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Abstract

We explicitly describe the category of modules of the Temperley-Lieb algebra
TL,(B) under specialization § = 0 for even n in terms of a quiver algebra, analo-
gous to a result of Berest-Etingof-Ginzburg. In particular, we explicitly construct
an exact sequence of the standard modules of TL,(0), which categorifies a numerical
coincidence regarding the evaluation of the Jones polynomial at ¢t = —1. We further-
more deduce a consequence in the representation theory of symmetric groups over
characteristic two.

1 Introduction

Temperley and Lieb defined the Temperley-Lieb algebra in 1971 in their study of planar
lattice models [1, 2, 3], which has been connected to the Hecke algebra, the braid group,
and closely related variants such as its affine or nilpotent deformations [4, 5, 6].

The Temperley-Lieb algebra TL,(3), defined for an n € N and parameter 5 € C, has
standard modules W' indexed by an integer ¢ < n of the same parity as n. For ¢ € C
such that 8 = ¢'/? + ¢~/? the algebraTL, (f) is a quotient of the Hecke algebra H,(q),
and W} pulls back to the Specht module S(("+0/2:("=0/2) " When ¢ is not a root of unity,
Westbury proved by computing Gram determinants that the standard modules of TL, ()
are irreducible and hence that TL,(f) is semisimple [7]. When ¢ is a root of unity, as

is the case for 3 € {0,1,v2, 1+2\/57 v/3,2}, the Temperley-Lieb algebra may cease to be
semisimple. Goodman and Wenzl applied the algebraic methods of evaluation at critical
parameter values and spectral analysis for idempotents to obtain the block decomposition

and computed the dimensions of the irreducible modules of TL,(3) [8].

1.1 Main results

In this paper, we focus on the specialization to § = 0 corresponding to ¢ = —1. For this
value of 3, Ridout and Saint-Aubin [9] computed Gram determinants to show that, the
standard modules are irreducible for odd n, but have length two for even n.



Our first main result, analogous to [10, Theorem 1.3] uses Ridout and Saint-Aubin’s
analysis of the projective modules P}* of TL,(0) to give an explicit description of the category
of modules of TL,(0).

Theorem 1.1. There exists an ideal J of the path algebra CQ,, o (defined in Definition 3.1)
for which the functor ®: Rep(TL,(0)) — Rep(CQ,,)2/J) given by

®(X)= Hom(P}, X) —— Hom(P, X) —— Hom(FP}, X Hom(P", X
2 4 6 n

is an equivalence of highest weight categories Rep(TL,(0)) ~ Rep(CQ,/2/J).

The category equivalence implies the standard modules of TL,,(0) form an exact sequence,
analogous to the BGG resolution from [10, Theorem 2.3].

Theorem 1.2. Letn be even. For nonnegative even £, there exist homomorphisms ¢ : Wi, —
W} (defined in Definition 4.1) such that the sequence

N e N N N N A N (1)
is exact. Moreover, the collection {im¢} |0 < ¢ <n —2,0 =0 (mod 2)} are the complete
set of irreducible modules of TL,(0).

The maps ¢} have explicit diagrammatic desciptions, thereby giving explicit descriptions
of all irreducible modules of TL,(0).

Since TL,(0) is a quotient of H,,(—1) the exact sequence in Theorem 1.2 is also an exact
sequence of (—1)-Specht modules. Over Fy they give rise to an exact sequence of Specht
modules of the symmetric group &,

0 —> S(n) N S(n—l,l) SN S(n/2+1,n/2—1) N S(n/2,n/2) — 0. (2)

In Corollary 5.11 we explicitly describe these homomorphisms.

1.2 Relations to the Jones polynomial

Let m: B, — H,(¢q) be the natural homomorphism, and let x, be the character of the
g-Specht module indexed by the partition A - n. Then the Jones polynomial of the closure
of any braid a € B,, is given by

_ e(a)—n+1 /2] /n—k
v = S (S0 v r(a) ®)

141 o

Since V4 (t) has no poles, at t = —1 the numerator must vanish. If n is odd the numerator
always vanishes since >77F(—1)? = 0, but if n is even, the sum >7-*(—1)? does not vanish,

and we expect the identity
n/2

S (=1 * X o (@) = 0.

k=0
The exact sequence (1) categorifies this identity.
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1.3 Outline of the paper

In Section 2, we review preliminaries such as the Temperley-Lieb algebra, the Hecke algebra,
and quiver representations. In Section 3, we compute homomorphism spaces to prove The-
orem 1.1. In Section 4, we construct the explicit diagrammatic homomorphisms between
standard modules by way of proving Theorem 1.2 and illustrate the irreducible modules of
TL,(0). In Section 5, we work with Specht modules over Fy to prove the exact sequence (2).

2 Preliminaries

2.1 Definition of the Temperley-Lieb algebra

Let n be a positive integer.

Definition 2.1. The Temperley-Lieb algebra TL,(8) at a parameter 5 € C is the algebra
generated by eq, es, ..., e, 1 under the relations

e = Bei, eieizie; = e;, and ee; = eje; if [i — j| > 2.

