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Sentential Logic

Sentential logic, also called propositional logic, studies how prime
sentences (atomic) combine using logical connectives.

▸ A prime sentence is a basic statement that is either true or
false.
Example:

▸ Let A = T, where A could be ”Dogs normally have 4 legs”, a
True statement.

▸ Let B = F could be ”Dogs are blue”, a False statement.



Logical Connectives

Logical connectives are symbols used to build compound
sentences from the prime ones. The most common are the
following:
Taking into mind that A = T and B = F
▸ ¬A — not A (negation) is False

▸ A ∧B — A and B (conjunction) is False

▸ A ∨B — A or B (disjunction) is True

▸ A→ B — if A, then B (implication) is False

▸ A↔ B — A if and only if B (bi-conditional) is False



Truth Tables
Purpose: Evaluate logical expressions systematically.

Example 1: A ∨B

A B A ∨B

T T T
T F T
F T T
F F F

Example 2: A ∨ ¬A (a tautology)

Key Term: Tautology — A statement that is always true, e.g.,
A ∨ ¬A.

A ¬A A ∨ ¬A
T F T
F T T



Logical Laws – Identity

⊺: A Verum, statement that is always true.
�: A Falsum, statement that is always false.
≡ : Logical Equivalence, where two composites have the same
truth table.

Identity Laws:

▸ A ∨ � ≡ A
▸ A ∧ ⊺ ≡ A

Example Table: A ∨ �
A � A ∨ �
T F T
F F F



Logical Laws – Domination

Domination Laws:

▸ A ∨ ⊺ ≡ ⊺
▸ A ∧ � ≡ �

Example Table: A ∧ �
A � A ∧ �
T F F
F F F



Summary

Key Concepts Reviewed:
We touched base on the following:

▸ Sentential Logic

▸ Logical Connectives

▸ Truth Tables (Tautologies)

▸ Logical Laws
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Set Theory

Sets a well-defined collection of distinct objects, which are called
elements of a set.
Subset A set A is a subset of another set B when all elements of
A are within B, all a ∈ B
Inclusion A set A is a subset of a set B and every element of A is
also in B, meaning A can be equal to B. Denoted as A ⊆ B and
read as ”A is included in B.”
Proper Inclusion Every element of a set A is included within a set
B but they are not equal, B has additional other elements,
denoted as A ⊂ B and read as ”A is properly included in B.”



Set Theory

Intersection the set containing all elements that in both sets A
and B, denoted as A ∩B
Union in two sets A and B, a union is the set containing all
elements that are in either A or B or both, denoted as A ∪B



Proof Techniques

Definition
Proof by contradiction assumes the negation of the desired
conclusion and derives a logical inconsistency from this assumption.



Proof by Contradiction

Example

Prove that, if A ∩B = A, then A ⊆ B.
Proof: Suppose for the sake of contradiction that A /⊆ B. Then
there exists some a ∈ A such that a ∉ B. This implies that
a ∉ A ∩B. But then, since a ∈ A, A ∩B ≠ A, which is a
contradiction, indicating that in fact A ⊆ B.
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Why Logic? Why Sudoku?

▸ More than just a puzzle. It challenges players to use logic,
deduction, and structure.

▸ Because we can use set theory and predicate logic to
formally describe the rules and valid solutions.

▸ Translate human reasoning into mathematical language

▸ It shows how mathematics can model real world problem
solving.

▸ Using logic to understand Sudoku is an example of how logic
helps us structure and automate reasoning in various fields.



Key Mathematical Tools

▸ Set: A group or collection of distinct items. In Sudoku, a row,
column, or box can be seen as a set of numbers from 1 to 9.

▸ Predicate: A logical sentence that becomes true or false
depending on the input. Example: “x is greater than 5”

▸ Quantifiers: Symbols that help us talk about “how many”
things something applies to.
▸ ∀ means “for all”
▸ ∃ means “there exists”

▸ Satisfiability: Are all constraints consistent?



Formalizing the Grid

▸ A Sudoku grid has cells. We label
each one by row and column:
G = {(i , j) ∣ 1 ≤ i , j ≤ 9}

▸ The digits we can place:
D = {1,2, . . . ,9}

▸ The relation R ⊆ G ×D: This
matches each grid cell with a digit
like ((3,4),7) for placing 7 at
(3,4).

▸ The predicate P(i , j ,d): True if
digit d is placed in row i , column j .
P(i , j ,d) ⇐⇒ ((i , j),d) ∈ R



Sudoku Rules as Set Theory and Logic

Row constraint (no repeated digit in a row):

∀i ,d , j1 ≠ j2 ∶ ¬(P(i , j1,d) ∧ P(i , j2,d))

Column constraint:

∀j ,d , i1 ≠ i2 ∶ ¬(P(i1, j ,d) ∧ P(i2, j ,d))

Subgrid constraint:
Let

Sk,l = {(i , j) ∣ 3k−2 ≤ i ≤ 3k , 3l−2 ≤ j ≤ 3l}
Each subgrid must contain all digits once.



How Logic Solves Sudoku (Part 1)

▸ Starting Point: We begin with a few numbers already filled
in. Call this set R0, part of the full solution set R, R0 ⊆ R.

▸ Translate to Logic: Each given number becomes a
statement like P(i , j ,d): “Cell (i, j) has digit d .”

▸ Use Logic Rules:
▸ If we know a cell has digit d , then it can’t have any other digit

d ′ ≠ d .
▸ That digit d also can’t appear again in the same row, column,

or box.



How Logic Solves Sudoku (Part 2)

▸ Make Deductions:
▸ If only one digit can go in a cell,

we can safely place it.
▸ If a digit can only go in one spot

in a row, column, or box, we
place it there.

▸ Repeat: Keep applying these
logical steps and updating
possibilities.

▸ Continue until every cell is filled (a
solution), or no choices are left (no
solution).



Summary: Sudoku and Logic

▸ The way we solve Sudoku using logic is like following an
algorithm, a set of rules to solve a problem.

▸ Every move is a deduction, where we use the rules to figure
out what must be true.

▸ Sudoku turns into a puzzle made of logical constraints

▸ Shows how math can model the way we think and solve
problems.

▸ The logic and methods we used apply to important concepts
and tools in computer science, science, and even everyday
reasoning.



Thank You

Questions?


