Polyhedra and Euler Characteristic

Brian Huang and David Moon Mentor: Luis Modes

MIT PRIMES Circle

May 18, 2025

Brian Huang and David Moon Polyhedra and Euler Characteristic

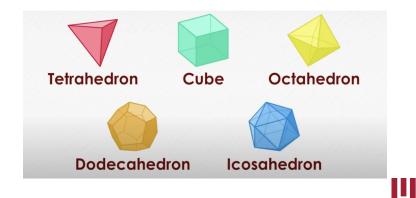
1 Polyhedra and Euler's formula

2 Cellular decomposition and Euler's characteristic

3 Real projective plane \mathbb{RP}^2

A *polyhedron* is a convex 2-dimensional shape living in 3 dimensions consisting of vertices, edges, and faces.

A *polyhedron* is a convex 2-dimensional shape living in 3 dimensions consisting of vertices, edges, and faces.



Euler's Formula

Euler's formula

For a polyhedron with V vertices, E edges, and F faces, we have that

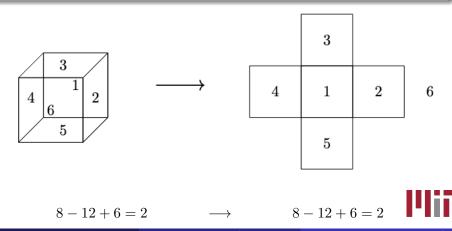
V - E + F = 2.

Euler's Formula

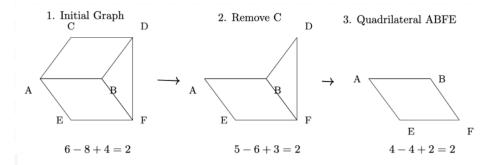
Euler's formula

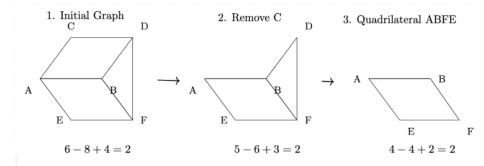
For a polyhedron with V vertices, E edges, and F faces, we have that

V - E + F = 2.



Brian Huang and David Moon Polyhedra and Euler Characteristic





Question

Why is Euler's formula the same for all polyhedra?

Brian Huang and David Moon Polyhedra and Euler Characteristic

Definition: homeomorphism

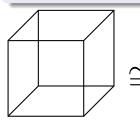
Two spaces A and B are homeomorphic if there exists a continuous function $f: A \to B$ with a continuous inverse $f^{-1}: B \to A$. We say that f is a homeomorphism.

Definition: homeomorphism

Two spaces A and B are homeomorphic if there exists a continuous function $f: A \to B$ with a continuous inverse $f^{-1}: B \to A$. We say that f is a homeomorphism.

Example 1: cube and tetrahedron

A tetrahedron is homeomorphic to a cube.



Cube

Tetrahedron

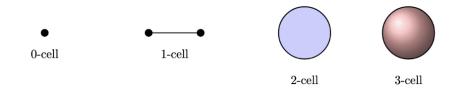
Example 2: torus

A torus is homeomorphic to a coffee mug.

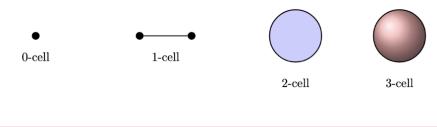
Figure 1: Wikipedia, Mug and Torus morph

The *cellular decomposition* of a topological space X is a space homeomorphic to X consisting of several balls, which we call *cells*, glued together. An *n*-dimensional cell is called an *n*-*cell*.

The *cellular decomposition* of a topological space X is a space homeomorphic to X consisting of several balls, which we call *cells*, glued together. An *n*-dimensional cell is called an *n*-*cell*.



The *cellular decomposition* of a topological space X is a space homeomorphic to X consisting of several balls, which we call *cells*, glued together. An *n*-dimensional cell is called an *n*-*cell*.



Fact

All reasonable topological spaces admit a cellular decomposition.

Brian Huang and David Moon Polyhedra and Euler Characteristic

Cellular Decomposition: Example

Example: sphere

We can construct a cellular decomposition of the 2-sphere with 0-cells, 1-cells, and 2-cells.

Cell Type	Quantity	Role in Construction
0-cell	1	Base point (start of attachment)
1-cell	1	Connects and extends from 0-cell
2-cell	2	Forms hemispheres (e.g., upper and lower disks)

Cellular Decomposition: Example

Example: sphere

We can construct a cellular decomposition of the 2-sphere with 0-cells, 1-cells, and 2-cells.

