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Abstract. This paper conjectures full-twist presentations for the fundamental group of the com-
plement of a complexified finite central real hyperplane arrangement. We first investigate the
case of Coxeter arrangements, generalizing the classical Artin presentation of pure braid groups.
Building on Salvetti’s combinatorial model for arrangement complements, we introduce a family
of generators arising from a minimal gallery of regions and describe relations produced from rank
two subarrangements. We then focus on the notion of the full twist and conjecture a presentation
of the fundamental group by equating all the reduced words for the full twist. We will prove this
conjecture for Coxeter arrangements of types A, B, D, H3, I2(m), and F4.

Contents

1. Introduction and Background 2
2. Mathematical Prerequisite and Definitions 3
2.1. Posets. 4
2.2. Hyperplane Arrangements. 4
2.3. The Intersection Lattice 4
2.4. Poset of Regions. 4
3. Salvetti Complex and The Fundamental Group of the Complement of the Complexified

Hyperplane 4
3.1. Generators. 5
4. Full Twist Presentations 6
5. Noncrossing Subarrangements 6
5.1. Noncrossing Subarrangements. 7
6. Computation for Coxeter Groups 7
6.1. Notation 8
6.2. Type A 8
6.3. Type B 10
6.4. Type D 15
6.5. Dihedral Groups 19
6.6. Type H3 19
6.7. Type F4 20
7. Acknowledgements 22
References 23

1



2 JIAYU (JERRY) LIU AND NATHAN WILLIAMS

1. Introduction and Background

The braid group, introduced by Emil Artin in 1926, is a mathematical object that is fundamental
to our study. It encodes the way in which n strands of braid can interlace without cutting or gluing.
Braid groups arise naturally from topology, but their importance extends far beyond this field.

On the applied side, braid groups have been proposed as platforms for public-key cryptography,
where the difficulty of reversing a braid word serves as a hard computational problem. In pure
mathematics, braid groups play a foundational role in knot theory, where every knot can be repre-
sented as the closure of a braid. They also appear in algebraic geometry as the fundamental groups
of configuration spaces. The ubiquity of braid groups demonstrates that studying their structure
has implications for multiple fields.

In 1926, Artin proved the following presentation for the braid group Bn

Bn =

〈
s1, . . . , sn−1 :

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1 for 2 ≤ i+ 1 ≤ n− 1

〉
.

There is a natural map π from the braid group Bn to the symmetric group Sn since one can
ignore the twisting of braids to obtain solely a permutation. Therefore, we could construct the
exact sequence

1 → Pn → Bn
π−→ Sn → 1

where ker(π) ∼= Pn. The pure braid group Pn can be visualized as the fundamental group of the
space of n-tuples of distinct points in Euclidean space. It has been proven by Artin in 1947 [Art47]
that the pure braid group Pn can be presented as

S−1
rs SijSrs =


Sij if r < s < i < j
Sij if i < r < s < j
SrjSijS

−1
rj if r < i = s < j

(SijSsj)Sij(SijSsj)
−1 if r = i < s < j

(SrjSsjS
−1
rj S−1

sj )Sij(SrjSsjS
−1
rj S−1

sj )−1 if r < i < s < j

where for 1 ≤ i < j ≤ n+ 1

Sij := (sj−1sj−2 · · · si+1)si
2(si+1 · · · sj−2sj−1).

We will next present a more generalized and formal definition of the braid group. Let W be a
finite Coxeter group, and let H denote its associated real central simplicial hyperplane arrangement
in Rn. Define V reg

C := Cn \ HC, where HC is the complexified hyperplane arrangement of H.

Definition 1.1. The braid group is defined as

B(W ) := π1(V
reg

C /W ).

In 1999, Birman-Ko-Lee, Bessis, and Brady-Watt proved an elegant result for a presentation of
the braid group [BKL98,Bes03,BW01].

Theorem 1.2 (Birman-Ko-Lee, Bessis, and Brady-Watt). Let T be the set of reflections of W ,
and let c be a Coxeter element, which is a product of the simple reflections, in some order. Let
[RedT (c)] represent the set of reduced words in T for the element c. Then, we have

B(W ) = ⟨T : [RedT (c)]⟩.

Motivated by the beautiful presentation for the braid group, this project aims to establish a
similar result for the pure braid groups.
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Definition 1.3. The pure braid group of Coxeter group type W is defined as

P (W ) := π1(V
reg

C ).

In analogy to Theorem 1.2, Nathan Williams has conjectured the following similarly elegant
presentation for the pure braid group.

Definition 1.4. The full-twist of π1(V
reg

C , xB) is the element defined by

c := e2πitxB for 0 ≤ t ≤ 1.

Let T denote the set of generators of the pure braid group P (W ) corresponding to the reflections
T of W (the precise construction will be given in Section 3).

Conjecture 1.5 ([Wil25], Page 3). Let [RedT(c)] represent the set of minimal length words in T
for the full twist c. Then

P (W ) = ⟨T : [RedT(c)]⟩.

In this paper, we will prove this conjecture for Coxeter groups of types A, B, D, H3, and I2(m).
The conjecture for F4 will still be in progress. We will present Williams’s novel approach using the
Salvetti complex and Coxeter-Catalan theory. This approach is potentially expandable to arbitrary
central real hyperplane arrangements. Refer to Conjecture 4.3 for the statement of the more general
conjecture.

This conjecture has two significances. Firstly, it provides a uniform presentation for pure braid
groups, simplifying Artin’s relations. Moreover, it extends the combinatorial framework of the
Coxeter-Catalan theory, suggesting a connection between algebraic topology and combinatorics.

This paper is structured as follows. In Section 2, we establish the mathematical prerequisites
necessary for understanding the research. This section reviews posets of regions and finite central
real hyperplane arrangements. In Section 3, we define and explain the Salvetti complex and how it
can be applied to generate a presentation for the fundamental group of the complexified hyperplane
complement. In Section 4, we state the main conjecture for this research, detailing a presentation
using the full twist. In Section 5, we develop the framework for proving the conjecture for finite
Coxeter arrangements. In Section 6, we provide explicit computations for Coxeter groups of types
A, B, D, I2(m), H3, and F4 (partially).

2. Mathematical Prerequisite and Definitions

This section contains the prerequisites and definitions necessary to understand the research.

Definition 2.1. A Coxeter group is a group with its presentation defined by reflections. Formally,
one can define a Coxeter group as

⟨r1, r2, . . . , rn|(rirj)mij = 1⟩
where mii = 1 and for i ̸= j, mij = mji ≥ 2 is an integer or ∞.

If we concretely represent each generator of the Coxeter group as a reflection across a linear
hyperplane, we see that each element of the Coxeter group can be interpreted as a combination of
reflections across the sets of linear hyperplanes.

This view of the Coxeter group indeed makes sense. Since mii = 1, we see that each generator of
the Coxeter group has order 2. This reflects the fact that applying a reflection twice is equivalent
to the identity.

