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Groups? Triangles? 
Modular Arithmetic? 

A friendly roadmap!

Modular Arithmetic

Groups

Triangles

More Groups



What is Modular Arithmetic?

Two integers  (b and r) being equivalent, or 
congruent, (mod m) means that the 
difference between b and r is divisible by m. 
In other words, there exists some integer x 
for which b – r = mx.



Properties of Modular Arithmetic

● Addition

● Multiplication

 

 

If                                           and                                       ,  then:



What is a Group?

A group is a set of elements (elt) with an operation (ex: ⊕) that satisfies 
four axioms:

1. Closure: Combining any two elements using ⊕ gives another 
element in the set

2. Associativity: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) for any elts. a, b and c

3. Identity: There’s an element e such that a ⊕ e = a for any elt. a

4. Inverses: Every element a has an inverse (often denoted a-1) for 
which a ⊕ a-1 = e.



The Integer Group

1. Closure: Adding to integers → another integer

2. Associativity:                                                     always works with any 
integers         , and 

3. Identity:     is an integer, and                          for any integer

4. Inverses: For every integer    , it has an inverse           → 

Set of integers closed under addition



Modular Arithmetic and Groups

Operation: addition modulo 6

= {0, 1, 2, 3, 4, 5}

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Identity

Elts. combined with identity

Modular boundary



Modular Arithmetic and Groups

Coprime: Two numbers are coprime if and only if the largest integer 
they are both divisible by is 1. 

✕ 1 5

1 1 5

5 5 1

Identity

Elts. combined with identity



Groups? What 
else can you do 
with them?

Group Symmetries!

● Solve algebraic puzzles 
(rubik's cube)

● Analyze structure 
(different types of groups)

They are similar in many ways 
and different many others. 



This is a Triangle.

1

2 3



More Triangles!
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Are These The Same? 



No!



But how do we know this? How can we 
tell if two shapes are the ‘same’ 

polygon?



Same Triangles?
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Same Triangles?— yes!
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Applying Rigor…

1

2 3

     defines a flip along an particular 
axis (independent)

      defines a rotation 120 (    ) or 
240 (      ) counterclockwise



Group Symmetries Satisfy Similar Axioms 

Closure: Can’t find an additional element by performing known rotations or flip.

Identity: Rotating 360 or flipping on the same axis twice returns to the “starting 
place”; 

Associativity: 

In other words, when we apply the following, we get the same triangle!

  



A Computational Calculation

We didn’t have a commutation axiom, but we can 
create a substitute: a commutation relation!
This tells us how 𝑓 behaves from the perspective of 
someone who has rotated the world by 𝑟.
We can begin with:

We’ve found our commutation relation: 
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