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Abstract

In a digraph, a feedback arc set is a set of edges whose removal eliminates every directed
cycle, and the minimum size of such a set is denoted by β(G). A digraph is r-free if it contains
no directed cycles of length at most r. In this paper, we investigate the minimum feedback
arc set in digraphs that are (r − 1)-free. We prove that β(G) ≤ 1 if r > ⌊ 2n

3
⌋, and β(G) ≤ 2

if r > n
2

with a forbidden structure. We also present an efficient linear-time algorithm to
identify the minimum feedback arc set when β(G) = 1. For tournaments, we further refine the
extremal parameter invk(n). It is the minimum number of inversions required to transform
an n-vertex tournament into an acyclic tournament, where each step involves reversing all
edges within a subset of at most k vertices. We improve the known upper bound for inv4(n)
using techniques involving Ramsey numbers with monochromatic subgraph structures, and
the bound for invk(n) with two different approaches.

1 Introduction

In this paper, every directed graph (abbreviated as digraph) is oriented without loops, parallel, or
antiparallel edges. In a digraph G, a directed cycle C consists of vertices V = {v1, v2, . . . , v|C|}
such that (vi, vi+1) are edges for all i < |C|, and (v|C|, v1) is also an edge. A digraph is acyclic if
it has no directed cycles. A tournament is a directed graph obtained by assigning a direction to
every edge of a complete graph. In this paper, we study extremal problems involving edge removal
or reversal to make a graph acyclic.

Definition 1.1. Given a digraph G = (V,E), a feedback arc set is a set of edges S ⊂ E where
G′ = (V,E \ S) is acyclic. A minimum feedback arc set is a feedback arc set of minimum size. Let
β(G) denote the size of the minimum feedback arc set of G.

Definition 1.2. A digraph G is r-free if it does not contain any directed cycle C where |C| ≤ r.

Directed graphs provide a way to model systems whose elements have one-way dependencies,
such as priority orderings or causal relationships. In real-world applications, cycles typically rep-
resent inter-dependencies between elements, significantly impacting the underlying structure and
making the study of cyclic complexity an important combinatorial problem. A standard measure
for this complexity is the size of the minimum feedback arc set, denoted as β(G), which indicates
how far the digraph is from being acyclic, thus quantifying its cyclic complexity. The minimum
feedback arc sets were first studied by Slater [18] on statistically motivated feedback arc mini-
mization for tournaments. Feedback arc sets have applications in areas such as circuit retiming,
tournament ranking, precedence-constrained scheduling, and Bayesian-network learning [13, 17, 8].
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Definition 1.3. Given a digraph G = (V,E) with vertices v1, v2, . . . , vn, an edge vi → vj is a
forward edge if i < j, otherwise it is a backward edge.

For all digraphs G with m edges, β(G) ≤ m
2 can be obtained by splitting the edges into forward

and backward edges. Removing the smaller of the two sets creates an acyclic digraph, proving
β(G) ≤ m

2 . To further improve the bound, Poljak, Rödl, and Spencer [14] show β(T ) ≤ m
2 − cm

3
4

for a constant c > 0 on a tournament T . Berger and Shor [2] provide a more general proof for all
digraphs G with m edges and ∆ being the maximum degree, where β(G) ≤ m

2 − c m√
∆
. Despite

progress made for digraphs that exclude short directed cycles [5, 3], optimal bounds for β(G) when
G is (r− 1)-free remain open. This problem space includes a more general conjecture by Sullivan,
who proposed that all r-free digraphs satisfy

β(G) ≤ 2γ(G)

(r + 1)(r − 2)
[19].

More recently, Fox, Himwich, and Mani [6] significantly refined this result for digraphs forbidding
certain fixed bipartite subgraphs, demonstrating bounds approaching β(G) = m

2 − Ω(mr) for all
rational exponents r between 3

4 and 1. They also conjectured that β(G) ≤ 1 when a digraph G
with n vertices is (r − 1)-free and r > 2n

3 . We prove this conjecture and show that the bound is
tight. We also extend the proof to find the bound for β(G) ≤ 2 with a forbidden structure.

Definition 1.4. For directed cycle C and path P = (c1, c2) ∈ C, if there exists a path c1 → v → c2,
then v /∈ C is a bypass vertex of P .

Theorem 1.5. Let G be an (r − 1)-free digraph with n vertices. If r > ⌊ 2n3 ⌋, then β(G) ≤ 1.

Theorem 1.6. Let the structure X be a subgraph with two paths P1, P2 ∈ C sharing a bypass
vertex, and V (P1) ∩ V (P2) = ∅, then any X-free, (r − 1)-free digraph G with r > n

2 satisfies
β(G) ≤ 2.

Computing a minimum feedback arc set in a digraph G = (V,E) is an NP-hard problem [11].
However, with the restriction of β(G) = 1 and G being strongly connected, the complexity can
be significantly reduced. A straightforward approach involves removing edges one by one and
determining whether the resulting subgraph contains a directed cycle. Detecting directed cycles in
a digraph is efficiently achieved by applying depth-first search (DFS) from a vertex v. If the search
returns to v, then there exists a directed cycle in the graph. Thus, the overall time complexity is
O(|V | · |E|). In this work, we present a linear-time algorithm, running in O(|V |+ |E|), to identify
the minimum feedback arc set when β(G) = 1.

Definition 1.7. Inversion of a tournament T is the operation of reversing the direction of all
edges whose endpoints are in a specified subset of vertices.

Definition 1.8. A tournament T is transitive if for every three vertices u, v, w ∈ T , whenever
there are directed edges u → v and v → w, there is also a directed edge u → w. Equivalently, a
transitive tournament has no directed cycle.

