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ABSTRACT. The behavior of prime elements under ring extensions of integral do-
mains is a fundamental topic in commutative algebra. Given an extension of integral
domains R C T and a prime element p of R, we identify conditions under which
p remains prime in intermediate rings. Assuming that p is prime in T, we prove
that p remains prime in every intermediate ring whenever 7" is an integral overring
of a 1-dimensional domain R. Furthermore, we show that if p is coprime to the
conductor of the extension R C T, then p remains prime in 7" and all intermediate
rings. Next, with the help of a result on prime behavior in minimal extensions, we
prove that this prime stability holds for any extension satisfying the FCP condition,
i.e., every chain of distinct intermediate rings between R and T is finite. Finally,
we determine that if an extension R C T satisfies prime stability for a given prime
element p and v, (r) is finite for all nonzero r € R, then T must be an overring of R.
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1. INTRODUCTION

In the field of commutative ring theory, the behavior of prime ideals in extensions
of commutative rings has been studied extensively. Some of the most notable contri-
butions have been made by Anderson and Dobbs in [?] and Robson in [?]. They have
determined when commutative rings R C 71" share the same prime ideals. In addition,
they were able to expand this question to intermediate rings by determining when all
three commutative rings R C S C T share the same prime ideals.
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Although in domains prime elements correspond to principal prime ideals, treating
them directly highlights arithmetic phenomena not visible at the ideal level. More
recently, prime elements have been considered in a few papers, such as [?] and [?,
Lemma 4.7]. These include criteria for primality in orders of quadratic number fields
and the stability of prime elements in the integral closure of a Noetherian domain.

Consider the ring extensions Z C Z[3i] C Z[i]. The rational prime 3 is prime in
Z and remains prime in Z[i], but it fails to be prime in the intermediate ring Z[3i]
(indeed (3i)*> = —9 = 3 - (—3) in Z[3i], yet i ¢ Z[3i] so 31 3i in Z[3i]). Motivated by
this example and the conjectures in [?], we investigate conditions ensuring that such
instability cannot arise. We refer to this phenomenon as prime stability. Concretely,
given an extension of domains R C T', we study when an element p € R that is prime
in R (and possibly prime in 7T') remains prime in every intermediate ring S with
R C S CT. We also determine various types of extensions that exhibit this form of
stability. Throughout this paper, all rings are assumed to be integral domains.

The main results of this paper are as follows. In Section 3, we prove Conjecture
1.2.5 from [?]. This asserts that in 1-dimensional domains R C T where T is an
integral overring of R, if p is prime in R and 7T, then p is prime in all intermediate
rings. In Section 4, we generalize a result inspired by Proposition 1.1.36 in [?]: if a
prime element p € R is coprime to the conductor (R : T), i.e. pR+ (R :T) = R,
then p remains prime in 7T and all intermediate rings. As an application, we show
that if p is prime in an order of a number field, then p remains prime in the ring of
integers and in all intermediate orders. This classical fact (see [?]) appears here as
a special case of our theorem, thereby linking these commutative algebra inquiries
with the field of algebraic number theory. In Section 5, we develop a tool for minimal
extensions and show that the finite chain property (FCP), which asserts that every
chain of intermediate rings is finite, provides an alternative sufficient condition for
prime stability. We also combine several criteria characterizing FCP from [?] with
our results. Finally, in Section 6, we consider the converse problem and determine
that if an extension R C T satisfies prime stability for a fixed p and v,(r) is finite for
all nonzero r € R, then T is necessarily an overring of R, showing that prime stability
for a fixed element imposes strong structural constraints on the extension.

2. PRELIMINARIES

To study how prime elements behave across ring extensions, we begin by recalling
some basic notions from ring theory and dimension theory. These notions will serve
as tools for formulating sufficient conditions with minimal restrictions. We start with
the definition of the Krull dimension.

Definition 2.1. The Krull dimension or dimension of a ring R, denoted as dim R,
is the supremum of the numbers n for which there exists a chain of prime ideals

P()CP1C"'CPn.
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Consider a 1-dimensional ring R. From the definition, all nonzero prime ideals in
R are maximal. This direct observation becomes crucial in Section 3.
Next, we define a couple of terms related to integrality.

Definition 2.2. Let R C T be domains, and let £ be any element of T'. We say that
t is integral over R if t is the root of some monic polynomial with coefficients in R.
In addition, we say T is an integral extension of R if every element of T' is integral
over R.

