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Miquel’s theorem



Chasles’s theorem



Reflection

These theorems all generalize each other.
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Cubics

Lines are defined by linear equations.

ax + by + c = 0

Conics are defined by quadratic equations.

ax2 + bxy + cy2 + dx + ey + f = 0

What happens if we consider cubic equations?
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The Euler pencil is a family of important cubics in a triangle.

The Liang-Zelich theorem gives four equivalent descriptions of
these cubics.
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The Neuberg cubic
Do these lines always concur?

No

If not, when do they concur?

When P lies on the Neuberg cubic
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Research
What is the locus of the concurrence point?

It’s also a cubic!
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Is it associative? Does A+ (B + C ) = (A+ B) + C hold?
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Invariance

This contrived operation has a very special property.

Let f be any reasonable geometric contruction.
Then f almost respects addition:

f (P + Q) = f (P) + f (Q) + const.

This theorem goes beyond geometry; it belongs to algebraic
geometry.
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The locus
Recall that we have a map from a cubic to another curve.

We can show that it is bijective and the image is a cubic.
Now the fun begins!
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The locus

Using invariance, we can obtain the following result.

Theorem

The image of an isopivotal cubic in △ABC with pivot P is an
isopivotal cubic in △f (A)f (B)f (C ) with pivot f (P).

So all that remains is to find the isopivot.

Lemma

If X , Y , and Z are collinear points on the image, then
f −1(X ) + f −1(Y ) + f −1(Z ) is constant.

Theorem (L., 2025)

The image of the Euler cubic with pivot P is the isopivotal cubic in
△ABC with pivot f (P) and the orthocenter as isopivot.
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Other results

We also found new proofs for parts of the Liang-Zelich theorem.

▶ Part 1: First proven in (Pinkernell 1990) using barycentric
coordinates
Proved in (Liang and Zelich 2012) synthetically
Proved in (L. 2025) using algebraic geometry

▶ Part 2: First proved in (Liang and Zelich 2012) synthetically
Proved in (L. 2025) using algebraic geometry

▶ Part 3: First proved in (Liang and Zelich 2012) synthetically
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