Let T be an n-vertex tournament, where invk(n) is the minimum length of a sequence of in-
versions, each involving at most k vertices, required to transform T into a transitive tournament.
Inversion-number problems for small parameters k (3 ≤ k ≤ n

2 ) remain poorly understood, espe-
cially the exact asymptotic behavior of invk(n) for fixed small k [21]. Yuster [21] provides bounds
for invk(n), stating that for all k ≥ 3,

(1 + o(1))
invk(n)

n2
∈

[
1

2k(k − 1)
+ δk,

1

2⌊k2

2 ⌋
− ϵk

]
,
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where δk and ϵk are positive constants. Thus, for k = 4, Yuster’s upper bound is

1

2⌊ 422 ⌋
− ϵ4 =

1

2 · 8
− ϵ4 =

1

16
− ϵ4,

where ϵ4 > 0 is a positive constant, indicating these bounds could be improved by finding more
precise values for δk and ϵk. Yuster’s arguments for random tournaments utilize results on edge-
disjoint subgraph packings, such as those by Frankl and Rödl [7]. Similarly, advancements in
bounding monochromatic triangle packings, like those from Gruslys and Letzter [9], are highly
relevant to these coloring-based inversion problems. We provide a tighter upper bound for inv4(n)
using Ramsey numbers [16, 15].

Theorem 1.9. Let G = (V,E) be an n-vertex tournament. Then

inv4(n) ≤
85n2

1392
+ o(n2).

With a similar method, we can generalize the bound for invk(n). Let k be the maximum
number of vertices involved in each inversion operation. The parameter x represents the number
of monochromatic cliques Kk identified iteratively through the Ramsey-theoretic construction in
Theorem 1.10.

Theorem 1.10. Let G = (V,E) be an n-vertex tournament. For all positive integers k and x,

invk(n) ≤
n2
(
R(k) + (x− 1)(k − 1)

)2 − xn2(k2 − k) + 4xn2 ⌊k
2

4 ⌋
(4
(
R(k) + (x− 1)(k − 1)

)2 − 4R(k)− 4(x− 1)(k − 1)) ⌊k2

4 ⌋
+ o

(
n2
)
.

To achieve the tightest possible bound, the value of x is chosen carefully based on k and the
associated Ramsey number R(k).

Another bound without using Ramsey numbers, and instead only relying on n and k is derived
as

Theorem 1.11. Let G = (V,E) be an n-vertex tournament. The upper bound of

invk(n) ≤
n2

4⌊k2

4 ⌋
− 4−(1−

√
2

2 k)−o(k).

The remainder of the paper is organized as follows. Section 2 provides proofs of Theorem 1.5
and Theorem 1.6. Section 3 shows the detailed linear-time algorithm for finding the minimum
feedback arc set when β(G) = 1. The proof of Theorem 1.9, Theorem 1.10, and Theorem 1.11
appears in Section 4.

2 Feedback Arc Set Bounds

Definition 2.1. The inner vertices of a path P are the vertices on P , excluding its two endpoints.

Definition 2.2. Given a directed cycle C and a path P ⊂ C, a deviate path P ′ for P is a path
that shares the same starting and ending vertex as P , with none of its inner vertices on C. A set
of paths is considered a set of disjoint deviate paths if none of a path’s inner vertices belong to any
other deviate path in the set.

Definition 2.3. In a digraph G = (V,E), an edge e can be safely removed if G′ = (V,E \ {e})
has at least one directed cycle. A vertex v can be safely removed if removing all edges incident to
v leaves at least one directed cycle in G. A vertex or edge is safe if it can be safely removed.
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2.1 Proof of Theorem 1.5

In this section, we study how forbidding short directed cycles affects the size of the minimum
feedback arc set of graphs. We prove Theorem 1.5, which claims any n-vertex digraph with no
directed cycle of length at most ⌊ 2n3 ⌋ has an edge whose removal breaks every directed cycle in
the graph. We prove the theorem by finding the number of vertices that are not on the smallest
directed cycle C required to construct alternative paths that bypass all edges in C. We then show
that, given the constraints of the shortest cycles and the total number of vertices, at least one edge
in C cannot be bypassed.

Lemma 2.4. In a digraph G, let C be the shortest directed cycle in G. Suppose path P ⊂ C has a
disjoint deviate path P ′, and let d denote the number of inner vertices of P ′. Then, at most d+ 1
edges on P are safe.

Proof. Since C is the shortest directed cycle, it follows that |V (P ′)| ≥ |V (P )|. Otherwise, replacing
P with path P ′ would yield a directed cycle shorter than C, contradicting the minimality of C.
All edges on P are safe since we can remove any of them and still have a directed cycle intact
through P ′. Since |V (P ′)| ≥ |V (P )|, with the d inner vertices of P ′, there are at most d + 1 safe
edges on P .

Proof of Theorem 1.5. Let C be one of the shortest cycles in a digraph G = (V,E) where |V | = n
vertices. Since G is (r − 1)-free with r ≥ ⌊ 2n3 ⌋+ 1, the number of vertices in C is |C| ≥

⌊
2n
3

⌋
+ 1.

If there is another directed cycle C ′, then the number of vertices shared by C and C ′ is

|C|+ |C ′| − |G| ≥
(⌊

2n

3

⌋
+ 1

)
+

(⌊
2n

3

⌋
+ 1

)
− n > 1.

At least two vertices are shared by C and C ′. We note that β(G) ≤ 1 is equivalent to the statement
that not all edges can be safely removed, as breaking an edge that cannot be safely removed will
remove all cycles.