The reason why integrality is crucial, specifically integral extensions, is because it
preserves many ideal-theoretic properties. We can see this happen in [?].

Proposition 2.3 ([?]). If R C T is an integral ring extension, then dim R = dim T'.
Next, we define overrings, which also play a central role in our setup.

Definition 2.4. A ring extension 7" of a domain R is an overring of R if T' is a subring
of the quotient field of R.

Consider R C T, where T is an overring of R. The reason why overrings are
important is that they allow us to assume that all the elements of intermediate rings
are of the form § where a, b € R.

Finally, the conductor ideal measures how much structure the two rings share.

Definition 2.5. Let R C T be an extension. The conductor ideal I = (R : T') :—
{re R|rT C R}.

We can easily verify that 0 € I since 0-T =0 € R.
Thus, in a domain, we can rewrite

I:—{O}U{reR\{OHTg%R}.

Notice that if conductor I is nonzero, then there exists an r € R\ {0} such that for
all t € T, we can write t = 2 where s € R. Therefore, we have the following.

Proposition 2.6. Consider the extension R C T. If the conductor is nonzero, then
T is an overring of R.

When analyzing the structure of extensions, in Section 5, we consider the finiteness
condition FCP, which limits the number or depth of intermediate rings.

Definition 2.7. A ring extension R C T satisfies FCP if all chains of intermediate
rings are finite.

In Section 6, the valuation v,(r) will play an important role as a key condition for
our converse problem.
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Definition 2.8. Let R be an integral domain, p € R a prime element, and r € R\{0}.
We define the p-valuation of r, denoted v,(r), as

vp(r) == max{n € Z>o | p" | r in R}.
That is, v,(r) is the largest power of p dividing r in R.

3. PRIME ELEMENT STABILITY IN 1-DIMENSIONAL INTEGRAL OVERRINGS

Recall Conjecture 1.2.5 in [7].

Conjecture 3.1. Suppose that T is an integral overring of a 1-dimensional domain
R. If p is prime in both R and T, then p remains prime in every intermediate ring S
with RC S CT.

With the notation as in Conjecture 3.1, let ¢ € T for some a,b € R. We would like
to be able to assume that one of a and b is not a multiple of p, as motivated by the
following.

Remark 3.2. Let a,b € T. Suppose that we have § a multiple of p in T', so that
5 =p- 5 for some ¢,d € T. We would like to simplify the equation to ad = pbc. From
this we find that ad is a multiple of p in R, so a or d is a multiple of p in R. However,
this information is not useful, as for example if @ and b are both multiples of p so that

a = pa’ and b = pb’ then

and then we have the same situation but with a and b replaced by @’ and V', so no
information is gained.

To avoid situations like this, we attempt to divide both a and b by p whenever a
and b are multiples of p. For this process to always terminate, every element of R
would need to have only finitely many factors of p. However, this condition does not
hold for a general ring R.

Example 3.3. Consider the ring R = Z + zQ[z]. Then, the quotient R/(2) is
isomorphic to Z/(2), which is an integral domain since 2 is prime in Z, so 2 is prime
in R. However, we see that we can factor out infinitely many factors of 2 from z, as
r =2k o for all integers k. However, this does not satisfy the condition that R must
be 1-dimensional, because in the ring R = Z + zQ|z|, we see that (z)Q[z] is a prime
ideal of R contained in the prime ideal (2).

We now present the class of rings for which the undesirable situation in Example
3.3 does not occur.

Definition 3.4. A ring R is Archimedean if every element a has only finitely many
powers of b dividing it for all a,b € R, meaning that ;% ¢ R for some integer k.



Prime Element Stability in Ring Extensions 5)

Motivated by Example 3.3, we will show that if a ring is 1-dimensional, then it
is Archimedean. The following can be found in [?] without proof, thus we will also
provide a proof of the theorem.

Lemma 3.5. [?] Any 1-dimensional ring R is Archimedean.

Proof. Assume for the sake of contradiction that there exist a,b € R such that ;57 € R
for all integers d and b is not a unit. Let B be any maximal ideal of R containing (b),
so that B is prime.

Now, consider the ideal

1
I=(a)R |-+
@nr |}
which is in R by the assumption. We see that b C bR, so as bl = I we see that

I¢(b) CB.
Let S be the multiplicatively closed set

{1,b,0*,b°,---} - (R\ B).