Therefore, one can associate a Coxeter group W with a hyperplane arrangement H where each
hyperplane is associated with one of the generators of W .
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Example 2.2. Examples of Coxeter groups include the type A Coxeter group, or simply An. The
group An, also called the symmetric group, is defined by the following presentation:

An = ⟨r1, r2, . . . , rn | (rirj)2 = 1 for |i− j| = 1, (rirj)
3 = 1 for |i− j| = 2, r2i = 1⟩

In fact, B(An) is equivalent to Artin’s braid group on n+ 1 strands, denoted as Bn+1.

2.1. Posets. A partially ordered set is denoted by P. For any subset X ⊆ P, the join
∨
X

is defined as the least upper bound of X in P, provided such an element exists and is unique.
Conversely, the meet

∧
X is the greatest lower bound of X in P, again assuming existence and

uniqueness.
A lattice L is a poset in which every two elements possess both a greatest lower bound (meet)

and a least upper bound (join). An element j ∈ P is called join-irreducible if it cannot be expressed
as the join of strictly smaller elements; equivalently, there is no subset X ⊆ P with j /∈ X such
that j =

∨
X.

2.2. Hyperplane Arrangements. A real hyperplane in Rn is a linear subspace of codimension
one. A central real hyperplane arrangement H is a finite set of such hyperplanes, each passing
through the origin. The connected components of the complement Rn \ H are called regions, and
the set of all regions will be denoted by R.

A subarrangement of H is any subset of its hyperplanes. The rank of a subarrangement is the
codimension of the intersection of its hyperplanes. A subarrangement is called full if it contains
every hyperplane that passes through some fixed subspace of Rn.

2.3. The Intersection Lattice. For a real hyperplane arrangement H, the intersection lattice L
is the collection of all nonempty intersections of hyperplanes in H, together with the whole space
Rn, ordered by reverse inclusion (so X ≤L Y if and only if Y ⊆ X). A face of H is a set F = C ∩X
for C ∈ R and X ∈ L, and we denote the set of faces by F . The faces are naturally ordered by
reverse inclusion: F ≥F F ′ if F ⊆ F ′. We refer the reader to [Rea03] for additional details.

For convenience, we use the notation from Williams’s note [Wil25] to match the notation used
for the theorems in later sections.

2.4. Poset of Regions. Given a hyperplane arrangement H, its poset of regions is defined on its
set of regions R.

Fix a base region B ∈ R. We say that a hyperplane H separates two regions B and C when
every straight line connecting an interior point of B to an interior point of C necessarily crosses H.
For a given region C, let S(C) denote the set of all hyperplanes that separate C from B.

Let −B denote the unique region for which S(−B) = H.
The family of separating sets {S(C) : C ∈ R}, ordered by inclusion, induces a partial order P(H,

B) on the set of regions of H. This structure is referred to as the poset of regions of H.
Two regions are called adjacent if they differ by exactly one separating hyperplane. In such a

case, if C and D are adjacent, we write C
e−→ D when the edge e in the Hasse diagram corresponds

to the relation C < D in the partial order.

3. Salvetti Complex and The Fundamental Group of the Complement of the
Complexified Hyperplane

Salvetti complex: We follow [Sal87, Del06]. We are only interested in the restriction of the
Salvetti complex to the zero, one, and two cells, as these contain sufficient information to determine
the fundamental groups. We describe this restriction of the Salvetti complex as a CW complex
denoted P∗(H, B), which can easily be built from the poset of regions P(H, B).

• Zero-cells: The zero cells for P∗(H, B) is equivalent to the points in the poset of regions
P(H, B).
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• One-cells: Each edge e in the Hasse diagram of P(H, B) with C ′ e−→ C will be included in
P∗(H, B) as a one-cell. A second copy e∗ will also be included with the opposite orientation

where C
e∗−→ C ′. We define a gallery from C to C ′ as a sequence of edges (e, e∗, e−1, (e∗)−1)

that begins at C and ends at C ′. A gallery from C ′ to C is positive if it exclusively uses
edges of the form e and e∗, and it is called a loop if C = C ′.

• Two-cells: For each rank-two subarrangement of hyperplanes A and each region C, we
attach one two-cell along the unique positive gallery from C to the corresponding opposite
region C ′ with S(C,C ′) = A.

The motivation for constructing the two-dimensional CW complex P∗(H, B) is that we could
generate a combinatorial model for Cn \ H. Therefore, the fundamental group for the hyperplane
complement can be expressed as the fundamental group of the CW complex, a result shown below
in Theorem 3.1.

Theorem 3.1 ([Sal87]). Let H be a hyperplane arrangement, then

π1(C
n \ H, xB) ∼= π1(P∗(H, B), B).

We call two galleries homotopic if one may be converted into the other by a sequence of operations
that add or delete the boundary of a two-cell in its entirety. A gallery is termed minimal if, among
all galleries in its homotopy class, it achieves the least possible length.

Given a step C ′ e−→ C, we write He for the hyperplane in the symmetric arrangement uniquely
determined by e. For any region C, let gal(C) denote a choice of minimal gallery from B to C. By
[Del72], all positive minimal galleries with the same start and endpoint are homotopic. Hence, the
notion of gal(C) is independent of which minimal gallery is selected.

3.1. Generators. We adhere to the approach outlined in [Sal87] and notation similar to [Wil25].

First of all, we will construct a large generating set for π1(P∗(H, B), B). If C ′ e−→ C, we define the
corresponding loop te by:

te := gal(C ′)ee∗ gal(C ′)−1.

Let Tedge represent the set of all such loops te. Since each te is a loop in P∗(H, B) with basepoint
at region B, the set Tedge is a valid generating set for π1(P∗(H, B), B).

Next, we will construct a smaller generating set. Fix a positive minimal gallery

b := b1, b2, . . . , bN

from B to −B in P∗(H, B). This defines a set of elements in π1(Cn \ HC, xB) ∼= π1(P∗(H, B), B),
denoted by:

Tb = {bi}Ni=1.

where
bi := (b1b2 · · · bi−1)bib

∗
i (b

−1
i−1 · · · b

−1
2 b−1

1 ), 1 ≤ i ≤ N,

and order the hyperplanes as:
H1 <b H2 <b · · · <b HN

where Hi := Hbi .
Therefore, Theorem 3.2 shows that the set Tb is also a valid generating set for π1(P∗(H, B), B)

as any other te ∈ Tedge can be expressed in terms of elements from Tb.

Theorem 3.2 ([Sal87], Lemma 12, Corollary 12). For any positive minimal gallery b from B to

−B, Tb is a generating set of π1(P∗(H, B), B). Specifically, if C
e−→ C ′ with He = Hbk , then

te =

 ∏
k>i≥1,Hi ̸∈S(C)

bi

−1

bk

 ∏
k>i≥1,Hi ̸∈S(C)

bi

 .
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Next, we state a theorem that precisely generates the family of relations for the presentation of
the fundamental group with the generators Tb. In fact, one family of relations is needed for each
full rank-two subarrangement.