Let U = G− V (C), and define D as the set of all existing deviate paths for paths on C.
Suppose two deviate paths P ′, Q′ ∈ D intersect at some vertex vu ∈ U . Given the set of four

endpoints in P ′ and Q′, the two starting vertices are adjacent within the set of endpoints, and the
two ending vertices are adjacent in the set of endpoints. We show this by contradiction. If the
two starting vertices are not adjacent within the set of endpoints, then we can label the endpoints
v1, v2, v3, and v4 in cyclic order, where v1 and v3 are starting vertices, and v2 and v4 are ending
vertices. Let vu be the vertex that the deviate paths share. There must exist paths from v1 and
v3 to vu, and from vu to v2 and v4. This implies the existence of two deviate paths, one from v1 to
v4, and one from v3 to v2. With these two paths, each vertex appears at least once, with v2 and
v3 appearing twice. Hence, the total length of the paths is at least |C|+ 2, so at least one of the

paths has length at least |C|
2 + 1. However, this would require at least |C|

2 vertices from U , which

contradicts the fact that |U | < |C|
2 . Thus, we can conclude that any two deviate paths must have

their starting vertices as well as ending vertices adjacent in the cyclic order of the endpoints.
Since all pairs of deviate paths have the starting points adjacent within the set of endpoints,

for any two deviate paths that go through the same vertex vu ∈ U , let the endpoints be v1, v2, v3,
and v4 in cyclic order such that v1 and v2 are starting vertices, and v3 and v4 are ending vertices.
Let vu be the vertex that the two deviate paths share. We can always simplify both deviate paths
into a single deviate path without losing any safe edges by replacing the initial deviate paths with
v1 → vu → v4. This deviate path encompasses the same safe edges as the original paths. Iteratively
applying this simplification to all intersecting pairs yields a set of deviate paths that are pairwise
disjoint within U .
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By Lemma 2.4, the ratio of the number of the inner vertices on P ′ to the safe edges on P is
d

d+1 . For all d ≥ 1, we have d
d+1 ≥

1
2 . Thus, each vertex on a disjoint deviate path in U allows us

to safely remove at most two edges on C. Since |C| ≥
⌊
2n
3

⌋
+ 1,

|U | = |G| − |C| ≤ n−
(⌊

2n

3

⌋
+ 1

)
=
⌈n
3

⌉
− 1.

Thus there are at most 2 · |U | = 2 ·
(⌈

n
3

⌉
− 1
)
safe edges on C. However, if two paths on C overlap

with shared edges, their deviate paths will both identify the shared edges as safe edges, causing
double-counting. This reduces the number of distinct safe edges.

Let {S1, S2, S3, . . . , Sz} be the set of safe edges identified by all the disjoint deviate paths in
D, where z = |D|. The number of safe edges for G without double-counting is

Sall = |S1 ∪ S2 ∪ S3 ∪ . . . ∪ Sz| ≤ |S1|+ |S2|+ |S3|+ . . .+ |Sz| ≤ 2 ·
⌈n
3

⌉
− 2.

For all n > 3, since the directed cycle size

|C| ≥
⌊
2n

3

⌋
+ 1 > 2 ·

⌈n
3

⌉
− 2 ≥ Sall,

there exists at least one edge on C that cannot be safely removed, indicating β(G) ≤ 1.

Remark 2.5. Theorem 1.5 is tight as realized by an (r−1)-free digraph G = (V,E) with n = |V | =
6x, x ∈ ZN . Let 4x vertices form a directed cycle with v1, v2, . . . , v4x, and each of the remaining 2x
vertices connects v2i−1 and v2i+1 where 1 ≤ i ≤ 2x. Therefore, every edge is covered by a deviate
path and removing any single edge from C still leaves at least one directed cycle intact, implying
β(G) ≥ 2 while r = 4x = 2n

3 . We conclude that the bound r ≤ ⌊ 2n3 ⌋ is tight.

2.2 Proof of Theorem 1.6

Lemma 2.6. Let G be an X-free (r − 1)-free digraph with n vertices. There exists a vertex which
cannot be safely removed if r > n

2 and n > 3.

Proof. Let C be the shortest cycle in G, with vertices V (C) = {v1, v2, . . . , vm}, and edges from
vi to vi+1 for any i < m, and from vm to v1. Since G is (r − 1)-free with r > n

2 , the number of
vertices in C is |C| > n

2 . There are n vertices in G and every cycle has more than n
2 vertices. If

there is another cycle C ′, the number of vertices shared by C and C ′ is

|C|+ |C ′| − n > 0.

Therefore, C ′ shares at least one vertex with C.
Suppose two deviate paths P ′, Q′ ∈ D intersect at vertex vu ∈ U . Given the set of four

endpoints in P ′ and Q′, the two starting vertices are adjacent within the set of endpoints, and the
two ending vertices are adjacent in the set of endpoints. We show this by contradiction.

If the two starting vertices are not adjacent within the set of endpoints, we label the endpoints
v1, v2, v3, and v4 in cyclic order, where v1 and v3 are starting vertices, and v2 and v4 are ending
vertices. The path from v1 to v2 along C and the path from v3 to v4 along C share a bypass vertex,
creating the structure X. This forms a contradiction. Thus, it is impossible for two intersecting
deviate paths to have endpoints v1, v2, v3, v4 in cyclic order where v1 and v3 are starting vertices
and v2 and v4 are ending vertices, so any two deviate paths must have their starting vertices as
well as ending vertices adjacent in the cyclic order of the endpoints.

Since any two intersecting deviate paths have the starting vertices adjacent within the set of
endpoints, for any two deviate paths that go through the same vertex vu ∈ U , let endpoints v1,
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v2, v3, and v4 be vertices in cyclic order such that v1 and v2 are starting vertices, and v3 and v4
are ending vertices. Let vu be the bypass vertex that the two deviate paths share. vu is a bypass
vertex for the path from v1 → v4, which encompasses both original paths, meaning we can replace
the two paths by a single path v1 → v4 without removing any safe vertices. We can repeat these
replacements for intersecting deviate paths until all deviate paths are pairwise disjoint.

