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Introduction

A dynamical system refers to any system that is changing over time.

The study of dynamical systems possesses significant applications in
finance, through interest accumulation over time, and ecology through the
iteration of the logistic function to model the evolution of a population
over time.

Figure: Double Pendulum is a Dynamical System
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Iterating Functions

Definition

The process of iterating functions consists of pushing an input into a function,
returning an output, and computing the output as the new input to observe the
function’s behavior in relation to its prior value.

x0 = 0

f (x0) = x1

f (x1) = x2 = f (f (x0))

f (x2) = x3 = f (f (f (x0)))
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Attracting, Repelling, and Neutral Fixed Points

Definition

A point x ∈ R is a fixed point of the function f if:

f (x) = x

The behavior of the iterative sequence {xn} near x depends on the derivative
f ′(x):

Attracting: If |f ′(x)| < 1, then points near x converge to x . x is called a
locally attracting fixed point.

Repelling:
If |f ′(x)| > 1, then points near x diverge away from x . x is called a locally
repelling fixed point.

Neutral: If |f ′(x)| = 1, then the fixed point is neutral.
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What is an Orbit?

Mathematically, for a function f : X → X , the orbit of a point x0 ∈ X is the
set:

A(x0) = {x0, f (x0), f (f (x0)), f 3(x0), . . . }

Through the iteration of the function, the behavior of the function can be
analyzed to make predictions.
Let’s look at these definitions in action!

Example

We will investigate the basic function f (x) = x2. The beauty in chaos
showcases how very small changes in the initial conditions (x0) drastically alters
the behavior of the function.

Attracting Point

Starting at x0 = 0.99
0.99 → 0.9801 → 0.96 → 0.92... → 0

Repelling Point

Starting at x0 = 1.01
1.01 → 1.0201 → 1.04 → 1.08... → ∞
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Graphical Interpretation of Iteration

Through the iteration of the function and our understanding of the point’s
behavior, we are able to make predictions about the location of the point
after r iterations.

Figure: The red line showcases the behavior of the attracting point while the yellow
shows the behavior of the repelling point.
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The Quadratic Family

Definition (Qc)

The Quadratic Family or Qc is a set of functions satisfying x2 + c, where c is
any real number.

f ′(x) = 2x so, if x ∈
(
− 1

2
, 1
2

)
it is attracting since then f ′(x) < 1.

However if x ∈
(
−∞,− 1

2

)
∪
(
1
2
,∞

)
it is repelling since f ′(x) > 1.

Graph of x2

We can color our graph so that fixed points in
the green are attracting and fixed points in the
red are repelling.

Furthermore, as discussed previously we can
graph x = y to determine the fixed points.

Fixed points in the red are repelling

Fixed points in the green are attracting
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The Quadratic Family
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https://youtu.be/NMukGJS4tSo


The Quadratic Family

Fixed Points Behavior Summary

c > 1
4

no fixed points
c = 1

4
one neutral fixed point

− 3
4
< c < 1

4
p+ is repelling; p− is attracting

c = − 3
4

p+ is repelling; p− is neutral
c < − 3

4
two repelling fixed points

Now that we have an understanding of what happens to the fixed points when
c > − 3

4
, we can investigate what happens for even smaller values of c.
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Period 2 Cycles

Definition (Period 2 Cycle)

A period 2 cycle is defined by an input that returns to itself after 2 iterations.
Namely, that given a function f (x) and an input x that f (f (x)) = x .

f (x) = x2 − 1

f (−1) = 0
f (0) = −1
f (f (−1)) = 0 and f (f (0)) = −1

Just like fixed points, cycles can also be attracting, repelling or neutral.
Namely, the 2 cycle for x2 − 1 is attracting. We can see this by just plugging in
numbers close to 0 or −1.

Iterations of f(x) for x=0.5

0.5 → −0.75 → −0.4375 → −0.8086 → −0.3452 → · · · → −0.99999 →
0.00001 → −1 → 0 → −1 → 0 → · · · .
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A Chaotic Function

Definition (Chaos)

One of the criteria for a chaotic function is being sensitive to initial conditions.
This means that a small change to the initial input of a function will produce a
drastic change in the output.

x = 0.25 and x = 0.251 for f (x) = x2 − 2
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A Chaotic Function

x = 1.9999 vs. x = 2.0001 for f (x) = x2 − 2
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Complex Numbers

Definition

A complex number is a number z = a+ bi where a, b ∈ R and i is defined by
i2 = −1.

The complex plane (https://www.houseofmath.com/encyclopedia/numbers-and-
quantities/numbers/complex-numbers/introduction/what-does-the-complex-plane-
mean)
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The Filled Julia Set

Definition

Consider some complex number w and some complex function f (z) = z2 + c.
We say that the orbit of w on f remains bounded if there exists some M such
that f n(w) < M for all n.

Definition

The filled Julia Set for some f (z) = z2 + c is defined as the set of all complex
numbers that remain bounded when iterated by f . It is denoted by Kc .

Properties of Kc

Kc is connected if the orbit of 0 is bounded and it is totally disconnected if
not.

Kc is quasi self-similar, meaning slightly modified copies of the set are
found in other parts of the set, just scaled and shifted.
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The Filled Julia Set Visualized (Connected)

The filled Julia Set for f (z) = z2 − 1
(https://www.researchgate.net/figure/The-filled-Julia-set-of-f-z-z-2-1 fig1 311926148)
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The Filled Julia Set Visualized (Totally disconnected)

The filled Julia Set for f (z) = z2 − 0.75 + 0.25i
(https://e.math.cornell.edu/people/belk/dynamicalsystems/NotesJuliaMandelbrot.pdf)
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The Julia Set

Definition

The Julia Set is the boundary of the filled Julia set. It is denoted by Jc .

The Julia set for f (z) = z2 − 1 (https://www.researchgate.net/figure/The-
Julia-set-of-the-polynomial-z-2-1 fig3 2110181)
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The Mandelbrot Set

Definition

The Mandelbrot set M is the set containing all values of c for which Kc is
connected.

Visualization of the Mandelbrot Set (https://paulbourke.net/fractals/mandelbrot/)
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Components of the Mandelbrot Set

Visualization of the Mandelbrot Set

Components of the Mandelbrot Set

The largest section of the set is the main cardioid

The circle to the right of the main cardioid is the period 2 bulb
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The Main Cardioid

Definition

The main cardioid contains all values of c that give z2 + c an attracting fixed
point. Additionally, the boundary of the region are the values of c that give
z2 + c a neutral fixed point.

Computing the region

Our definitions of fixed points and attraction can be used to compute the
region as |1±

√
1− 4c| < 1. This inequality represents the main cardioid.
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The Period 2 Bulb

Definition

The period 2 bulb is the set of all values of c which give f an attracting period
2 cycle.

Computing the region

The region can be computed similarly to yield |c + 1| < 1
4
, a circle centered at

−1 with radius 1
4
.
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Some Pretty Julia Sets

https://www.mcgoodwin.net/julia/juliajewels.html,
https://mandelics.com/photo/realtime-general-julia.html

c=0.687 + 0.312i

c=-0.6078 + 0.438i
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Any questions?
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