Set Theory and Logic

Sage Kramer, Anna Lu, Ren Lin

Milton High School, Phillips Academy, Lexington High School

May 17, 2025

Sentential Logic

Sage Kramer

Milton High School

May 17, 2025

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Sentential logic, also called *propositional logic*, studies how prime sentences (atomic) combine using logical connectives.

- A prime sentence is a basic statement that is either true or false.
 - Example:
- Let A = T, where A could be "Dogs normally have 4 legs", a True statement.

▶ Let *B* = F could be "Dogs are blue", a False statement.

Logical Connectives

Logical connectives are symbols used to build compound sentences from the prime ones. The most common are the following:

Taking into mind that A = T and B = F

- $\neg A$ not A (negation) is False
- $A \land B A$ and B (conjunction) is False
- $A \lor B A$ or B (disjunction) is True
- $A \rightarrow B$ if A, then B (implication) is False
- $A \leftrightarrow B A$ if and only if B (bi-conditional) is False

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Truth Tables

Purpose: Evaluate logical expressions systematically.

Example 1: $A \lor B$

Example 2: $A \lor \neg A$ (a tautology)

Key Term: Tautology — A statement that is always true, e.g., $A \lor \neg A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Logical Laws – Identity

 $\top:$ A Verum, statement that is always true.

 \perp : A Falsum, statement that is always false.

 ${\ensuremath{\scriptscriptstyle \Xi}}$: Logical Equivalence, where two composites have the same truth table.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Identity Laws:

- $A \lor \bot \equiv A$
- $A \wedge \top \equiv A$

Example Table: $A \lor \bot$

A	\bot	$A \lor \bot$
Т	F	Т
F	F	F

Logical Laws – Domination

Domination Laws:

- $A \lor \top \equiv \top$
- $A \land \bot \equiv \bot$

Example Table: $A \land \bot$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A	\bot	$A \land \bot$
Т	F	F
F	F	F

Summary

Key Concepts Reviewed:

We touched base on the following:

- Sentential Logic
- Logical Connectives
- Truth Tables (Tautologies)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Logical Laws

Set Theory and Proof Techniques

Anna Lu

Phillips Academy

May 17, 2025

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Set Theory

Sets a well-defined collection of distinct objects, which are called *elements* of a set.

Subset A set A is a subset of another set B when all elements of A are within B, all $a \in B$

Inclusion A set A is a subset of a set B and every element of A is also in B, meaning A can be equal to B. Denoted as $A \subseteq B$ and read as "A is included in B."

Proper Inclusion Every element of a set *A* is included within a set *B* but they are not equal, *B* has additional other elements,

denoted as $A \subset B$ and read as "A is properly included in B."

Set Theory

Intersection the set containing all elements that in both sets A and B, denoted as $A \cap B$ **Union** in two sets A and B, a union is the set containing all elements that are in either A or B or both, denoted as $A \cup B$

Proof Techniques

Definition

Proof by contradiction assumes the negation of the desired conclusion and derives a logical inconsistency from this assumption.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof by Contradiction

Example

Prove that, if $A \cap B = A$, then $A \subseteq B$. *Proof:* Suppose for the sake of contradiction that $A \notin B$. Then there exists some $a \in A$ such that $a \notin B$. This implies that $a \notin A \cap B$. But then, since $a \in A$, $A \cap B \neq A$, which is a contradiction, indicating that in fact $A \subseteq B$.

うせん 同一人用 人用 人用 人口 マ

Sudoku as Sets and Predicate Logic

Ren Lin

Lexington High School

May 17, 2025

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Why Logic? Why Sudoku?

- More than just a puzzle. It challenges players to use logic, deduction, and structure.
- Because we can use set theory and predicate logic to formally describe the rules and valid solutions.
- Translate human reasoning into mathematical language
- It shows how mathematics can model real world problem solving.
- Using logic to understand Sudoku is an example of how logic helps us structure and automate reasoning in various fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Key Mathematical Tools

- Set: A group or collection of distinct items. In Sudoku, a row, column, or box can be seen as a set of numbers from 1 to 9.
- Predicate: A logical sentence that becomes true or false depending on the input. Example: "x is greater than 5"
- Quantifiers: Symbols that help us talk about "how many" things something applies to.

- Y means "for all"
- ▶ ∃ means "there exists"
- Satisfiability: Are all constraints consistent?

Formalizing the Grid

- A Sudoku grid has cells. We label each one by row and column: G = {(i, j) | 1 ≤ i, j ≤ 9}
- The digits we can place: D = {1,2,...,9}
- The relation R ⊆ G × D: This matches each grid cell with a digit like ((3,4),7) for placing 7 at (3,4).
- The predicate P(i,j,d): True if digit d is placed in row i, column j. P(i,j,d) ⇐ ((i,j),d) ∈ R

						9		
3	4				2		1	5
		9		5	7			
1			3		5			7
		4					9	
7			6		1			8
		3		9	9			
4	6	9			9		5	1
						2		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sudoku Rules as Set Theory and Logic

Row constraint (no repeated digit in a row):

$$\forall i, d, j_1 \neq j_2: \neg (P(i, j_1, d) \land P(i, j_2, d))$$

Column constraint:

$$\forall j, d, i_1 \neq i_2: \neg (P(i_1, j, d) \land P(i_2, j, d))$$

Subgrid constraint:

Let

$$S_{k,l} = \{(i,j) \mid 3k-2 \le i \le 3k, \ 3l-2 \le j \le 3l\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Each subgrid must contain all digits once.

How Logic Solves Sudoku (Part 1)

- Starting Point: We begin with a few numbers already filled in. Call this set R₀, part of the full solution set R, R₀ ⊆ R.
- Translate to Logic: Each given number becomes a statement like P(i,j,d): "Cell (i, j) has digit d."
- Use Logic Rules:
 - If we know a cell has digit d, then it can't have any other digit $d' \neq d$.
 - That digit d also can't appear again in the same row, column, or box.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How Logic Solves Sudoku (Part 2)

Make Deductions:

- If only one digit can go in a cell, we can safely place it.
- If a digit can only go in one spot in a row, column, or box, we place it there.
- Repeat: Keep applying these logical steps and updating possibilities.
- Continue until every cell is filled (a solution), or no choices are left (no solution).

						9		
3	4				2		1	5
		9		5	7			
1			3		5			7
		4					9	
7			6		1			8
		3		9	9			
4	6	9			9		5	1
						2		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary: Sudoku and Logic

- The way we solve Sudoku using logic is like following an algorithm, a set of rules to solve a problem.
- Every move is a deduction, where we use the rules to figure out what must be true.
- Sudoku turns into a puzzle made of logical constraints
- Shows how math can model the way we think and solve problems.
- The logic and methods we used apply to important concepts and tools in computer science, science, and even everyday reasoning.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank You

Questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