For each deviate path in D, if a deviate path has vDi vertices, the path has length vDi + 1, so
the corresponding path along the smallest cycle with the same starting and ending vertices will
have length at most vDi

+ 1. The vertices on this path other than the starting and ending vertex
can be safely removed, meaning the deviate path corresponds with at most vDi

vertices that can
be safely removed. Each vertex on a disjoint deviate path in D can allow us to safely remove at
most 1 vertex on C. Since |C| > n

2 ,

|U | = |G| − |C| < n

2
.

With less than n
2 vertices in U , we can safely remove at most |U | vertices on C where |U | < n

2 < |C|.
However, if two paths on C overlap with shared edges, their deviate paths will both identify the
shared edges as safe edges causing double-counting. This reduces the number of distinct safe edges.

Let {S1, S2, S3, . . . Sz} be the set of safe vertices identified by all the disjoint deviate paths in
D, where z = |D|. The number of safe vertices for G without double-counting is

|S1 ∪ S2 ∪ S3 ∪ . . . ∪ Sz| ≤ |S1|+ |S2|+ |S3|+ . . .+ |Sz| <
n

2
.

Since the cycle length |C| is strictly greater than n
2 , there exists at least one vertex on C that

cannot be safely removed.

Proof of Theorem 1.6. We can prove by induction. Let C be the shortest cycle in G.
Base case (n ≤ 6):
By Lemma 2.6, there exists a vertex v ∈ G which cannot be safely removed. When n ≤ 6, v has

at most 5 edges, which yields at most 2 incoming edges or at most 2 outgoing edges. Removing
either all the incoming or all the outgoing edges from v can eliminate every cycle. Therefore,
β(G) ≤ 2.

Induction Hypothesis:
Suppose for all k < n, any (r − 1)-free digraph G with k vertices satisfies β(G) ≤ 2, where

r > k
2 .
Inductive step (n ≥ 7):
Let N+(v) be the out-neighbors of v, N−(v) be the in-neighbors of v, and

N++(v) = {u | ∃w : (v, w), (w, u) ∈ E(G)}.

If |N+(v)| ≤ 2, removing all the outgoing edges can make G acyclic so β(G) ≤ 2.
If |N+(v)| > 2, let

G′ = G−
(
{v} ∪N+(v)

)
.

To preserve cycles corresponding to the original cycles through v, add an edge from every vertex
in N−(v) to every vertex in N++(v). The shortest cycle in G′ then has the length |C| − 2, so G′

is (r′ − 1)-free where

r′ = r − 2 >
n

2
− 2 =

n− 4

2
.

Since we remove the vertex v and all the vertices in N+(v), and |N+(v)| > 2, there are at most
n−4 vertices in G′. By induction hypothesis, with n−4 vertices, r′ > n−4

2 , and G′ is (r′−1)-free,
β(G′) ≤ 2.
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Therefore, with the base case for n ≤ 6 and the inductive results, we conclude that for any
X-free digraph G with n vertices that is (r − 1)-free for r > n

2 , it follows that β(G) ≤ 2.

Remark 2.7. To show the bound in Theorem 1.6 is tight, consider the boundary condition r ≤ n
2 .

That is, there exist graphs with the shortest cycle length |C| = ⌊n2 ⌋ and β(G) ≥ 3. One such graph
is a blow-up graph with n

2 groups of 2 vertices each, assuming n is even and n ≥ 6. The graph
is constructed by a n

2 -cycle, and then each vertex is replaced by a pair of vertices. Let the pairs
of vertices be p1, p2, . . . pn

2
. All vertices in pi are adjacent to all vertices in pi−1 and pi+1 where

1 < i < n
2 , and all vertices in pn

2
are adjacent to all vertices in p1. To make the graph acyclic,

we can remove all edges that connect two adjacent pairs. Since each pair contains two vertices,
removing all edges between two adjacent pairs requires removing 2 · 2 = 4 edges. Hence, β(G) = 4
and we conclude that the bound r > n

2 is tight.

3 Linear Time Algorithm for Finding the Minimum Feed-
back Arc Set

In this section, we present an algorithm to find the minimum feedback arc set in linear time when
β(G) = 1.

Definition 3.1. A strictly positive flow is an assignment of positive real values (flows) to every
edge in a digraph G = (V,E), where every edge must carry a flow f(e) > 0, e ∈ E(G).

Definition 3.2. A flow is conserved if the total incoming flow equals the total outgoing flow for
every vertex. The step of restoring conservation refers to adjusting flow values after modifications
to guarantee the graph is conserved.

Let G = (V,E) be a strongly connected digraph with β(G) = 1. Since β(G) = 1, all the
directed cycles in G share at least one edge, where the shared edges are the minimum feedback arc
set of G. Suppose there exists a strictly positive conserved flow f on the edges of G, satisfying∑

e∈N−(v)

f(e) =
∑

e∈N+(v)

f(e)

for every vertex v ∈ V , where f(e) is the flow on each edge e ∈ E. Let Sc be the set of directed
cycles in G. By the Flow Decomposition Theorem [1], any conserved flow f can be represented
as a sum of positive flows along the directed cycles in Sc. Let Fmax be the total flow through
all directed cycles. The edge in the minimum feedback arc set appears in every directed cycle,
so it carries flow Fmax. That is, the edges with the maximum flow values are where all the flows
converge, hence they are in the minimum feedback arc set traversed by every directed cycle in the
digraph.
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Algorithm 1 FindMinFAS(G = (V,E))

// Step 1: Simplify the graph
1: Identify the SCC using Tarjan’s algorithm. ▷ O(|V |+ |E|)

// Step 2: Construct a strictly positive conserved flow f
2: Calculate in-degrees degin(v) and out-degrees degout(v) for all v ∈ V . ▷ O(|V |)
3: dv ← −ϵ(degout(v)−degin(v)) ∀v ∈ V ▷ Define demands for correction flow g with a positive

offset ϵ, O(|V |)
4: g ← FeasibleFlow(G, d) ▷ Compute the flow g ≥ 0, O(|V |+ |E|)
5: fe ← ϵ+ ge ∀e ∈ E ▷ Construct the final flow f = ϵ+ g, O(|E|)

// Step 3: Identify edges with maximum flow value
6: Determine SFAS ← {e ∈ E | f(e) = maxe′∈E f(e′)} ▷ Identify max flow edges, O(|E|)
7: return SFAS

Algorithm 1 computes the minimum feedback arc set SFAS in three key steps: graph simplifi-
cation, flow construction, and identification of maximum flow edges. The algorithm achieves linear
time complexity by using network flow techniques on the digraph structure.