We claim that I avoids S. Assume for the sake of contradiction that I contains cb* for
some ¢ € R\ B and some nonnegative integer k, so that cb* = ar for some r € R [%]
Then, we see that a (b%) =cisin [, so it is in B, a contradiction, proving the claim.

Now, since there exists an ideal of R avoiding S, there exists an ideal J of R which
is maximal with respect to avoiding S by Zorn’s lemma on the nonempty partially
ordered set under inclusion of ideals in R avoiding S. We see that J must be prime,
as S is multiplicatively closed. Now, since J avoids S, which contains R\ B, we see
that J is in B, but J also cannot contain b since b € S, so B strictly contains .J, a
contradiction since both are prime. O

Remark 3.6. The set S naturally falls out of considering elements which are not in
I, and it is “minimal” in some sense, as in this proof we cannot replace S with any
smaller multiplicatively closed set.

Next, we provide a lemma which will be a central part of our ultimate proof in this
section but is also interesting in its own right.

Lemma 3.7. Let R C T be an extension of 1-dimensional domains and p € R prime
i T'. Then, the following are equivalent:

(1) p is prime in R.

(2) pT'NR = pR.

Proof. We will show that (2) = (1) directly and (1) = (2) by contraposition.
First, assume that the second condition is true. This implies that for all » € R we
have

plrr = plrr
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Now, let a,b € R be such that p |g ab. We would like to show that p |gr @ or p |g b.
Then, we see that p |7 ab, so p |7 a or p |r b. This implies that p |g a or p |g b,
implying that p is prime in R.

Now, assume that the second condition is not true. This implies that

pT' N R # pR.
Since pR C pT' N R, this implies that

pR C pT' N R.
Because R is 1-dimensional and p7T'N R is a prime ideal in R, we see that pR cannot
be prime, so p is not prime in R, so we are done. U

We now provide an example of the lemma.

Example 3.8. When R = Zpi] and T' = Z[i] where p € Z is a prime in T, we see that
p is not prime in R since pi-pi = —p? is a multiple of p in R but p {x pi. Furthermore,
we see that pi € R but i ¢ R, in agreement with the theorem.

Lemma 3.7 allows us to quickly determine when p is prime in a smaller ring, a
strong tool when it comes to proving that p is prime in an intermediate ring. We now
prove Conjecture 1.2.5 from [7].

Theorem 3.9. Let R be 1-dimensional and T be an integral overring of R. If p is
prime in R and T, then p is prime in every intermediate ring S.

Proof. We see that R C S and S C T are integral extensions. From Proposition 2.3,
we know that dim S = dim R = 1. Thus, we can apply Lemma 3.7 to the extension
S C T, so that it suffices to show the following.

(*) If t € T satisfies pt € S, thent € S.
Write
b
t=-
c

for b,c € R with ¢ # 0. Since R is 1-dimensional, by Lemma 3.5, it is Archimedean,
so only finitely many powers of p divide b or ¢. Thus we can factor

b:prb/, C:pSC,,
where p 1 V', /. Therefore if r < s we may divide a factor of p" from both b and ¢

and if r > s then we may divide a factor of p® from both b and ¢, so that we may
assume p divides at most one of b and c.

We want to prove p {g ¢. For the sake of contradiction, assume that p |z ¢. Then
¢ = pc; with ¢; € R. Thus
b b
—-=c--€T,
D c
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SO
=beR.

3| o

p .
Applying Lemma 3.7 to R C T implies that g € R, contradicting p{g b. Thus p 15 c.

Notice that if there exist d,e € S such that ptd + e = t, then t € S since we know
pt € S. This is equivalent to
b
-(pd—1)=—e € S.
c
Thus, it suffices to show that there exists d € S such that ¢ | (pd —1). Since R C S,
it is sufficient that there exists d € R such that ¢ |g (pd — 1).

Then, since pR is maximal in the 1-dimensional domain R and ¢ ¢ pR, we see that
pR 4+ cR = R, so there exist k,d € R with ck 4+ pd = 1, or pd — 1 = —ck, implying
that

C |R (pd — 1)

Hence t € S, establishing (x).

By Lemma 3.7 for S C T, condition (x) implies p is prime in S. Since S was
arbitrary, p is prime in every intermediate ring. ([l

Notice that we only use the integrality of 7" over R to make sure that S is 1-
dimensional. Thus, we have the following corollary.

Corollary 3.10. Let R C T be 1-dimensional domains and 7" be an overring of R. If
p is prime in R and T, then p is prime in every 1-dimensional intermediate ring S.