For a full rank-two subarrangement A with hyperplanes He1 <b · · · <b HeM , we denote by [A]Tb

the set of relations

teM · · · te2te1 = te1teM · · · te2 = · · · = teM−1 · · · te2te1teM .

Theorem 3.3 ([Sal87], Page 616). Fix a positive minimal gallery b from B to −B in P∗(H, B).
For each full rank-two subarrangement A of H, we can choose one two-cell in P∗(H, B) with edges
labeled

e1, e2, . . . , eM , eM+1, . . . , e2M

where {Hei}Mi=1 = A and He1 <b · · · <b HeM . Then

π1(P∗(H, B), B) = ⟨Tb : [A]Tb
⟩,

where the relations range over all full rank-two subarrangements A ⊂ H.

Therefore, in order to use this theorem effectively, one must pick a gallery b such that the full
rank 2 subarrangement can be directly expressed in terms of the generators Tb without resorting
to handling conjugations. In the case of finite Coxeter arrangements, there exists an optimal choice
for the positive minimal gallery, which will be presented in Section 5.

4. Full Twist Presentations

Let H be a central real hyperplane arrangement with base region B. Let b be a positive minimal
gallery from B to −B, and let N be the length of b, i.e., the number of hyperplanes of H. For a
permutation π : [N ] → [N ], we say that the product

∏N
i=1 bπ(i) is b-oriented if for each full rank-

two subarrangement A, the restriction of the product to the bi corresponding to hyperplanes in A
respects the b-orientation of A, which is the order in which the gallery b crosses the hyperplanes
of A.

Lemma 4.1 ([Wil25], Page 8). For a fixed positive minimal gallery b and generators Tb,

c = bNbN−1 · · ·b1.

Theorem 4.2 ([Wil25], Page 9). We have

N∏
i=1

bπ(i) ∈ RedTb
(c) =⇒

N∏
i=1

bπ(i) is b-oriented.

In [Wil25], Nathan Williams proved the forward direction described in the theorem. However,
the backward direction has not yet been proven and could be approached by attempting to prove
that any b-oriented word is homotopic to bNbN−1 · · ·b1, which is the full twist by Lemma 4.1.

Again, we can reiterate the generalized version of the conjecture that we desire to prove after
defining the full twist. Let RedTb

(c) represent the set of minimal length positive words in the
generators Tb for c. Define [RedTb

(c)] as setting all the elements of RedTb
(c) equal.

Conjecture 4.3 ([Wil25], Page 10). We have

π1(V
reg

C , xB) = ⟨Tb : [RedTb
(c)]⟩.

5. Noncrossing Subarrangements

We now specialize to the case of finite Coxeter arrangements. Throughout this section, let W be
a finite Coxeter group with associated Coxeter arrangement H, and fix a base region B of H.

We adopt notation similar to Williams’s note [Wil25] to match the notation for Theorem 5.1.
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5.1. Noncrossing Subarrangements. The base region B specifies the identity e for the Coxeter
group W . The reflections across the bounding hyperplanes of B are the simple reflections S of W ,
and the reflections in all the hyperplanes of H are the reflections T of W . If w ∈ W , let ℓT (w)
represent the minimal length of a word for w using the generating set T . For two elements w,
u ∈ W , we say w ≤T u if and only if ℓT (u) = ℓT (w) + ℓT (w

−1u). A Coxeter element c is obtained
by multiplying together all of the simple reflections in S in some order. Given such a c, an element
w ∈ W is called c-noncrossing whenever w ≤T c. Define

Fix(w) = ker(w − 1)

to be the points of Rn fixed by w. A full subarrangement A ⊂ H is c-noncrossing if⋂
A = Fix(w)

for some c-noncrossing element w; otherwise, it is c-crossing . Write NC(H, c) for the poset of
noncrossing subarrangements A, ordered by reverse inclusion of

⋂
A.

On the other hand, index the simple reflections of W so that a reduced word for c is c = s1 · · · sn
(our definitions will not depend on the particular reduced word chosen). For any element w ∈ W ,
Reading defines its c-sorting word w(c) to be the left-most reduced word for w that is a subword
of c∞ = s1 · · · sn|s1 · · · sn| · · · [Rea07].

Define Tc := Tb to be the generators of P (W ) given by the gallery specified by the c-sorting word
w◦(c) for the long element. We have the following structural theorem, which will give us control
over the c-noncrossing rank-two subarrangements.

Theorem 5.1 ([Wil25], Page 13). For each c-noncrossing rank-two subarrangement A of H, there
is a choice of two-cells in P∗(H, B) with edges labeled as e1, e2, . . . , eM , eM+1, . . . , e2M , so that
{Hei}Mi=1 = A, He1 <b · · · <b HeM , and tei ∼= bHei

.

A consequence of Theorem 5.1 is that for each c-noncrossing rank-two subarrangement A, the
relations [A]Tc can be easily expressed in the generators Tc without any conjugations from The-
orem 3.2. If A contains the hyperplanes Hi1 <c · · · <c Hik , the relation corresponding to this
subarrangement would be

tik · · · ti2ti1 = ti1tik · · · ti1ti2 = · · · = tik−1
· · · ti1tik .

Therefore, if we use the positive minimal gallery associated with the c-sorting word for the
long element, the relations for the c-noncrossing rank two subarrangements are easily produced.
However, the c-crossing rank two subarrangements require more computation, as one can witness
in the next section.

There is one last important definition and theorem we need to include before the last section.

Definition 5.2. Write w(c) = w(c)1w(c)2 · · ·w(c)k where each w(c)i is a subword of c. We call w
c-sortable if w(c)1 ⊇ w(c)2 ⊇ · · · ⊇ w(c)k.

Theorem 5.3 ([Wil25], Page 14). For each hyperplane H, there is exactly one join-irreducible
jH ∈ Sort(W, c) such that cov(jH) = {H} where cov(w) is the set of hyperplanes covered by w.

6. Computation for Coxeter Groups

In this section, we carry out explicit calculations for each irreducible Coxeter type that arises
in our study. Our goal is to exhibit the generating relations in P (W ) corresponding to rank-two
subarrangements, distinguishing the noncrossing cases (which follow directly from the c-sorting
gallery) from the crossing ones (which require additional analysis).
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6.1. Notation. For each finite Coxeter group W , we will decide a Coxeter element c with w◦(c)
being the c-sorting word for the long element. According to Theorem 5.1, this denotes an order to
the reflections of W as

t1 <c · · · <c tN .

With this positive minimal gallery, we can fix the generating set for P (W ) as

tc := {t1, . . . , tN}.

To simplify the notation, we will index our generating set by some totally ordered set I (for example,
like the alphabet) and i ∈ I denotes the element ti by i.