The first step simplifies the graph by identifying strongly connected components (SCCs) using
Tarjan’s algorithm, which runs in O(|V |+ |E|) time. In the case where β(G) = 1, exactly one SCC
remains, which contains the minimum feedback arc set.

The second step calculates the in-degrees and out-degrees for all the vertices.
In steps 3− 5, the function FeasibleF low(G, d) calculates the flow value for each edge using a

feasible flow algorithm in O(|V | + |E|) time [4, 10]. Since the flow could contain edges with zero
flow, the algorithm ensures strictly positive flows by applying a lower bound adjusting technique [1].
A target minimum flow ϵ > 0 is set on all edges and a non-negative correction flow g is computed
to restore conservation. The resulting flow f = ϵ+ g is both strictly positive and conserved.

The final step identifies edges with maximum flow in O(|E|) time, yielding the minimum feed-
back arc set. The overall time complexity for Algorithm 1 is O(|V |+ |E|).

4 Improved Bound for Inversions

For all integers s, t ≥ 1, Ramsey’s theorem states that there exists a Ramsey number R(s, t) ≤(
s+t−2
s−1

)
such that any two-coloring of the edges of a tournament with at least R(s, t) vertices

contains either a monochromatic complete subgraph (clique) of s vertices with the first color or a
monochromatic clique of t vertices with the second color.

To prove Theorem 1.9 and Theorem 1.10, we interpret the two colors as the forward and back-
ward edges in a tournament with R(s, t) vertices. A monochromatic clique represents a complete
subgraph with edges being all forward or all backward, hence no directed cycle in the clique.

4.1 Proof of Bounds for inv4(n)

Inversion of a tournament T is the operation of reversing the direction of all edges whose endpoints
are in a specified subset of vertices. Let invk(T ) denote the minimum length of a sequence of
inversions, each involving at most k vertices, required to transform T into a transitive tournament.

We utilize Ramsey numbers, specifically R(4, 4) = 18, which guarantees the existence of a
monochromatic clique K4 in every two-edge-coloring of an 18-vertex tournament. The two colors
can represent the forward and backward edges in a digraph. This structure allows us to find a
tighter bound for inv4(n).

Lemma 4.1. In any tournament, every set of 30 vertices contains at least five edge-disjoint tran-
sitive subgraphs of size 4.
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Proof. From Ramsey theory, any set of 18 vertices contains at least one monochromatic K4. Given
30 vertices, we can successively extract monochromatic K4 subgraphs with the following process.

First, we select a monochromatic K4, leaving at least 26 vertices unused. From these 26
vertices, select another monochromatic K4, leaving 22 vertices unused. Continuing similarly, se-
lect a third monochromatic K4, leaving 18 vertices unused. From these 18 vertices, select a fourth
monochromatic K4, leaving exactly 14 vertices plus one vertex from each previously selected group
(4 vertices), forming another set of exactly 18 vertices with no overlapping edges. Ramsey the-
ory guarantees a fifth monochromatic K4, resulting in at least five disjoint monochromatic K4

subgraphs.

Lemma 4.2. For a two-color tournament with size of sufficiently large n, there exist at least
n2

174 − o(n2) edge-disjoint monochromatic K4 subgraphs.

Proof. Let c be a constant indicating the highest number where every tournament with n vertices
has at least c · n2 − o(n2) edge-disjoint K4 graphs.

Partition the n vertices into 30 equal-sized groups G1, G2, . . . , G30. Choose the largest prime
p ≤ n

30 , noting p approaches n
30 as n increases by the Prime Number Theorem. Construct subsets

of size 30 by selecting vertices indexed as i + j · k mod p within each group Gk, for 0 ≤ i, j < p.
No two subsets share more than one vertex from any group, as the congruences i0 + j0 · x ≡
i1 + j1 · x mod p, i0 + j0 · y ≡ i1 + j1 · y mod p imply identical subsets if more than one

vertex is shared. Thus, we generate approximately p2 ≈ n2

900 unique subsets, each containing five

monochromatic K4 subgraphs (Lemma 4.1), yielding at least 5 · n2

900 − o(n2) = n2

180 − o(n2) total
monochromatic K4 subgraphs. We used no edges between two vertices within the same group, so
we can repeat the same process to findK4 graphs within each group, leaving a total of an additional

30 · c · ( n
30 )

2 − o(n2) = c
30 · n

2 − o(n2) K4 graphs. We can now find n2

180 − o(n2) + c
30 · n

2 − o(n2) ≤
c · n2 ⇒ n2

180 ≤
29·c
30 · n

2 ⇒ c ≥ 1
174 . We conclude for sufficiently large n, there exist at least

n2

174 − o(n2) edge-disjoint monochromatic K4 subgraphs.

Proof of Theorem 1.9. To remove all cycles in a tournament, we can orient the vertices as a per-
mutation, consider the edges as either forward or backward in the permutation, and invert the
edges so that they are all forward or all backward. Consider the vertices being arranged randomly.