We now provide an example of Theorem 3.9.

Example 3.11. Let Fy C F; C Fy, C F3 C ... be algebraic field extensions. Now,
consider the ring extension R = Fy + o Fy[z] + 22 Fy[z] + 23 F3[z] + -+ C L[z] = R.
Note that R is a 1-dimensional integral overring of R. We can see that 1 + x is prime
in R and R, so 1 + x must be prime in all intermediate rings between R and R.

The restriction to 1-dimensional domains in Theorem 3.9 is essential. If we drop
the dimension condition while retaining the assumption that 7" is an integral overring
of R, prime stability may fail. The following example illustrates this phenomenon.

Example 3.12. Let F' be a field and set
R:= Fla,y*,y°) C S = Fla,ay,y*,y°) C T := Fla,y).

Here T is an integral overring of R, since y is integral over R (satisfying t>—y? € R[t]),
and hence both S and T are integral over R. Note also that dim R = dim 7T = 2, so
R is not 1-dimensional.
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Consider p:=x € R. In R we have

R/(z) = Fly*,y’],
which is an integral domain, so x is prime in R. Similarly, in 7' = F[x,y] the ideal
(x) is prime, since
T/(x) = Fly]
is a domain. However, in the intermediate ring S we have the factorization
vy’ = (zy) - v,
and z divides neither factor in S. Thus x is not a prime element of S.

4. PRIME ELEMENT STABILITY VIA CONDUCTOR COPRIMALITY

In light of Theorem 3.9, it is natural to ask under what other conditions would a
prime p remain “stable”. In this section, we focus on the role of the conductor in the
behavior of prime elements under extensions of domains. Specifically, we show that
when a prime element is “coprime” to the conductor of an extension, it remains prime
not only in the extension itself but also in all intermediate rings. We begin with a
motivating example that illustrates this phenomenon.

Example 4.1. Let K = Q(\/g) and Ox =7 [%‘F’} Set
R:Z—i‘GﬁK, I:(RZﬁK):(SﬁK,

and for each divisor d | 6 define
Sq =12+ d0k.

Then the only intermediate rings are Sy and S3. Let p = 7. Since ged(7,6) = 1, we
have TR + I = R, and one can check that 7 remains prime in R, S,, S3, and 0.

This example suggests that coprimality governs the stability of primality across
intermediate rings. This phenomenon is not isolated; a related result appears in the
arithmetic of rings of integers.

Proposition 4.2 ([?, Proposition 1.1.36]). Let Z[w| be a quadratic integer ring, and
consider Z C Zinw| C Z|w]. Let p € Z be prime in both Z and Z|w). Then p is prime
in Znw| if and only if ged(n,p) = 1.

Both Example 4.1 and Proposition 4.2 highlight the same underlying principle: a
suitable coprimality condition can guarantee that a prime element remains prime in all
intermediate rings. At the same time, they arise in different contexts. Proposition 4.2
treats towers of rings of integers and provides a precise equivalence, while Example 4.1
illustrates one direction of this behavior in a more general construction.

Motivated by these parallels, we abstract the coprimality condition into the lan-
guage of conductors. This leads to the following general result.
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Theorem 4.3. Let R C T be domains, p € R prime, and I := (R : T) # 0 such
that pR+ I = R. Then p remains prime in T and in every intermediate ring S with
RCSCT.

Proof. Since pR + I = R, there exist v € R and u € I such that
pv+u=1.
Now suppose p divides ab in T, i.e., there exists ¢ € T such that
pc=ab, a,byceT.
Multiplying both sides by u?, we get
peu® = (au)(bu).

Without loss of generality, assume p divides au (since p is prime in R). Then there

exists r € R such that
pr = ua.
Now we have
pr + pva = ua + pva = a,
SO
p(r +va) = a.
Thus p divides a in T', and therefore p is prime in 7.
Let S satisfy R C S C T. Since the conductor grows with the ring, we have
I=(R:T)C(R:S)=:1Is.

Hence the same element v € I C [g satisfies the same coprimality condition, so the
argument of the above steps applies verbatim. It follows that p is prime in every
intermediate ring S. U

The preceding theorem shows that if a prime element is coprime to the conductor,
its primality is preserved across all intermediate rings. This theorem generalizes the
phenomenon observed in Example 4.1 and Proposition 4.2, showing that the conductor
plays a central role in controlling the stability of primes across intermediate rings. To
illustrate the necessity of the coprimality condition with the conductor, we conclude
with two counterexamples in which the condition fails and prime stability does not
hold, even though T is an integral overring of R.