Also, for the sake of simplicity and convenience, we will write the relations for the generators of
P (W ) using the notations

[ti1ti2 · · · tik ] :=
(
ti1ti2 · · · tik = ti2 · · · tikti1 = · · · = tikti1 · · · tik−1

)
t

tik ·····ti1
i :=

(
t−1
i1

· · · t−1
ik

)
ti (tik · · · ti1) .

6.2. Type A. Let W (An−1) be the symmetric group on n letters, with simple reflections si = (i,
i + 1) for 1 ≤ i < n. A standard choice of Coxeter element is c = sn−1 · · · s2s1. This construction
produces the c-sorting word of the longest element:

w◦(c) = (sn−1sn−2 · · · s1) (sn−1sn−2 · · · s2) · · · (s2s1) (s1),

and the resulting inversion sequence arranges the transpositions in reverse lexicographic order:

((n− 1)n) <c ((n− 2)n) <c · · · <c (1n) <c ((n− 2)(n− 1)) <c · · · <c (12).

In type A, we always list the smaller element of each transposition first. Lifting these reflections
into the braid group via the successive prefixes of w◦(c) yields

((n − 1)n) = s2n−1,

((n − 2)n) = sn−1 s
2
n−2 sn−1,

...

(1n) = sn−1 sn−2 · · · s21 · · · sn−2 sn−1,

...

(12) = s21.

6.2.1. Rank-Two Subarrangements. The intersection lattice of type An−1 is canonically identified
with the lattice of set partitions of {1, 2, . . . , n}. A rank-two intersection corresponds either to
one block of size three or to two disjoint blocks of size two. If the vertices 1, 2, . . . , n are placed
uniformly around a circle in clockwise order, each block can be depicted as the convex hull of its
vertices. A subarrangement is called c-noncrossing if its blocks’ convex hulls do not intersect, and
c-crossing otherwise (see Figure 1). Changing to a different Coxeter element c′ permutes the labels
around the circle according to the cycle structure of c′, but the noncrossing criterion remains the
same when arcs are drawn between the new labels.

We use the notation Nc(W, type) to denote the set of c-noncrossing full rank-two subarrange-
ments of type W whose underlying root system is of the specified type, and Cc(W, type) to denote
the corresponding set of c-crossing subarrangements.
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6.2.2. Handling c-Crossing Subarrangements. In type An−1, any full rank-two subarrangement can
be made c′-noncrossing by choosing an appropriate Coxeter element c′—in fact, one may always
take c′ to be a cyclic rotation of the standard c = sn−1 · · · s1.

To make this precise, for each 1 ≤ k ≤ n− 1 define

ck := sk sk−1 · · · s1 sn−1 · · · sk+1,

so that cn−1 = c. For each reflection (rs) ∈ T , let

J ck
rs ∈ Sort(W, ck)

denote the unique ck-sortable join-irreducible element whose cover reflection is (rs).

Lemma 6.1. If {Hij , Hrs} ∈ Cc
(
An−1, A1 ×A1

)
, then in fact

{Hij , Hrs} ∈ N c j−1

(
An−1, A1 ×A1

)
.

Proof. The cycle decomposition of cj−1 is

(j, n, n− 1, . . . , j + 1, j − 1, . . . , 1).

Arranging the labels around a circle in this order shows that the chords from i to j and from r to
s no longer cross. □

Lemma 6.2. For any reflection (rs) ∈ T ,

S
(
Jc
rs

)
\ S

(
J

c j−1
rs

)
=

{
{Hj s}, r < j < s,

∅, otherwise.

Proof. First suppose r < j < s. Then the product

(sj−1sj−2 · · · sr) (ss−1ss−2 · · · sr+1)

is cj−1-sortable, with its unique descent corresponding to the covered reflection (rs); hence it is a

reduced expression for J
c j−1
rs . Its inversion set is

S
(
J

c j−1
rs

)
= {Hj,j+1, . . . ,Hr,j+1} ∪ {Hs−1,s, . . . ,Hj+1,s} ∪ {Hj−1,s, . . . ,Hr,s}.

On the other hand, one checks that

Jc
rs = ss−1ss−2 · · · sr,

so
S
(
Jc
rs

)
= {Hs−1,s, . . . ,Hr,s}.

Therefore, we see that the set difference S(Jc
rs) \ S(J

cj−1
rs ) = Hj,s.

If j does not lie strictly between r and s, then the same reduced word

ss−1ss−2 · · · sr
is both cj−1 and c-sortable, so J

cj−1
rs = Jc

rs and the set difference is empty. □

Proposition 6.3. Fix type An−1 and c = sn−1sn−2 · · · s1. Every full rank-two subarrangement of
the Coxeter arrangement of type An−1 lies in one of the sets Nc(A1×A1), Nc(A2), or Cc(A1×A1)
given in Figure 1. Note that the relations for the Cc(A1×A1) are given by 6.1 and 6.2.

If we recall Theorem 5.1, a direct application of this theorem for the c-noncrossing subarrange-
ment combined with Lemma 6.1 and Lemma 6.2 yields the following presentation for P (An−1).

P (An−1) =

〈 [(ij)(rs)] if {Hij , Hrs} ∈ Nc(An−1, A1 ×A1)
Tc [(ij)(ik)(jk)] if {Hij , Hik, Hjk} ∈ Nc(An−1, A2)

[(ij)(rs)(js)] if {Hij , Hrs} ∈ Cc(An−1, A1 ×A1)

〉
.

One can easily verify that the c-crossing relation can be written positively to obtain the following
presentation.
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Type An−1 c-Noncrossing Full Rank-Two Subarrangements
Label Nc(An−1, A1×A1) Nc(An−1, A2)

Subarrangement {Hij , Hrs} {Hij , Hik, Hjk}

Conditions i<j<r<s or i<r<s<j i<j<k

Picture 1
i

jr
s

n. .
.

1
i

rs
j

n. .
.

1
i

jk

n. .
.

Relation [(ij)(rs)] [(ij)(ik)(jk)]

Type An−1 c-Crossing Full Rank-Two Subarrangements
Label Cc(An−1, A1×A1)

Subarrangement {Hij , Hrs}

Conditions i<r<j<s

Picture 1
i

rj
s

n. .
.

Relation [(ij)(rs)(js)]

Figure 1. The full rank-two subarrangements of type An−1.

Theorem 6.4. The pure braid group P (An−1) has the positive presentation:

P (An−1) =

〈
[(ij)(rs)] if {Hij , Hrs} ∈ Nc(An−1, A1 ×A1)

Tc [(ij)(ik)(jk)] if {Hij , Hik, Hjk} ∈ Nc(An−1, A2)
(ij)(is)(rs)(js) = (is)(rs)(js)(ij) if {Hij , Hrs} ∈ Cc(An−1, A1 ×A1)

〉
.