The expected number of forward edges is n2

4 − o(n2). By Lemma 4.2, there are at least n2

174 edge-
disjoint monochromatic K4 subgraphs, giving an expected count of forward-directed, edge-disjoint

K4 subgraphs of at least n2

348 − o(n2).
Given four disjoint sets S1, S2, S3, and S4 with two vertices in each set, inverting {S1, S2},

{S2, S3}, {S3, S4} and {S1, S4} will result in inverting the 4 edges between each pair. These edges
are a subset of the edges in the bipartite graph between {S1, S3} and {S2, S4}. By the Kővári-
Sós-Turán theorem, the edges can always be removed until there are o(n2) edges left. These four
inversions can result in removing 4 · 4 = 16 edges when applied to a K(4, 4) bipartite graph.

For our final bound calculation, initially, inversions within monochromatic K4 subgraphs re-

move 6 · n2

348 = n2

58 edges, leaving n2

4 −
n2

58 = 27n2

116 edges. Removing these remaining edges via

K4,4 inversions requires 4
16 ·

27n2

116 = 27n2

464 additional inversions. Including initial inversions for

monochromatic K4 subgraphs ( n2

348 inversions), the total inversions required is

27n2

464
+

n2

348
=

85n2

1392
+ o(n2).

Thus, the established upper bound is

inv4(n) ≤
85n2

1392
+ o(n2).

9



4.2 Proof of Bounds for invk(n)

We continue to utilize Ramsey numbers, specifically the existence of a monochromatic clique Kk in
every 2-coloring of an R(k)-vertex tournament. We start with proving lemmas to find bounds on
the number of Kk subgraphs, and use these results to construct the main proof for Theorem 1.10.

Lemma 4.3. For all positive integers x and k, a two-color tournament of size R(k)+(x−1)(k−1)
has at least x Kk monochromatic tournaments.

Proof. By Ramsey theory, every two-color tournament with R(k) vertices contains at least one
monochromatic clique Kk. Given a two-color tournament with R(k) + (x− 1)(k − 1) vertices, we
can construct monochromatic x Kk subgraphs iteratively.

First, select any monochromatic clique Kk. Remove k − 1 vertices of this clique from future
consideration, while keeping exactly one vertex for possible reuse in later steps. This ensures that
subsequent monochromatic cliques remain edge-disjoint, as two distinct cliques formed from this
process will share at most one vertex and hence share no edges. Each iteration removes k − 1
vertices from future consideration. Repeating this process x−1 times results in x−1 edge-disjoint
monochromatic Kk cliques. After these steps, exactly R(k) vertices remain, which contain at least
one additional monochromatic Kk by Ramsey’s theorem.

Thus, we conclude that a total of x monochromatic Kk cliques are guaranteed to exist within
the given two-color tournament.

Lemma 4.4. In a two-color tournament of size n, for sufficiently large n, and any positive integer
x, there exist at least

x · n2

(R(k) + (x− 1)(k − 1))2 −R(k)− (x− 1)(k − 1)
− o(n2)

edge-disjoint monochromatic Kk subgraphs.

Proof. Let y = R(k)+(x−1)(k−1). Partition the n vertices into y equal-sized groupsG1, G2, . . . , Gy.
Choose the largest prime p ≤ n

y , noting p approaches n
y as n increases by the Prime Number The-

orem. We can construct subsets of vertices of size p by selecting vertices indexed as i+ j ·k mod p
within each group Gk, for 0 ≤ i, j < p, as the congruences of the form i0 + j0 · k ≡ i1 + j1 · k
mod p for distinct pairs (i0, j0) and (i1, j1) can hold true for at most one value of k, so that any
two subsets share at most one vertex.

Thus, we generate approximately p2 ≈ n2

y2 unique subsets, each containing x monochromatic

Kk subgraphs (Lemma 4.3). There are now also y groups of n
y vertices that have no Kk subgraphs

with at least two vertices in these groups. For some constant c, the number of subgraphs is of the
form c · n2 such that

c · n2 = c · y ·
(
n

y

)2

+ x · n
2

y2
.

Since each of the y subgroups have n
y elements, which means there are y ·

(
c · (ny )

2
)

subgraphs

that exist purely within a group, with c = x
y2−y , there are

cn2 =
xn2

y2 − y
− o(n2) =

xn2

(R(k) + (x− 1)(k − 1))2 −R(k)− (x− 1)(k − 1)
− o(n2)

total monochromatic Kk subgraphs.

10



Proof of Theorem 1.10. Let y = R(k) + (x − 1)(k − 1). To remove all cycles in a directed graph,
we can orient the vertices as a permutation, consider the edges as either forward or backward
in the permutation, and invert the edges so that they are all forward or all backward. Consider
the vertices being arranged randomly. The expected number of forward edges is approximately
n2

4 − o(n2). By Lemma 4.4, since on average half of the monochromatic Kk graphs form forward-

directed monochromatic Kk subgraphs, and there is an expected value of at least x·n2

y2−y Kk graphs,
the expected count of forward-directed, edge-disjoint Kk subgraphs is at least

x · n2

2y2 − 2y
− o(n2).

We can partition any 2k vertices into four disjoint sets S1, S2, S3, and S4 with |S1| = |S3| =
⌊k2 ⌋, and |S2| = |S4| = ⌈k2 ⌉. Inverting {S1, S2}, {S2, S3}, {S3, S4} and {S1, S4} will result in
inverting precisely all edges connecting vertices in {S1, S3} and {S2, S4}. These inverted edges are
exactly those in the complete bipartite graph K2⌊ k

2 ⌋,2⌈
k
2 ⌉
. By the Kővári-Sós-Turán theorem, the

edges can always be removed until there are o(n2) edges left. These four inversions can remove

2⌊k2 ⌋ · 2⌈
k
2 ⌉ = 4⌊k

2

4 ⌋ edges when applied to a Kk,k bipartite graph.
For our final bound calculation, initially, inversions within monochromatic Kk subgraphs re-

move (
k

2

)
· x · n2

2y2 − 2y
=

x · n2 · (k2 − k)

4y2 − 4y

edges, leaving
n2

4
− x · n2 · (k2 − k)

4y2 − 4y

edges. The number of Kk,k inversions required to remove the remaining edges is

4

4⌊k2

4 ⌋
·
(
n2

4
− x · n2 · (k2 − k)

4y2 − 4y

)

=
n2y2 − n2y − x · n2(k2 − k)

(4y2 − 4y)⌊k2

4 ⌋
.

