Donuts in Different Dimensions

By: Salma Jama and Fantice Lin

TABLE OF CONTENTS

What *is* a dimension?

2 dimensions 3 dimensions

Donuts to explore math

What *is* a dimension?

★ We often hear about 2D and 3D animation

But what does this really mean?

What's the difference?

1.2 A dimension is just a direction you can move.

Source: https://mammothmemory.net/maths/graphs/graphs/z-axis.html

The more Dimensions, the more Directions

Sources: https://storymaps.arcgis.com/stories/64874fecff904d67baed476fcf8755d1, https://johncarlosbaez.wordpress.com/2013/06/04/symmetry-and-the-fourth-dimension-part-10.

★ We won't be exploring donuts in **OD** and **1D**

WHY NOT?

Shapes in OD and 1D look something like this, which we'd consider to be "trivial"

1D

Circle, you can move around it,

but only in one direction

2D Donuts

You can't have a flat donut, it would just be a cookie.

THE TORUS

Source http://www.giftofmath.com/pacman.html

Source http://www.rwgrayprojects.com/Lynn/torusm01/tm01.html

THE TORUS

2D Surface

Source: https://commons.wikimedia.org/wiki/File:Tesseract_torus.png

Solid Torus

MANIFOLDS

- ★ A manifold is a shape that looks flat when you zoom in close enough.
- They can exist in several dimensions.
 - The **glaze** on a donut, excluding the donut itself, is a **2-manifold**.
 - An n-dimensional manifold looks like n-dimensional space when you zoom in.
 - Ex. 2D manifold looks like 2D space

The earth is *not* flat, it just <u>feels</u> that way.

2-MANIFOLDS

★ 2-manifolds are also called surfaces.

The glaze on a donut is a 2-manifold

- They don't have boundaries (glaze wraps around the **entire** donut)
 - Every point on the glaze has a **neighborhood** around it.

3D Donuts

3-MANIFOLDS

- ★ A 3-manifold looks like regular 3D space when you zoom in.
- If you lived inside it, everything would feel normal: you could move up, down, left, right, forward, and backward.

Source: <u>https://en.wikipedia.org/wiki/Torus#/media/File:Torus_cycles.svg</u>

ISOTOPY

★ Isotopy is a way of transforming one shape into another without tearing or gluing parts together.

 A cube deforming into a sphere
 A coffee

 Source: https://www.artstation.com/blogs/briz/oKpM/perfectly-remapping-a-cube-to-a-sphere-houdini
 Source: bit S

A coffee mug deforming into a solid torus Source: https://upload.wikimedia.org/wikipedia/commons/2/26/Mug and Torus morph.gif

HOMEOMORPHISM

- ★ Around any point *n*, there's a neighborhood of points that can be mapped continuously and reversibly to flat n-dimensional space. This mapping is called a homeomorphism.
- → Example (2D): A small patch on a 2-manifold maps to a flat
 2D plane (like a sheet of paper).
- → Example (3D): A chunk inside a 3-manifold maps to regular
 3D space (like the space around you).

Source: <u>https://www.britannica.com/</u> science/topology/Homeomorphism

ISOTOPY VS. HOMEOMORPHISM

- → Homeomorphism: Two shapes made of flexible clay, using math you can try to figure out whether you *could* reshape one into the other.
- → **Isotopy**: You actually mold one into the other *with your hands*, step by step, without tearing or fusing.

All isotopic shapes are homeomorphic. Not all homeomorphic shapes are isotopic.

Why do we care?

4.1 DONUTS TO UNDERSTAND MATH

→ Everything we've explored so far are all fundamental parts of a branch of math called Topology.

Topology is the study of the properties of shapes and spaces that remain unchanged under continuous deformations, such as stretching or bending, but not tearing or cutting.

4.2 TOPOLOGY IN THE WORLD

- → DNA: understand how DNA strands twist and knot
 - Crucial in biology for processes like replication and repair.

→ **Rubik's Cube**: Help in analyzing the cube's rotational symmetries and solving algorithms.