Example 4.4. Consider the extension
R =17Z[]2x] C T = Zlx].
where 7T is an integral overring of R. Here the conductor is
I=(R:T)={teT|tT CR}=0,

so the conductor vanishes. Let
p=2x € R.
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In R, element p is prime because

R/(2z) =Z,
which is an integral domain. However, in T' = Z[z|, we can factor
20 =2 - x,

so p is no longer prime in 7.

The preceding example shows that prime stability may fail when the conductor
vanishes. For a second counterexample, we turn to a situation where the conductor
is nonzero but the prime element is not coprime to it. Specifically, we return to the
same extension

Fla,y*y’] C Flz,zy,y*,y°] C Fla,y),
already considered in Example 3.12. In this instance, however, our emphasis is on the
conductor and the failure of coprimality.

Example 4.5. Let F' be a field and set
R:= Flz,y*,y°] C T := Flz, zy, v, y°] C Flz,y].

Note that T is an integral overring of R (indeed R C T C Flx,y]).

Take p := x. The conductor I := (R : T') is nonzero. In fact one can check precisely
that

1= (R:T) = ().
Notice that
R/(z,I) = R/(z,y*,y*) = F,

so (x, 1) is a proper ideal of R. Hence xR+ I # R, i.e. x and the conductor I are not
coprime. In R, the element x is prime because

R/(z) = Fly*,y’]
is an integral domain. However in T" we have the factorization
vy’ = (zy) -y,
and z divides neither factor. Hence, x is not prime in 7.
This demonstrates that even with a nonzero conductor in an integral overring ex-
tension, the coprimeness requirement is still essential for prime stability.

We now illustrate how Theorem 4.3 applies in the classical setting of orders in
algebraic number theory. We first recall the standard notion of an order in that
context.

Definition 4.6. An order of an algebraic number field K is a subring & C Ok which
is also a Z-module of rank n = [K : Q].

First we record the standard criterion from order theory that we will use as a
hypothesis.
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Theorem 4.7. [?, Theorem 6.1] Let K be a number field, & an order in K, and
f= (0 : Ok) the conductor. A nonzero prime ideal p of O is invertible if and only if
p+f=0.

Using this fact we immediately obtain the desired statement about prime elements.

Corollary 4.8. Let & be an order in a number field K with conductor f = (& : Ok).
If p € 0 is a prime element then p remains prime in Ok and in every intermediate
order 0 C S C Ok.

We give two complementary proofs. The first relies directly on Theorem 4.3, while
the second combines the 1-dimensional result from the previous section with a lemma
from the literature. In this way, we see two distinct applications of our stability
criteria converging to the same corollary.

Proof A: Any principal fractional ideal is invertible, hence p& is invertible. Since p
is a prime element, p& is a prime ideal of &. And so by Theorem 4.7, p& is coprime
to the conductor f. Applying Theorem 4.3, p is prime in Ok and every intermediate
order S.

Proof B: Invoke the standard lemma ([?, Lemma 4.7]) that: if R is a Noetherian
domain and T is the integral closure of R, then any prime element of R remains prime
in 7. In our situation & is an order (hence Noetherian), O is the integral closure of
O (hence an integral overring), and both are 1-dimensional. Thus, any prime element
p € O remains prime in 0. Combining this with Theorem 3.9 shows that p remains
prime in every intermediate order S.

This corollary is not new: it also follows from the classical theory of orders (see
[?]). It shows that Theorem 4.3 together with the Theorem 3.9 generalize parts of
that theory, illustrating the broad applicability of our stability criteria to phenomena
in algebraic number theory.

5. PRIME ELEMENT STABILITY UNDER FCP

In this section, we will explore the finite property FCP, which states that the length
of each chain of intermediate rings is finite.

The FCP property allows us to look at finite chains, specifically the minimal ring
extensions that build them. In order to do this, we present the following lemma.