Cell Type	Quantity	Role in Construction
0-cell	1	Base point (start of attachment)
1-cell	1	Connects and extends from 0-cell
2-cell	2	Forms hemispheres (e.g., upper and lower disks)

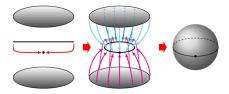


Figure 2: Picture from Cohomology of Differential Forms and Feynman diagrams

Brian Huang and David Moon Polyhedra and Euler Characteristic

Definition: Euler characteristic

Given a cellular decomposition for a space X, the *Euler characteristic* of X, denoted by $\chi(X)$, is defined as

 $\chi(X) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) - \dots \pm (\# \text{ of } n\text{-cells}).$

Definition: Euler characteristic

Given a cellular decomposition for a space X, the *Euler characteristic* of X, denoted by $\chi(X)$, is defined as

 $\chi(X) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) - \dots \pm (\# \text{ of } n\text{-cells}).$

Fact

- Two homeomorphic spaces have the same Euler characteristic.
- In particular, two distinct cellular decompositions for the same space X give us the same value for $\chi(X)$.

Example: 2-sphere S

We can construct a cellular decomposition of the 2-sphere with 0-cells, 1-cells, and 2-cells.

Cell Type	Quantity	Role in Construction
0-cell	1	Base point (start of attachment)
1-cell	1	Connects and extends from 0-cell
2-cell	2	Forms hemispheres (e.g., upper and lower disks)

Example: 2-sphere S

We can construct a cellular decomposition of the 2-sphere with 0-cells, 1-cells, and 2-cells.

Cell Type	$\mathbf{Quantity}$	Role in Construction
0-cell	1	Base point (start of attachment)
1-cell	1	Connects and extends from 0-cell
2-cell	2	Forms hemispheres (e.g., upper and lower disks)

Euler characteristic of S

 $\chi(S) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) = 1 - 1 + 2 = 2.$

Revisiting Euler's Formula

Question

Why is Euler's formula the same for all polyhedra?

Revisiting Euler's Formula

Question

Why is Euler's formula the same for all polyhedra?

Answer

All polyhedra are homeomorphic to a sphere, which has Euler characteristic 2:

$$V - E + F = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) = \chi(S) = 2$$

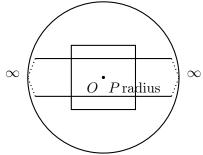
Brian Huang and David Moon Polyhedra and Euler Characteristic

12/17

Real Projective Plane \mathbb{RP}^2

1. To create \mathbb{RP}^2 , we start with a set of parallel lines. We can claim that at ∞ , they converge.

2. Then, we can make many more sets of parallel lines until their convergences create a circle with radius ∞



3. Finally, we can connect or glue all opposite convergences to finally create \mathbb{RP}^2 , which unfortunately cannot be visualized in 3 dimensions. It is a 2-dimensional object living in at least 4 dimensions.

Euler's Characteristic of \mathbb{RP}^2

To find the Euler characteristic, we can use cellular decomposition. We will not be using anything above 2-cells to decompose \mathbb{RP}^2 , so we will disregard all after 2-cells. We get

 $\chi(\mathbb{RP}^2) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}).$

As we stated in the creation of our \mathbb{RP}^2 plane, we had a circle with radius infinity at one point. Because Euler's characteristics are consistent across all homeomorphic objects, we can reduce that circle to a limited square that we will modify. We will fold it, but opposite sides will be oppositely aligned.

14/17

When we fold them with the correct alignments, we get two 0-cells (vertices), two 1-cells (edges), and one 2-cell (the face). Therefore, from our prior equation, we get the following.

When we fold them with the correct alignments, we get two 0-cells (vertices), two 1-cells (edges), and one 2-cell (the face). Therefore, from our prior equation, we get the following.

Euler characteristic of \mathbb{RP}^2

 $\chi(\mathbb{RP}^2) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) = 2 - 2 + 1 = 1.$

15/17

When we fold them with the correct alignments, we get two 0-cells (vertices), two 1-cells (edges), and one 2-cell (the face). Therefore, from our prior equation, we get the following.

Euler characteristic of \mathbb{RP}^2

 $\chi(\mathbb{RP}^2) = (\# \text{ of } 0\text{-cells}) - (\# \text{ of } 1\text{-cells}) + (\# \text{ of } 2\text{-cells}) = 2 - 2 + 1 = 1.$

Remarks

- We have computed $\chi(S) = 2$ and $\chi(\mathbb{RP}^2) = 1$, where S is the sphere.
- As an exercise, you can compute that $\chi(T) = 0$, where T is the torus.
- Hence, these three 2-dimensional surfaces are not homeomorphic.

- Covered Euler's formula and showed why it applies to all polyhedra
- Defined and explored homeomorphisms
- Used cellular decomposition to define and compute the Euler characteristic
- \bullet Constructed \mathbb{RP}^2 and computed its Euler characteristic

- Thinking Geometrically: A Survey of Geometries (Mathematical Association of America Textbooks) by Thomas Q. Sibley
- Wikipedia, Mug and Torus morph
- Cohomology of Differential Forms and Feynman diagrams, by Sergio L. Cacciatori, Maria Conti, and Simone Trevisan

17/17