, is the cyclic group
⟨3⟩ with generator 3.

30 = 36 = 1

31 = 3

32 = 233 = 6

34 = 4

35 = 5

Figure: All nonzero remainders mod 7 are generated by every set of six consecutive
powers of 3.
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Main Theorem

Theorem (Fundamental Theorem of Cyclic Groups)

Let G be a finite cyclic group ⟨a⟩ with order n, then every
subgroup H of G must satisfy the following:

1 H is also cyclic. Specifically, H = ⟨am⟩.
2 |H| is a divisor of n. In particular, if H = ⟨am⟩, then |H| = n

m .

3 If the order of H is known, then H is unique.
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Statement 1 - Subgroup of Cyclic Group is Cyclic

Proof.

Let G = ⟨a⟩, then H must contain some power of a.
Let m be the smallest such non-zero power.

Consider any element b ∈ H. Since H ⊆ G , b = ak for some k.
Express k = mq + r , where r < m. Then ak = ar · amq. By closure
ar ∈ H.
Wait! m was the smallest positive number such that am ∈ H.
Thus, r = 0 and k = mq.
So for all b ∈ H, b = ak = amq = (am)q for some q.
i.e. all elements in H is a power of am, so H = ⟨am⟩.
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Theorem in Application - D12

Example

Consider a regular dodecagon (12 sides) and its dihedral group
D12, which includes all potential transformations, where the
subgroup of rotations is a cyclic group of order 12, let’s call this G .
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Theorem in Application - D12

Example

Can you find a subgroup of G with order 3? Let’s verify that it is
also cyclic, and that it is unique.
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R120

This is the cyclic
subgroup ⟨R120⟩.
Note that R240

would generate the
same group.
R120 = (R30)

4,
where R30 is the
generator of the
whole group, and
4 = 12÷ 3.
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Theorem in Application - D12

Example

Can you find a subgroup of G with order 5?

The answer is no!
Since 5 is not a divisor of 12, you cannot find a subgroup with
order 5 in a cyclic group with order 12, as shown by the
Fundamental theorem.
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