Lemma 5.1. Let R be a domain with p € R prime. Then, if R|a] is a simple extension
of R satisfying

R[pa] = Rlal,
and for all r € R with p |gq v we have that p |g r, then p is prime in R|a].
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Proof. 1If s = 32¢_ ri.(pa)* is some element of R[pa] for 7q,71,...,74 € R, then we
note that
d
S—T9g=0D (Z rkpklak> .
k=1

This is a multiple of p in R|[pal, as ZZ:1 rept~ta* € R
whenever rg,r1,...,74 € R are such that s = ZZ:O Tk
of p in R[pa] if and only if ry is a multiple of p in R
ro is a multiple of p in R by assumption.

[a] and R|a] = R|pa]. Therefore,
pa)*, we see that s is a multiple
[pa], which occurs if and only if

Now if b = ZZ:O br(pa)® and ¢ = ZZ:O cr(pa)® are some elements of R[pa], then
be = szzo zr(pa)®, where zy = Z?ZO bjcy—; where b; = ¢; = 0 for all j > d. Now
be is a multiple of p in R[pa] if and only if xy = bycy is a multiple of p in R. Since p
is prime in R we see that by or ¢g is a multiple of p in R, implying that b or ¢ is a
multiple of p in R[pa|. This means that p is prime in R[pa], proving the lemma. [

Utilizing this lemma, we now get the following result on minimal ring extensions.

Theorem 5.2. Let R C T be a minimal extension of domains, and let p be a prime
element in R. Then p is prime or a unit in T'.

Proof. Since T' is a minimal extension of R, we see that 7' = R[a| for some element
a € T'. Then consider the ring

Rlpal,

which satisfies R C R[pa] C R[a]. If R[pa] = Rlal, then by Lemma 5.1 we see that
p is prime in 7" or there exists r € R such that g e T but g ¢ R. Otherwise, we see

that R[pa] = R, in which case if we let r = pa € R then 7 € T"but > ¢ R. In either
case we get that p is prime in T or there exists » € R which is not a multiple of p in R

such that T'= R g . We will prove that in this case, we must have that p is a unit.

"5

Since p is prime in R and r is not a multiple of p in R, it follows that r? is not a
multiple of p in R. Therefore R C R [ 2} C T, so we must have that R [%2} =R [5} ,

Now, consider the ring

r-
p p

meaning that * is in R |2 |. Hence, there exist ag, aq,...,aq € R such that
&) p p

d T‘Q F r
(D) -k
p p

k=0
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a d r\" 1
=+ Zakrk_l (—) = —.
r 1 p p

Therefore, it suffices to prove that %¢ € R, as then we have that % €T and so p is a
unit in T
Assume for the sake of contradiction that % is not in R. Rearranging the equation

gives that
d k
wo o (Sw (1)
S 2 p) )’

implying that %¢ € R [ﬂ . Then, we see that as % isin R [Il)] but not in R, it is equal
to ]% for some b € R which is not a multiple of p and some positive integer d. Then,

Dividing by r gives that

we see that 20 = 1% gives that agp? = br. The left hand side is a multiple of p in R
but the right hand side is not, a contradiction, so % € R, proving the theorem. [

Notice that this result is especially strong because it makes few assumptions about
the nature of R and T. A natural application can be seen in the proof of the fol-
lowing theorem, which presents alternate conditions that imply prime stability in all
intermediate rings.

Theorem 5.3. If an extension R C T satisfies FCP and p is prime in R and not a
unit in T, then p is prime for all intermediate rings.

Proof. Consider any intermediate ring S satisfying R C S C T. We first prove that
there exists a chain R =S5y C S} C --- C S, =T such that S, and S;,; are adjacent
for k=0,1,...,n — 1. Consider the partially ordered set of all chains of rings which
start at R, include S, and end at T ordered under inclusion. Notice that every chain
of chains has an upper bound given by the union of all chains in the chain. Therefore,
by Zorn’s lemma, we see that there exists a maximal element of this partially ordered
set. We claim that if this maximal element is the chain R=S, Cc S; C---C S, =T,
then Sy and Skyq are adjacent for £ = 0,1,...,n — 1. Indeed, if there exists a ring
S, C S C Sk+1, then

SocSiCc--CS,CS CSpp1 CSpyaC---CS,

is a greater chain in the partially ordered set, a contradiction, so Sy and Sk,; must
be adjacent.