Proof. We only have to confirm that the positive c-crossing relations are equivalent to the original
c-crossing relations. This follows easily from the computation:

(ij)(js)(rs)(js) = (js)(rs)(js)(ij)

(js)(ij)(js)(rs)(js) = (rs)(js)(ij)

(is)(js)(ij)(js)(rs)(js) = (is)(rs)(js)(ij)

(ij)(is)(rs)(js) = (is)(rs)(js)(ij).

The last step invokes a relation of type Nc(An−1, A2). □

6.3. Type B. We will denote the n2 reflections of type Bn in cycle notation as

((i, j)) := (i, j)(i, j) for 1 ≤ i < j ≤ n and

(i, i) for 1 ≤ i ≤ n.

We write si = ((i, i+1)) for 1 ≤ i < n and sn := (n, n) and choose the Coxeter element c = s1s2 · · · sn,
which yields the c-sorting word for the long element.

w◦(c) = (s1s2 · · · sn)n

and the corresponding inversion sequence orders the reflections in the order

((1, 2)) <c ((1, 3)) <c · · · <c ((1, n)) <c ((1, 1)) <c
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((2, 3)) <c ((2, 4)) <c · · · ((2, 1)) <c (2, 2) <c · · · <c

((n, 1)) <c ((n, 2)) <c · · · <c (n, n).

6.3.1. Rank-two Subarrangements. The type Bn intersection lattice is isomorphic to the lattice of
centrally symmetric set partitions on {1, 2, . . . , n, 1, 2, . . . , n}, with at most one block B with B = B
[Rei97,AR04]. Therefore, a rank-two intersection corresponds to a centrally symmetric set partition
with two blocks of size three, four blocks of size two, or one block of size four.

If we space 2n vertices regularly around a circle, numbered clockwise from 1 up to n and then from
1 to n, blocks can be represented by the convex hull of the vertices they contain. A c-noncrossing
subarrangement is one whose blocks do not intersect, while a c-crossing subarrangement will have
intersecting blocks. See Figures 2 and 3. We will characterize all full rank-two subarrangements in
type Bn as presenting in the following .

Proposition 6.5. Fix type Bn−1 and c = s1s2 · · · sn. Every full rank-two subarrangement of the
Coxeter arrangement of type Bn lies in one of the sets given in Figures 2 and 3.

6.3.2. Dealing with c-Crossing Subarrangements. In type B, the only rank-two subarrangements
that are not c′-noncrossing for some choice of Coxeter element c′ are those of the form Cc(Bn,
A1×A1, 2A). For all other c-crossing subarrangements, we can take c′ to be a cyclic rotation of
c = s1 · · · sn.

Define the Coxeter element ca := sasa+1 · · · sns1 · · · sa−1 so that c1 = c. For each ca, let Jca
rs ∈

Sort(W, ca) be the unique ca-sortable join-irreducible element whose cover reflection is ((rs)), and
similarly for Jca

rs = Jca
rs and Jca

ss .

Lemma 6.6. Each c-crossing subarrangement is noncrossing for some choice of ca:

• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1A) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir, Hrj},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.
• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1A

′) is noncrossing for c|j| and

S(J
c|j|
ij ) \ S(Jc

ij) = ∅,

S(J
c|j|
rs ) \ S(Jc

rs) = {Hsj , Hrj}.
• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1B) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.
• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1B

′) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.
• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1C) is noncrossing for c|j| and

S(J
c|j|
ij ) \ S(Jc

ij) = {Hij , Hii},

S(J
c|j|
rs ) \ S(Jc

rs) = {Hrj}.
• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1C

′) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.
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• {Hij , Hkk} ∈ Cc(Bn, A1×A1, 2A
′) is noncrossing for c|i| and

S(J
c|i|

kk
) \ S(Jc

kk
) = {Hki},

S(J
c|i|
ij ) \ S(Jc

ij) = ∅}.

• {Hij , Hkk} ∈ Cc(Bn, A1×A1, 2B) is noncrossing for c|k| and

S(J
c|k|

kk
) \ S(Jc

kk
) = ∅,

S(J
c|k|
ij ) \ S(Jc

ij) = {Hik}.

• {Hij , Hik, Hjk} ∈ Cc(Bn, A2) is noncrossing for c|j| and

S(J
c|j|
jk ) \ S(Jc

jk) = ∅,

S(J
c|j|
ij ) \ S(Jc

ij) = {Hii, Hij}

S(J
c|j|
ik ) \ S(Jc

ik) = {Hij}.

Proof. The cycle notation of ck labels the circle clockwise by the numbers k, 1, 2, . . . , k − 1, k + 1,
. . . , n, k, 1, 2, . . . , k − 1, k + 1, . . . , n. One checks that the partitions given by the subarrangements
in each case above are noncrossing with respect to this order.

To confirm the statements about the differences in inversion sets, it suffices to explicitly identify
the sorting words for the ca-sortable and c-sortable join irreducibles. This is a straightforward but
tedious process. We will only present two cases where the other cases are left to interested readers.

• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1A)

J
c|r|
ij = s|r|s|r|+1 · · · sn · (s|i|s|i|+1 · · · sn · s|j|−1s|j| · · · sn−1)

Jc
ij = s|i|s|i|+1 · · · sn · s|j|−1s|j| · · · sn−1

J
c|r|
rs = Jc

rs = s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1.

One checks that the two inversions in Jc
ij not in J

c|r|
ij correspond to the first copy of the

simple reflection s|r|−1 and the second copy of s|r|−2 in the c-sorting word for Jc
ij .

• {Hij , Hrs} ∈ Cc(Bn, A1×A1, 1A
′)

J
c|j|
ij = Jc

ij = si · · · sj−1

J
c|j|
rs = s|j|s|j|+1 · · · sn · s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1

Jc
rs = s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1.

One checks that the two inversions in Jc
rs not in J

c|j|
rs correspond to the first copy of the

simple reflection s|j|−1 and the second copy of s|j|−2 in the c-sorting word for Jc
rs.

□

6.3.3. Presentations.

Theorem 6.7. A presentation for P (Bn) is given by tc subject to the four classes of c-noncrossing
relations in Figure 2 and the ten classes of c-crossing relations in Figure 3.