We need to invert the set of monochromatic Kk graphs, the set of complete bipartite graphs, and
o(n2) edges that remain after removing the complete bipartite graphs, as shown by the Kővári-
Sós-Turán theorem. As a result, the total inversions required is

invk(n) ≤
x · n2

2y2 − 2y
+

n2y2 − n2y − x · n2(k2 − k)

(4y2 − 4y)⌊k2

4 ⌋

= n2 ·
2x⌊k

2

4 ⌋+ y2 − y − x · k2 + x · k
(4y2 − 4y)⌊k2

4 ⌋
− o(n2).

Thus, the established upper bound for invk(n) is

n2 ·
2x⌊k

2

4 ⌋+ (R(k) + (x− 1)(k − 1))2 −R(k)− (x− 1)(k − 1)− x · k2 + x · k
(4(R(k) + (x− 1)(k − 1))2 − 4(R(k) + (x− 1)(k − 1)))⌊k2

4 ⌋
− o(n2).

Remark 4.5. This bound is minimized when choosing an x that maximizes the number of Kk. This
corresponds to maximizing the expression

x

(R(k) + (x− 1)(k − 1))2 −R(x)− (x− 1)(k − 1)
=

x

y2 − y
,
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where y = R(k) + (x− 1)(k − 1), and we find the optimal x by solving

d

dx

[
x

y2 − y

]
=

y2 − y − x(2y − 1) dydx
(y2 − y)2

=
(R(k) + (x− 1)(k − 1))2 − (R(k) + (x− 1)(k − 1))− x(2(R(k) + (x− 1)(k − 1))− 1)(k − 1)

(y2 − y)2

=
−k2x2 + 2kx2 + k2 − 2kR(k) +R(k)2 − x2 − k +R(k)

(y2 − y)2

=
−(k − 1)2x2 + (k −R(k))2 − k +R(k)

(y2 − y)2
.

For domain x ∈ [1,∞], this expression starts being positive, then reaches zero at x =

√
(k−R(k))2−k+R(k)

k−1 ,

and becomes negative afterwards. Since x is an integer, we can thus optimize x·n2

(R(k)+(x−1)(k−1))2 −

o(n2) by setting x to either the floor or ceiling of

√
(k−R(k))2−k+R(k)

k−1 .

4.3 An Alternate Bound for invk(n)

Ramsey numbers can be used to find bounds for invk(n), however, not all Ramsey numbers are
known. In this section, we prove Theorem 1.11, which only takes k and n as parameters for the
bound.

Definition 4.6. Let R(n1, e1, n2, e2) denote the minimum number of vertices such that a two-color
graph with R(n1, e1, n2, e2) where each edge is either red or blue has either a subgraph of size n1

with at least e1 red edges or a subgraph of size n2 with at least e2 blue edges.

Lemma 4.7. If e1
(n1

2 )
+ e2

(n2
2 )
≤ 1, then R(n1, e1, n2, e2) ≤ max(n1, n2).

Proof. We prove by contradiction. Given a graph of size max(n1, n2), and let p be the probability
of a uniformly random edge being red.

Choose n1 vertices uniformly at random. The expected number of red edges they span is p
(
n1

2

)
,

so there exists an n1-vertex subgraph with at least p
(
n1

2

)
red edges. Similarly, there exists an

n2-vertex subgraph with at least (1−p)
(
n2

2

)
blue edges. For contradiction, assume that there is no

n1-vertex subgraph with ≥ e1 red edges and no n2-vertex subgraph with ≥ e2 blue edges. Then

p

(
n1

2

)
< e1 and (1− p)

(
n2

2

)
< e2,

thus
p <

e1(
n1

2

) and 1− p <
e2(
n2

2

) .
Adding them gives

1 <
e1(
n1

2

) + e2(
n2

2

) ,
which contradicts the hypothesis. Hence R(n1, e1, n2, e2) ≤ max(n1, n2).

Lemma 4.8. Every two-color subgraph of 4(1−
√

2
2 )n+o(n) vertices contains a subgraph of size n

such that there are at least 3n(n−1)
8 edges with the same color.

12



Proof. Let v be a vertex on a two-color graph with red/blue edges, where there exists a subgraph
of size n1 with e1 red edges or a subgraph of size n2 with e2 blue edges. Note that v cannot have
R(n1−1, e1−n1+1, n2, e2) red edges or more, or these edges will connect to either a blue subgraph
of size n2 with e2 blue edges, or a red subgraph of size n1 − 1 with e1 − n1 + 1 red edges, where if
this subgraph is combined with v, a subgraph of size n1 with e1 edges will be formed. Similarly, v
cannot have R(n1, e1, n2 − 1, e2 − n2 + 1) blue edges. Thus,

R(n1, e1, n2, e2) < R(n1, e1, n2 − 1, e2 − n2 + 1) +R(n1 − 1, e1 − n1 + 1, n2, e2),

indicating
R(a, b) < R(a+ 1, b) +R(a, b+ 1).

Let f(a, b) = R
(
n− a, e− a(2n−a−1)

2 , k − b, e− b(2n−b−1)
2

)
.

