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The Dollar Game
Give it a try!
Example: (Level 1)● 1 player game

● Played on a graph
● On each turn, select a vertex 

that will give a dollar to all its 
neighboring vertices 

● We want to make all the 
vertices have a nonnegative 
amount of dollars

https://thedollargame.io/game/level/100/100/1
https://thedollargame.io/game/level/100/100/1


Chip-Firing

● Similar 1 player game
● On each turn, you select a vertex 

to give a chip to all neighboring 
vertices 

● Number of chips at each vertex 
must always be nonnegative

● Goal of the game: Find the 
stable configuration, such that 
you can no longer fire any 
vertex.
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Our Underlying Graph

● Perfect k-ary tree with 
a self-loop at the root

● Self-loop makes it so 
that every vertex has 
k+1 neighbors

● Any number of chips 
at the root



Past Research

● In 2023, Musiker and Nguyen found a 
formula to find the number of fires on 
an infinite binary tree with a 
self-loop at the root with               
chips at the root initially.

● In 2024, Inagaki, Khovanova, and 
Lou generalized this and found the 
number of fires on an infinite binary 
tree with any number of chips at the 
root initially.

Past researchers used the same underlying graph with more restrictions.
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Stable Configuration

● A stable configuration in the game of Chip Firing is a 
configuration of the graph such that none of the 
vertices can legally be fired.

● The graph to the right is in a stable configuration 
because every vertex has more connected neighbors 
than it has chips. Firing any vertex would result in a 
vertex with a negative number of chips.



Will our graph have a stable configuration?

● In 2019, Klivans showed that either a stable configuration can be achieved after a 
finite number of fires or a stable configuration cannot be achieved.

● In 1991, Björner, Lovász, and Shor, proved that if the number of chips is less than 
the number of edges, then the game is finite and will reach a stable configuration.

● In our case, since we have an infinite k-ary tree, the number of edges is infinite, 
and we have a finite number of chips at the root. Thus, the game is finite and it 
reaches a stable configuration.

● The stable configuration is unique.



The Stable Configuration of our Tree 

If we start with N chips at 
the root, where                       , 
then the vertices containing 
chips in the stable 
configuration form a perfect 
k-ary tree with height n-1. 
Furthermore, every vertex on 
the same layer has the same 
number of chips. 

0

0 00 0 00 0 00

0 0

21
For example, take 
this tree:



The Stable Configuration of our Tree 

The tree ends up having a 
stable configuration like this:

All numbers on each level 
are equal, forming a perfect 
ternary tree with 3 layers.

3

1 11 1 11 1 11

3 3

3



Reaching a Stable Configuration

We can use these four steps to go to the stable configuration. 
1. Fire the root repeatedly until it cannot fire anymore
2. Fire the root’s children and their subtrees in parallel
3. Whenever the k children of the root fire, fire the root
4. Repeat the second and third steps on subtrees until we reach the 

stable configuration



Achieving the Stable Configuration

0

0 00 0 00 0 00

0 0

21We will show the process 
that makes the previous 
tree obtain its stable 
configuration.
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1. Fire the root repeatedly 

until it cannot fire 
anymore.

2. Fire the root’s children and 
their subtrees in parallel.

3. Whenever the k children of 
the root fire, fire the root.

4. We repeat the second and 
third steps until we reach 
the stable configuration. 
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We have now 
reached the stable 
configuration! 



# of chips per layer in stable configuration

● Each vertex has between 1 and k chips
● Each vertex in the same layer has the same number of chips
● Very similar to base k
● In the example,                  =8, which is 022 in base 3, and the number of chips in each 

layer was 1, 3, 3, satisfying the proposition
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We let              be the number of chips on a vertex in layer i+1 in the stable configuration

The layer number of a vertex is one more than its distance to the root, in particular the layer 
number of the root is 1.

# of times each vertex fires



# of times each vertex fires example

● In the previous example of 21 chips at the root of a ternary tree, the 
root fires 7 times and each of its children fire once

● The formula gives the number of fires for layer 1 should be

● And the number of fires for layer 2 should be

As expected.



Total number of fires

● We have the recursive formula:

● Total number of fires is equal to the sum of 
number of root fires and the sum of the fires of 
each of the k subtrees 

● Each subtree behaves like the original tree
with        -1 chips
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Total number of fires
● For      in                                               ,

the same vertex for the tree fires the 
same number of times as the root 
will have 1 to    chips and the number 
of fires will stay the same.

● The table shows the total number of 
fires given      and    .



Difference table for total number of fires

On the right is a table of the difference 
between consecutive terms from the total 
number of fires table we showed before.



Tables for the unique values

● The table on the right shows the unique 
values from the previous table for 
consecutive differences between the 
number of total fires.

● Each of these sequences are in the OEIS. 
Notably, when         , the sequence are 
the Eulerian numbers. 

● All these sequences have the same 
recursive formula:

● In base 10, the numbers look like the 
numbers from 1 to     concatenated, but 
this pattern fails after the 9th term.
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Schizophrenic Numbers

● A schizophrenic number is an irrational number that has properties similar to 
rational numbers.

● This is described in László Tóth’s paper on schizophrenic numbers. 
● Taking the square root of numbers in our table results in schizophrenic Numbers.
● For example, consider                                         . Then, the square root of this is:

● There are large sequences of repeating digits, a characteristic of schizophrenic 
numbers.

● A comment on OEIS by Peter Bala claimed that the inverse of schizophrenic 
numbers also have patterns similar to schizophrenic numbers.



More examples of schizophrenic numbers

● When we go to larger terms we can see the large patterns of schizophrenic numbers.
● For example, when taking the square root of                   , the square root is:

● We can also see that the lengths of consecutive blocks of same digits are decreasing 
and after a while the digits seem to be random again.

● Taking the reciprocal of the square root of                   , we get the number:

● This also has similar properties as schizophrenic numbers, which gives motivation for 
Peter Bala’s comment.



Schizophrenic numbers in different bases

● Note when we take the square root of 
the terms in the other rows of our table 
(i.e. when           ), we do not get 
schizophrenic numbers, but when we 
put them in base k, we get schizophrenic 
numbers.

● László Tóth’s paper showed this table of 
taking the square root of the numbers 
on the fifth row in our unique values 
table and putting them in base 5. Here,
        is           in our tables.
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Any Questions?



Thank you!