In fact, it is possible to show that all the c-crossing relations can be rewritten positively. We will
show the derivation for positive relations for Cc(Bn, A1×A1, 2B) and Cc(Bn, A2), where the others
are similar. For Cc(Bn, A1×A1, 2B) we can compute:

(kk)((ik))((ij))((ik)) = ((ik))((ij))((ik))(kk)

((ik))(ii)((ik))(kk)((ik))((ij))((ik)) = ((ik))(ii)((ij))((ik))(kk)
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(kk)((ik))(ii)((ij))((ik)) = ((ik))(ii)((ij))((ik))(kk),

where we used a relation of type Nc(Bn, B2). Then for Cc(Bn, A2) we have

((jk))((ij))(ii)((ij))(ii)((ij))((ij))((ik))((ij)) = ((ij))(ii)((ij))(ii)((ij))((ij))((ik))((ij))((jk)) = ((ij))((ik))((ij))((jk))((ij))(ii)((ij))(ii)((ij))

((ij))((jk))((ij))(ii)((ij))(ii)((ik))((ij)) = (ii)((ij))(ii)((ik))((ij))((jk)) = ((ik))((ij))((jk))((ij))(ii)((ij))(ii)((ij))

((jk))((ik))(ii)((ij))(ii)((ik))((ij)) = ((ik))(ii)((ij))(ii)((ik))((ij))((jk)) = ((ik))((ik))((ij))((jk))((ij))(ii)((ij))(ii)((ij))

((jk))((ik))(ii)((ij))(ii)((ik))((ij))(jj) = ((ik))(ii)((ij))(ii)((ik))((ij))((jk))(jj) = ((ik))((ik))((ij))((jk))((ij))(ii)((ij))(ii)((ij))(jj)

((jk))((ik))(ii)((ij))(ii)((ik))((ij))(jj) = ((ik))(ii)((ij))(ii)((ik))((ij))((jk))(jj) = ((ik))((ik))((ij))((jk))(jj)((ij))

((jk))((ik))(ii)(jj)((ij))(ii)((ik))((ij))((jk))(kk) = ((ik))(ii)((ij))(ii)((ik))((ij))((jk))(jj)((jk))(kk) = ((ik))((ik))((ij))((jk))(jj)((ij))((jk))(kk)

((jk))((ik))(ii)(jj)((ij))(ii)((ij))((jk))((ik))(kk) = ((ik))(ii)((ij))(ii)((ik))((ij))(jj)((jk))(kk)((jk)) = ((ik))((ik))((ij))((jk))(jj)((ij))((jk))(kk)

((jk))((ik))((ij))(jj)((ij))((jk))((ik))(kk) = ((ik))(ii)(jj)((ij))(ii)((ik))((ij))((jk))(kk)((jk)) = ((ik))((ik))((ij))((jk))(jj)((ij))((jk))(kk)

((ik))((ij))((jk))(jj)((ij))((jk))((ik))(kk) = ((ik))(ii)(jj)((ij))(ii)((ij))((jk))((ik))(kk)((jk)) = ((ik))((ik))((ij))((jk))(jj)((ij))((jk))(kk)

((ij))((jk))(jj)((ij))((jk))((ik))(kk) = ((ij))(jj)((ij))((jk))((ik))(kk)((jk)) = ((ik))((ij))((jk))(jj)((ij))((jk))(kk).

In this computation, we have used relations of types Nc(Bn, A2), Nc(Bn, B2), and Cc(Bn, A1×A1,
2B).

6.4. Type D. We denote the n(n−1) reflections of type Dn in cycle notation by

((i, j)) = (i, j)(̄i, j̄), ((i, j̄)) = (i, j̄)(̄i, j), 1 ≤ i < j ≤ n.

We write si = ((i, i + 1)) for 1 ≤ i < n and sn−1 = ((n − 1, n̄)). We choose the Coxeter element
c = s1s2s3 · · · sn, which yields the c-sorting word for the long element:

w◦(c) = (s1s2 · · · sn)n−1.

The corresponding inversion sequence orders the reflections as

((1, 2)) <c ((1, 3)) <c · · · <c ((1, n)) <c ((2, 3)) <c ((2, 4)) <c · · · <c ((n− 1, n))

<c ((1, 2̄)) <c ((1, 3̄)) <c · · · <c ((n− 1, n̄)).

6.4.1. Rank-two Subarrangements. The type Dn intersection lattice is isomorphic to the lattice of
centrally symmetric set partitions on {1, 2, . . . , n, 1, 2, . . . , n}, with at most one block B with B = B
such that |B| ≥ 4. In other words, the block B cannot consist of only one pair {i, i} [AR04,Rei97].
Therefore, a rank-two intersection corresponds to a centrally symmetric set partition with two
blocks of size three and four blocks of size two. Note that a block of size four is impossible because
there exist no reflections of the form (i, i) in the hyperplane arrangement for Dn.

If we space 2n vertices regularly around a circle, numbered clockwise from 1 up to n and then from
1 to n, blocks can be represented by the convex hull of the vertices they contain. A c-noncrossing
subarrangement is one whose blocks do not intersect, while a c-crossing subarrangement will have
intersecting blocks; see Figures 4 and 5. We characterize all full rank-two subarrangements in type
Dn in the following proposition.

Proposition 6.8. Fix type Dn and c = s1s2 · · · sn. Every full rank-two subarrangement of the
Coxeter arrangement of type Dn lies in one of the sets given in Figures 4 and 5.

6.4.2. Dealing with c-Crossing Subarrangements. In type D, every full rank-two subarrangement is
actually c′-noncrossing for some choice of Coxeter element c′, which we can take as a cyclic rotation
of c = s1 · · · sn.

Define the Coxeter element ca := sasa+1 · · · sns1 · · · sa−1 so that c1 = c. For each ca, let Jca
rs ∈

Sort(W, ca) be the unique ca-sortable join-irreducible element whose cover reflection is ((rs)), and
similarly for Jca

rs = Jca
rs .

Lemma 6.9. Each c-crossing subarrangement is noncrossing for some choice of ca:
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• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1A) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir, Hrj},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1A
′) is noncrossing for c|j| and

S(J
c|j|
ij ) \ S(Jc

ij) = ∅,

S(J
c|j|
rs ) \ S(Jc

rs) = {Hsj , Hrj}.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1B) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1B
′) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1C) is noncrossing for c|j| and

S(J
c|j|
ij ) \ S(Jc

ij) = {Hij},

S(J
c|j|
rs ) \ S(Jc

rs) = {Hrj}.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1C
′) is noncrossing for c|r| and

S(J
c|r|
ij ) \ S(Jc

ij) = {Hir},

S(J
c|r|
rs ) \ S(Jc

rs) = ∅.

• {Hij , Hik, Hjk} ∈ Cc(Dn, A2) is noncrossing for c|j| and

S(J
c|j|
jk ) \ S(Jc

jk) = ∅,

S(J
c|j|
ij ) \ S(Jc

ij) = {Hij}

S(J
c|j|
ik ) \ S(Jc

ik) = {Hij}.

Proof. The cycle notation of ck labels the circle clockwise by the numbers k, 1, 2, . . . , k − 1, k + 1,
. . . , n − 1, k, 1, 2, . . . , k − 1, k + 1, . . . , n− 1. The point in the center essentially swaps n and −n
because of the transposition (n, n). One checks that the partitions given by the subarrangements
in each case above are noncrossing with respect to this order.

To confirm the statements about the differences in inversion sets, it suffices to explicitly identify
the sorting words for the ca-sortable and c-sortable join irreducibles. This is a straightforward but
tedious process. We will only present two cases where the other cases are left to interested readers.

• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1A)

J
c|r|
ij = s|r|s|r|+1 · · · sn · (s|i|s|i|+1 · · · sn · s|j|−1s|j| · · · sn−1)

Jc
ij = s|i|s|i|+1 · · · sn · s|j|−1s|j| · · · sn−1

J
c|r|
rs = Jc

rs = s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1.

One checks that the two inversions in Jc
ij not in J

c|r|
ij correspond to the first copy of the

simple reflection s|r|−1 and the second copy of s|r|−2 in the c-sorting word for Jc
ij .
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• {Hij , Hrs} ∈ Cc(Dn, A1×A1, 1A
′)

J
c|j|
ij = Jc

ij = si · · · sj−1

J
c|j|
rs = s|j|s|j|+1 · · · sn · s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1

Jc
rs = s|r|s|r|+1 · · · sn · s|s|−1s|s| · · · sn−1.

One checks that the two inversions in Jc
rs not in J

c|j|
rs correspond to the first copy of the

simple reflection s|j|−1 and the second copy of s|j|−2 in the c-sorting word for Jc
rs.

□

6.4.3. Presentations. Applying Lemma 6.9, one can obtain the relations for the different types of
the subarrangement similar to the process in types A and B.

Theorem 6.10. A presentation for P (Dn) is given by tc subject to the two classes of c-noncrossing
relations in Figure 4 and the seven classes of c-crossing relations in Figure 5.

Similarly to type Bn, it is possible to show, through extensive computation, that all the c-crossing
relations can be rewritten positively. Here, we will show the derivation for positive relations for
Cc(Dn, A1 ×A1, 1D), where we compute

((rs))((ir))((ij))((ir)) = ((ir))((ij))((ir))(rs)

((is))((ir))((rs))((ir))((ij))((ir)) = ((is))((ir))((ir))((ij))((ir))(rs)

((rs))((is))((ij))((ir)) = ((is))((ij))((ir))(rs),

where we used a relation of type Nc(Bn, A2).

6.5. Dihedral Groups. The dihedral group I2(m) only has two simple reflections. The choice of
any Coxeter element indexes the m generators of P (I2(m)) as

tc := {1 <c 2 <c · · · <c m}.
One can easily see the dihedral has a single rank-two subspace which is c-noncrossing. Hence, we
can deduce the following positive presentation.

Theorem 6.11. The pure braid group P (I2(m)) has the positive presentation:

P (I2(m)) =
〈

tc [m · · · 1]
〉
=

〈
tc Redtc(c)

〉
.

Proof. The single rank-two subspace is c-noncrossing. □

6.6. Type H3. The Coxeter diagram is 1
5−→ 2 → 3. We choose the Coxeter element c = s1s2s3

and label the fifteen generators for P (H3) using the first fifteen letters of the alphabet.

tc := {a <c b <c · · · <c o}.

6.6.1. Presentations. There are 15 c-noncrossing rank-two subspaces where the noncrossing par-
tition is self-dual with four ranks by the Kreweras complement. Therefore, there are the same
number of c-noncrossing rank-two subspaces as there are reflections. One can verify that there are
five subspaces each of types A1 ×A1, A2, and I2(5). The 15 relations for these subspaces are given
in Figure 6.

On the other hand, the lattice of subspaces of the type H3 Coxeter arrangement has 31 rank-two
subspaces. Of the 16 remaining c-crossing rank-two subspaces, 10 are of type A1×A1, 5 are of type
A2, and 1 is of type I2(5). The sixteen remaining relations are also shown in Figure 6.

It follows from an unenlightening computation that the sixteen relations above are equivalent to
the sixteen positive relations given in Figure 7. We will not include the details of this computation.
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c-Noncrossing
Label Nc(H3, A1×A1) Nc(H3, A2) Nc(H3, I2(5))

Relation

[oa] [onl] [omkjf]
[ml] [ocb] [oiged]
[ji] [lki] [ljhgc]
[gf] [ihf] [lfdba]
[dc] [fec] [nmica]

c-Crossing
Label Cc(H3, A1×A1) Cc(H3, A2) Cc(H3, I2(5))

Relation

[ohf]
[nljfd]

[nlkjfdhfdedb]

[ngca]
[nlf]

[micagcaba]
[migcbaecba]

[lec]
[kicgca]

[kjfd]
[kic]

[jfdbedba]
[jfdb]
[icaba]

[mkjfhfd]
[hgca]

Figure 6. The 15 relations arising from the c-non-crossing rank-two subspaces
and the 16 relations arising from the c-crossing rank-two subspaces. The c-crossing
relations are rewritten in a positive form in Figure 7.

Theorem 6.12. The generating set tc with relations given by the 15 c-noncrossing relations in Fig-
ure 6 and 16 positive c-crossing relations in Figure 7 is a positive presentation for P (H3).

Corollary 6.13.

P (H3) = ⟨tc : Redtc(c)⟩.

Proof. Each relation in Figures 6 and 7 can be completed to a word for the full twist. □

A1×A1 A2 I2(5)
foih = hfoi nljfdomk = ljfdonmk

= lfdonmkj
jfdonmkihgecb

nmigca = migcan = kjhfedbonmigc
nlfo = lfon omigcban = oigcbanm

= bomigcan
= jhfedbonmkigc

domige = edomig = jfedbonmkihgc
clfe = eclf nmkigcal = nmigcalk

= anmkigcl
= jfdbonmkihgec

kjfdom = jfdomk
kicl = iclk cljfedba = ecaljfdb

= caljfedbaljfdb = baljfd
oicb = boic mkjhfdoican = kjhfdomican

= kjfdoihcanmhgcalj = gcaljh

Figure 7. Positive relations equivalent to the c-crossing relations in Figure 6.

6.7. Type F4.
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6.7.1. Root System and Intersection Lattice. A model for the root system Φ ⊂ R4 of type F4 is

Φ = {±ei ± ej : 1 ≤ i < j ≤ 4} ∪ {±ei : 1 ≤ i ≤ 4} ∪
{
1
2(±e1 ± e2 ± e3 ± e4)

}
,

with 48 roots in total (24 long, 24 short). One convenient choice of simple roots is

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 = −1
2(e1 + e2 + e3 + e4).

Let W (F4) denote the reflection group generated by s1, . . . , s4 acting on R4. For each positive
root α ∈ Φ+, the reflecting hyperplane Hα = {x ∈ R4 : ⟨x, α⟩ = 0} belongs to the Coxeter
arrangement A(F4), which consists of |Φ+| = 24 hyperplanes. The intersection lattice

L(A(F4)) = {
⋂
H∈S

H : S ⊆ A(F4)},

ordered by reverse inclusion, is a rank-4 geometric lattice and is in bijection with the nonstandard
parabolic subgroups of W (F4).

6.7.2. Presentations. The Coxeter diagram is 1 → 2
4−→ 3 → 4. We pick the Coxeter element

c = s1s2s3s4 whose order (the Coxeter number) is h = 12 and label the 24 generators for P (F4) by
the first 24 letters of the alphabet.

tc := {a <c b <c · · · <c x}.