Now, we claim that p must be prime in Sy for all £ = 0,1,...,n, implying in
particular that p is prime in S. Assume for the sake of contradiction that this is not
true, and consider £ minimal for which p is not prime in S;. Note that & # 0 by
assumption, and so Si_; must exist and p must be prime in S;_;. Now, by Theorem
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5.2 we see that p must be either prime or a unit in S, so p is a unit in Sg. Therefore
p~t €8, CT,but pisnot a unit in 7', a contradiction, proving the theorem. U

Building on the existing FCP literature and Theorem 5.3, we obtain a criterion that
ensures prime stability in certain rings. In particular, Theorem 4.2 in [?] characterizes
FCP, which allows us to deduce a corollary regarding prime stability under these
conditions.

Corollary 5.4. Let R C T be an extension with p prime in R and C := (R:T). If T
is a finitely generated R-module and R/C is an Artinian ring, then p remains prime
in every intermediate ring extension R C .S C T.

6. A NECESSARY CONDITION FOR PRIME STABILITY

Now that we have three sets of conditions that imply prime stability, a natural
follow-up to our previous sections is to find a necessary condition for prime stability.
Specifically, in this section, we want to answer the following question.

Question 6.1. Given an extension R C T, if p € R is a fived prime element in both
R and T and remains prime in every intermediate ring S with R C .S C T, then what
can we say about the extension?

Notice that all three sets of sufficient conditions either require or imply the larger
ring is an overring. In Section 3, our conditions were 1-dimension, integral, and
overring. In Section 4, our condition was conductor coprimality which will only occur
for a nonzero conductor, so from Proposition 2.6, overring is implied. In Section 5,
we used the FCP to prove prime stability. However, from [?], in a minimal extension
R C R’ where R is a domain, either both R and R’ are fields or R’ is an overring
of R. Since R and R’ are not fields or else all elements would be a unit, we have R’
must be an overring of R. Under the FCP condition, there exists a finite chain from
R to T formed by minimal extensions, each being an overring, which implies that T’
is an overring of R.

This observation motivates us to ask whether overring is implied from prime sta-
bility. From this question, we have the following theorem.

Theorem 6.2. Let R C T be an extension of domains, and let p € R be a fixed
prime element in both rings. If p remains prime in every intermediate ring S with

R C S CT, and vy(r) is finite for all nonzero r € R, then T must be an overring of
R.

To prove this theorem, we first establish a few useful lemmas.

Lemma 6.3. Let R C T be domains, and let p € R be prime in all intermediate rings
between R and T, including R and T. Ift is an element of T but not of R, then t is
the root of some polynomial

T = ¢y + cipx + prPQ(z)
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for some ¢y, ¢y € R and QQ € R|x].

Proof. Consider the ring R [pt,pt?], which contains R but is contained in 7. By
assumption we have that p is prime in this ring, and furthermore note that

(pt)* = p- pt*
is a multiple of p, so pt is a multiple of p in this ring. This implies that ¢t € R [pt, pt?],
so that t is equal to some polynomial in R[z,y| evaluated at x = pt and y = pt®. This
implies
t = co+ cipt + pt*Q(t)
for some ¢y, c; € R and @ € R[z], proving the lemma. a

Lemma 6.4. Let R be a domain with fraction field K, and let p € R be a prime such
that vy(r) is finite for all v € R. Let R' = R,). Then for any nonzero polynomial
P(z) € Klz|, there exists a unique minimal integer n, not necessarily nonnegative,
such that
P*(x) :==p"P(x) € R'[x].

Furthermore P*(x) is nonzero modulo p. Also, we let P*(x) =0 if P(z) = 0.

Proof. If P(x) = 0 then P*(z) = 0 is unique. Otherwise, define v, (%) = v,(a) — v,(b)
for a,b € R. Then the minimal n for which p"P(x) € R'(x) is the negative of the
minimal v,(c) over all nonzero coefficients ¢ of P. Then p"P(z) € R'[x] is nonzero
modulo p because otherwise we could decrease n by 1 and still have p"P(z) € R'[x].
Uniqueness of n follows from the minimality condition. ([l

Lemma 6.5. Let R be a domain with fraction field K, and let p be a prime in R such
that vy(r) is finite for all r € R. Also, let R = Ry,y. Then for all A, B,C € K|x]
such that A(x)B(x) = C(x), we have that A*(x)B*(x) = C*(x). In other words, we
have that
A*B* = (AB)".

