Number Theory Diving into the Difference Game

Leena and Sofia Bhandari Cordoba MIT PRIMES Circle Scholars Brookline High School

May 17, 2025

- Begin with two different positive integers
- Players take turns writing differences of numbers already on the board (new difference must be unique)
- Player loses game if unable to form new positive difference

Let's Play!!

Suppose that the game begins with M and N, where $M \ge N$

- 1. Find the gcd of M and N $\,$
- 2. Divide M by the gcd(M,N)
 - a. If resulting fraction is **odd**, the **first** player wins
 - b. If resulting fraction is even, the second player wins
- 3. Choose who will start and set yourself up for success!

These are the five lemmas used to prove the winning strategy:

- 1. Well-Ordering Principle
- 2. Every number generated is a multiple of the gcd of the starting numbers.
- 3. Every number generated is a multiple of the smallest number generated.
- 4. The smallest number generated is the gcd of the starting numbers.
- 5. The numbers generated are the positive multiples of gcd(M, N) up to M

Lemma 1: Well-Ordering Principle

The Well-Ordering Principle states that every nonempty set of nonnegative integers must have a least element.

Lemma 2

Every a_i generated in the difference game is a multiple of the gcd of the starting numbers, X_m and X_n .

 $S = \{i \mid \gcd(X_M, X_N) \nmid a_i\}.$

WANT TO PROVE: Set *S* is empty Let ℓ be the **least element** of Set S PLAN: Prove ℓ does not exist \rightarrow Set S is empty If ℓ is the least element in $S \to gcd \nmid x_{\ell}$ STARTING NUMBERS: x_m and x_n x_l will be difference of x_m and x_n I is the least element of Set $S \rightarrow$ all terms that come before x_l are all divisible by the gcd So... $gcd(X_M, X_N)$ divides all terms that are produced before ℓ . Can factor gcd out of all differences generated $\rightarrow x_{\ell}$ is also divisible by gcd. x_{ℓ} divisible by gcd $\rightarrow x_{\ell}$ is not in Set S. BUT... x_{ℓ} was the least element? No least element \rightarrow Set S is empty!

Every number generated is a multiple of the smallest number generated. Set $S = \{A_1, A_2, A_3, ..., A_N\}$ where each A_i was generated in the Difference Game. Let d be the least element of SStarting Numbers: X_m and X_n , $gcd(X_m, X_n) = g$ x is a difference generated, ASSUME: $d \nmid x$ Using the division algorithm, x = dq + r $1 \le r < d$

$$r = x - dq$$

Lemma 3

$$x-d, x-2d, x-3d, \dots$$

$$x - dq \longrightarrow$$
 VALID DIFFERENCE!

x - dq = r

r is a valid difference, but...

Remember: r < d

r < d AND r is a difference in our game $\longrightarrow d$ is not least element of S

Goal: Determine who wins the Difference Game based on the starting numbers.

How the Lemmas Help:

- Lemma 1 (Well-Ordering Principle): Guarantees a least number exists the game must end.
- Lemma 2: All numbers generated are multiples of the gcd this controls the structure of the game.
- Lemma 3: The gcd is the smallest number generated this becomes the "unit" of progress.
- Lemma 4: Confirms the gcd is actually generated not just a theoretical idea.
- Lemma 5: Shows the full set of differences is: {gcd, $2 \cdot \text{gcd}$, ..., M}

The End