Thus, f(0, 0) <
∑⌈n(2−

√
2)⌉

k=0

(⌈n(2−√
2)⌉

k

)
f(k, ⌈n(2−

√
2)⌉ − k). For a value k, let

b = ⌈n(2−
√
2)⌉ − k,

such that

f

(
k, ⌈n(2−

√
2)⌉ − k) < R(n− k,

3n(n− 1)

8
− (2n− 1− k)k

2
, n− b,

3n(n− 1)

8
− (2n− 1− b)b

2

)
.

To prove this satisfies the condition for Lemma 4.7, we want to prove

3n(n−1)
8 − (2n−1−k)k

2
(n−k)(n−k−1)

2

+
3n(n−1)

8 − (2n−1−b)b
2

(n−b)(n−b−1)
2

≤ 1.

The derivative of the left hand side with respect to k is (n−1)n(2k−2n+1)
4(n−k)2(n−k−1)2 . Through symmetry, the

derivative of the left hand side with respect to b is

d

db

3n(n−1)
8 − (2n−1−b)b

2
(n−b)(n−b−1)

2

=
(n− 1)n(2b− 2n+ 1)

4(n− b)2(n− b− 1)2
.

Since k + b is constant, the overall derivative with respect to k after taking into account b is

d

dk

(
3n(n−1)

8 − (2n−1−k)k
2

(n−k)(n−k−1)
2

+
3n(n−1)

8 − (2n−1−b)b
2

(n−b)(n−b−1)
2

)
=

(n− 1)n(2k − 2n+ 1)

4 (n− k)2 (n− k − 1)2
− (n− 1)n(2b− 2n+ 1)

4 (n− b)2 (n− b− 1)2

∝ 2k − 2n+ 1

4 (n− k)2 (n− k − 1)2
− 2b− 2n+ 1

4 (n− b)2 (n− b− 1)2
.

This is increasing over k since (2k−2n+1)
4(n−k)2(n−k−1)2 increases as k increases, as

d

dk

(2k − 2n+ 1)

4(n− k)2(n− k − 1)2
=

3(x+ 1−2n
2 )

2(x− n)3(x− n+ 1)3
≤ 0,

while (2b−2n+1)
4(x−b)2(x−b−1)2 decreases as k increases through symmetry. When k = b, through symmetry,

(2k − 2n+ 1)

4(n− k)2(n− k − 1)2
− (2b− 2n+ 1)

4(n− b)2(n− b− 1)2
= 0.
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Thus, the expression
3n(n−1)

8 − (2n−1−k)k
2

(n−k)(n−k−1)
2

+
3n(n−1)

8 − (2n−1−b)b
2

(n−b)(n−b−1)
2

has derivative starting negative,

equal zero at k = b, then becomes positive, showing it minimizes at k = b. The function equals 1
when k = b. Thus, Lemma 4.7 is satisfied, and

f(k, ⌈(2−
√
2)⌉ − k) ≤ max(n1, n2) ≤ 2n.

Thus,

f(0, 0) ≤
⌈n(2−

√
2)⌉∑

k=0

(
⌈n(2−

√
2)⌉

k

)
f
(
k, ⌈n(2−

√
2)⌉ − k

)

≤ n ·
⌈n(2−

√
2)⌉∑

k=0

(
⌈n(2−

√
2)⌉

k

)
2n

= 4⌈(1−
√
2
2 )n⌉+o(n).

This means R(n1, e1, n2, e2) ≤ 4(1−
√

2
2 )n+o(n), so every two-color subgraph of 4(1−

√
2

2 )n vertices

contains a subgraph of size n such that there are at least 3n(n−1)
8 edges with the same color.

Proof of Theorem 1.11. To remove all cycles in a directed graph, we can orient the vertices as a
permutation, consider the edges as either forward or backward in the permutation, and invert the
edges so that they are all forward or all backwards. Consider the vertices being arranged randomly.

The expected number of forward edges is n2

4 − o(n2). With Lemma 4.8, we can form edge-disjoint

tournaments of size k with greater than 3k2

8 forward edges or backward edges until there are no

tournaments of size 4(1−
√

2
2 )k+o(k) without edges chosen in one of the edge disjoint tournaments of

size k. Through Turán’s Theorem, this would result in inverting n2

2·4(1−
√

2
2

)k+o(k)−2
= n2

4(1−
√

2
2

)k+o(k)

edges. Thus, on average, when inverting each of these tournaments with greater than 3k2

8 forward

edges of each of these tournaments with greater than 3k2

8 backward edges, n2

4(1−
√

2
2

)k+o(k)
are inverted,

with each inversion decreasing either the number of forward edges total or backward edges total

by over k2

4 .

Consider four disjoint sets S1, S2, S3, and S4, where S1 and S3 contains ⌊k2 ⌋ elements and S2

and S4 contains ⌈k2 ⌉ elements. Inverting {S1, S2}, {S2, S3}, {S3, S4} and {S1, S4} will result in

inverting the ⌊k
2

4 ⌋ edges between each pair. These edges are a subset of the edges in the bipartite
graph between {S1, S3} and {S2, S4}. By the Kővári-Sós-Turán theorem [12], we can apply these
inversions to eliminate edges until there are o(n2) edges left. These four inversions can result in

removing 4 ·4 = 16 edges when applied to a K4,4 bipartite graph. There are, on average, n2

4 −o(n2)

forward edges, so through this method of finding sets to invert, we can use n2

4⌊ k2

4 ⌋
+o(n2) inversions

to invert all edges. We can now repeat this method after excluding the initial n2

2 4−(1−
√

2
2 )k−o(k)

edges we invert at the start with greater than k2

4 edges being inverted on average at a time in
order to find

invk(n) ≤
n2 · 4−(1−

√
2

2 )k−o(k)

4(⌊k2

4 ⌋+ 1)
+

n2(1− 4−(1−
√

2
2 )k−o(k))

4⌊k2

4 ⌋
=

n2

4⌊k2

4 ⌋
− n2 · 4−(1−

√
2

2 )k−o(k).
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