The noncrossing partition lattice NC(F4, c) is a graded, self-dual poset of rank 4. One computes
that there are exactly 55 such c-noncrossing subarrangements, where 24 are of type A1 × A1, 16
are of type A2, and 15 are of type B2. Directly referencing Theorem 5.1, we see that these gave
rise to the 55 non-crossing relations listed in Figure 8.

On the other hand, the full intersection lattice L(A(F4)) has 122 rank-2 subarrangements, of
which the remaining 67 are c-crossing (decomposing into 48 of type A1 × A1, 16 of type A2, and
3 of type B2). Choosing one standard generating face per crossing flat yields the additional 67
relations in Figure 9.

The 67 c-crossing relations can be rewritten into 67 positive relations similar to the process for
H3. The positive form of these relations is given in Figure 10. We will include an example of a
computation for a c-crossing A2 relation.

g−1m−1umgg−1jgf = fg−1m−1umgg−1jg = g−1jgfg−1m−1umg

g−1m−1umjgf = fg−1m−1umjg = g−1jgfg−1m−1umg

g−1m−1umjgf = fg−1m−1umjg = g−1jgfeue−1

xmgg−1m−1umjgf = fxmgf−1fg−1m−1umjg = xmgg−1jgfeue−1

xumjgf = fxumjg = xmjgfeue−1

xumjgfe = fxumjge = xmjgfeu

where the relations used are

xmgf = fxmg and umge = mgeu.

We will not include the details of the rest of the computation. Formally, we can express our two
conjectures as

Conjecture 6.14. The generating set tc with relations given by the 55 c-noncrossing relations
in Figure 8 and 67 positive c-crossing relations (after rewriting completely) in Figure 10 is a positive
presentation for P (F4).
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Conjecture 6.15.
P (F4) = ⟨tc : Redtc(c)⟩.

Since all remaining (c)-crossing relations have now been rewritten as positive relations, we can
directly test whether they occur as prefixes of words for the full twist. We can use Theorem 4.2
and its conjectured backward direction to determine, for each relation, a partial selection of edges
corresponding to a parabolic subsystem, possibly with additional reflections interspersed. We then
complete this partial ordering arbitrarily to a full (c)-oriented DAG and verify using GAP3 that
the resulting product equals the full twist [CHE16]. While it is not currently complete, we can use
this approach to prove 6.15.
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c-Noncrossing

Label Nc(F4, A1×A1) Nc(F4, A2) Nc(F4, B2)

Relation

[xe] [xwt] [xvsq]
[xb] [xph] [xuon]
[xa] [xdc] [xmgf]
[wa] [vua] [wvpe]
[vt] [urq] [wudb]
[ut] [ume] [uonh]
[us] [tsp] [trom]
[up] [tld] [tqhe]
[ta] [qnm] [srla]
[rp] [qia] [qkjd]
[qp] [pol] [pnki]
[qo] [mji] [pmda]
[ql] [lkh] [ljge]
[nl] [ife] [hfca]
[ml] [hgd]
[mk]
[mh]
[jh]
[ih]
[ig]
[id]
[fd]
[ed]
[ec]

Figure 8. The 55 relations arising from the c-non-crossing rank-two subspaces.
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c-Crossing

Label Cc(F4, A1×A1) Cc(F4, A2) Cc(F4, B2)

Relation

[kul] [fjgumg] [bgenmhespmhe]
[fomjg] [bjdromld] [cjdomldvumld]
[bpe] [hspwvp] [fkirqliwtqli]
[jxm] [bfeqhe]
[jwul] [cldwud]
[aki] [bmdvud]
[cqi] [fnhvsqph]
[crli] [ajdnmd]
[mwu] [cgedpmed]
[dnm] [ckisrqli]
[hvp] [konmxpnm]
[iol] [enhrqph]
[ekh] [irlvul]
[nxp] [gomwvupm]
[iwt] [dolsrl]
[bhe] [gkjitlji]
[nwvsp]
[jtl]
[qwt]
[jpm]
[cmd]
[jsrol]
[aol]

[bkjgd]
[fti]
[fph]
[esp]
[fsqh]
[gqh]
[cnhgf]
[msp]
[gvpm]
[bld]
[cud]
[eom]
[hrq]
[agd]
[kvpon]
[ntq]
[fli]

[grponm]
[isq]
[dvu]
[drl]
[gum]
[lvu]
[bomd]
[rxu]

Figure 9. The 67 relations arising from the c-crossing rank-two subspaces. The
c-crossing relations are rewritten in a positive form in Figure 10.
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A1 ×A1 A2 B2

khol = holka taud = adut xwtekga = tekgaxw =
kgaxwte

fkrqlit = krqlitf =
rqlitfk = qlitfkr

badu = adub jagn = agnj hgnicox = nicoxhg = icoxhgn bgnmhep =
gnmhepb =
nmhepbg =
mhepbgn

jaxn = axnj nxxn = xxon jkrguse = rgusejk = gusejkr cjomldu = jomlduc =
omlducj = mlducjo

nxnx = xnxn rkcrm = kcrmr xmspeth = spethxm =
pethxms

rkcrm = kcrmr okfq = kfqeo jldaqpe = ldaqpej = daqpejl
okfq = kfqeo omis = miso kldotrx = ldotrxk = dotrxkl
omis = miso outb = utbou ufdaoxm = fdaoxmu =

daoxmuf
outb = utbou kxpu = xpuk jrlncvx = rlncvxj = lncvxjr
kxpu = xpuk gulm = ulmga judqowx = udqowxj =

dqowxju
gulm = ulmga fugi = ugifb ehcbaqo = hcbaqoe =

cbaqoeh
fugi = ugifb flmq = lmqfs vjuifbs = juifbsv = uifbsvj
flmq = lmqfs cgvi = vcigf hnmfsel = nmfselh = mfselhn
cgvi = vcigf icxa = cxai bromld = romldb = omldbr
icxa = cxai dcho = chod fvsqph = vsqphf = sqphfv
dcho = chod dbfu = bfud csrqli = srqlic = rqlics
dbfu = bfud dsqr = srqd gwvupm = wvupmg =

vupmgw
dsqr = srqd asqp = sqpa
asqp = sqpa vspo = spov
vspo = spov vqrt = qrtv
vqrt = qrtv vegi = egiv
vegi = egiv pebi = ebip
pebi = ebip hegs = egsh
hegs = egsh hwic = wich
hwic = wich bsoc = socbx
fxuomjg = xuomjgf bwvumd = wvumdb
ronjdas = sronjda ultdcbw = wultdcb
vspnhew = wvspnhe kixvpon = ixvponk
ldcbtasrqi = dbtrlicasq qifcaxvsph = icasqhfxvp
phgfxewvum =
hfxvpmgewu

Figure 10. Positive relations are equivalent to the c-crossing relations in Figure 8.
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