Proof. First, if A(z) = 0 or B(z) = 0 then C(z) = A(x)B(x) = 0, and so C*(z) =
0 = A*(x)B*(z). Otherwise, let A*(z) = p®A(z) and B*(z) = p’B(x). Now, note
that p is prime in R and therefore prime in R’ from the correspondence between prime
ideals in R avoiding (p) and prime ideals in R’, so that it is prime in R'[z] as well.
Therefore, we see that R'[x]/pR'[z] is a domain. This means that since A* and B*
are nonzero modulo p, we must have that

A*(x)B*(x) = p*** A(z) B(x)
must be nonzero modulo p, which by Lemma 6.4 implies that in fact
A(x)B*(x) = p*** A(x) B(z) = C* (),
proving the lemma. 0

Now, we will prove the theorem.
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Proof. We argue by contradiction. Assume there exists
teT\ K.

First, we notice that by Lemma 6.3 we have that ¢ is algebraic over R, and therefore
there exist cg, ¢y, ...,cq € R such that

co+at+cot’ + -+ cgt? =0.
Multiplying this by cg_l, we see that
o™ 4 1672 (cqt) + et (cqt)® + -+ - + (cat)? = 0.

In particular, we see that if
a = cgt

then a is integral over R, but a is not in K. This implies that a is algebraic over K
and has a nonlinear minimal polynomial

Q(x) € Klz].
Consider R' := R(y). All the conditions of Lemma 6.4 are satisfied, so we can define
Q" (z) € R'[z].

Because () is the minimal polynomial of a over K, any other polynomial in K|[z]
that vanishes at a is divisible by Q(x) in K[z]. In particular, since a is integral over
R there exists a monic polynomial B(z) € R[x] C R'[z] with a as a root. Then there
exists some S(z) € K[z] with

and so by Lemma 6.5 we have that
Q*(x)S5™(z) = B* ().
Since B(z) € R'[x] is monic, it is nonzero modulo p, so by Lemma 6.4 we get that
B*(x) = B(x),
and therefore
Q*(2)5*(x) = B(x).

In particular, in R, the leading coefficient of Q*(x) divides the leading coefficient of
B(z), which is 1, so the leading coefficient of Q*(x) is a unit of R’

Now, again by Lemma 6.3, we see that a satisfies
a = ag + ajpa + pa*P(a)
for some ag,a; € R and P € R'[z], and so a is the root of some polynomial

A(x) = ag + (a1p — 1) + px*P(z) € R'[z],
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where P(z) € R'[z] is nonzero. Then since Q(x) is the minimal polynomial of a in
K[z], we see that there exists U(x) € K[z] such that

Q(x)U(x) = A(x),
so that by 6.5 we have that
Q*(x)U"(x) = A*(x).

Now A(x) € R'[z] has x coefficient equivalent to —1 (mod p), and therefore A(x) is
nonzero modulo p. Then by Lemma 6.4 we must have that

A (z) = A(z),

and so
Q*(z)5"(x) = A(x).
Now reduce this equality modulo p. The right-hand side becomes

A(r)=ag—z (mod p),

and thus A(7) is a degree 1 polynomial in (R'/(p))[z].

On the other hand, Q*(x) has a leading coefficient which is a unit and therefore
nonzero modulo p, so the degree of the reduction Q*(x) modulo p is the same as
the degree of Q*, which is at least 2 because otherwise ¢t would be in K. Now the
reduction U*(x) of U*(x) modulo p is nonzero by Lemma 6.4. Then

Q (z) U ()
has degree at least 2, contradicting the fact that A(z) = ag—x has degree 1. Therefore
no such t exists, so 7' is an overring of R. U

Notice that Archimedean implies finite v,(r) by definition. Additionally, from
Lemma 3.5, we know that all 1-dimensional rings are Archimedean. Combining with
Theorem 3.9, we obtain the following corollary.

Corollary 6.6. Let R C T be 1-dimensional integral domains, and let p € R be
prime in both R and T'. Then p remains prime in all intermediate rings if and only if
T is an overring of R.

The contrapositive of Theorem 6.2 can also be useful to show prime stability does
not hold in an extension, as shown in the following example.

Example 6.7. Let K C L be fields. Notice that L[z] is not an overring of K[z], since
the coefficients of elements in L[z] may not lie in Frac(K) = K.

Let p be a prime element in K[z, equivalently an irreducible polynomial in K [z].
Similarly, a prime element in L[x] is just an irreducible polynomial in L[z]. Observe
that deg(p) > 1, so for any r € K|z], the p-adic valuation v,(r) is finite. Hence, by the
contrapositive of Theorem 6.2, there does not exist an element p that is simultaneously
prime in K[z|, L[z], and all intermediate rings K[z] C S C L[z].
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