Its dimension is the nth Catalan number n%rl (2:)

TL,(5) has a description in terms of diagrams of strings, which consist of:
e a pair of horizontal lines,
 a collection of marked points on the horizontal lines, and,

e a collection of curves with endpoints being marked points such that no two curves
intersect, and also that each marked point lies on exactly one curve.

Then, each generator is

1 2 ) n
o
I\

€, =

Multiplication of basis elements amounts to the concatenation of their respective diagrams,
in which the bottom of the first diagram is identified with the top of the second, and closed
loops are factored out as the scalar 5.



Example 2.2. The product ejezeseies € TLs(5) can be computed diagrammatically as
}61

-

-

U e

as we factor out the closed loop in the string diagram for ejezeqe;es.

€1€3€2€1€3 =

255

Definition 2.3. In a string diagram, we refer to curves connecting two points in its top
row as cups and curves connecting two points in its bottom row as caps. Curves connecting
the top and bottom rows are referred to as throughlines.

Example 2.4. The element

\UARUAR
IAWaw

has two cups, two caps, and one throughline.

€1€3 =

Ve TL5(B).

Now let £ < n be a nonnegative integer such that £ =n (mod 2).

Definition 2.5. A diagram of strings from n points above to ¢ points below is monic if

there are no caps. The C-vector space spanned by the basis of all monic diagrams forms

the standard module W;', which has dimension &) — (Lf}_l). The standard modules are
2 2

naturally acted upon by TL,(5) via concatenation of diagrams, with any resultant non-
monic diagram due to the formation of caps defined to be equal to 0.

A% € WY then

N o

€3x = =

Example 2.6. If x =

is monic and is thus another basis element of W2.
On the other hand,

e1xr = ﬂ =

is not monic, so e;x = 0.



As discussed in Section 1, the standard modules are irreducible for generic values of .

Definition 2.7. The braid group B, is generated by o1, 09, ...,0,_1 with relations
0;0i4+10; = 044104041 and O'Z'O'j = Uj(TZ' lf ‘Z —]| Z 2.

Each braid can be seen as n intersecting strands of string, in which each o; introduces a
twist on the strands in the ith and (¢ + 1)th positions.

Definition 2.8. The Hecke algebra H,(q) at a parameter ¢ € C\{0} is the algebra generated
by 91,92, ..., 9n_1 With relations

(9i — )(gi +1) =0, 9igi+19i = gi+19i9i+1, and gig; = g9 if [i — j| > 2.
When 3 = ¢*/? + ¢~*/2, the Temperley-Lieb algebra TL,(3) is a quotient of H,(q).

Proposition 2.9. Let 3,q € C such that f = ¢"/> + ¢~'/? and ¢ # 0. Then the homomor-
phism 0: H,(q) — TL,(B) where 0(g;) = ¢/?e; — 1 is surjective.

2.2 Quivers

We briefly review quivers and their representations.

Definition 2.10. A quiver Q is a directed graph in which loops and multiple edges are
allowed. A path in Q is defined in the familiar graph-theoretic manner, with vertices and
edges permitted to appear multiple times. Trivial paths of length zero are also allowed. For
every path p of Q, let s(p) and ¢(p) denote the starting and terminal vertices of p.

Given two paths p and ¢ such that s(p) = t(q), define p o g to be the path that starts at
s(q), traverses along ¢ to reach s(p) = t(q), and then traverses along p to terminate at ¢(p).

Definition 2.11. Let QO be a quiver. The path algebra CQ of Q is the C-vector space
spanned by all paths on Q such that, for paths p and ¢ of Q, we have

pg— P i s(p) = t(q)
0 otherwise.

A representation of Q is a collection of vector spaces and maps endowed with a bijection
assigning each vertex of Q to a vector space and each directed edge e of Q to a map between
the vector spaces associated with s(e) and ¢(e). Then representations of Q are equivalent
to CQ-modules. Let Rep(CQ) denote the category of CQ-modules.



2.3 Highest weight categories

Recall from [11] the notion of a highest weight category.

Definition 2.12. Let O be a C-linear artinian abelian category, and let (A, <) be a poset
labeling the simple objects L(A) of O. Let P(\) be the projective cover of L(\). A highest
weight structure on O is a set of standard objects {A(X) | A € A}, such that

o if Hom(A(X), A(n)) # 0 then A < p,
« End(A()N)) =C, and

o there is an epimorphism P(\) — A(\) whose kernel is filtered with quotients of the
form A(p) for p > A.

3 A description of the category of representations of
the Temperley-Lieb algebra

3.1 Highest weight structure on representations of the quiver

We first introduce the straight-line quiver.

Definition 3.1. The straight-line quiver Q,, is the quiver on m vertices has the structure

al a2 as am—1
[ ] [ J [ ... o,
by b b3 bm—1

We let e; denote the trivial path on the ¢th leftmost vertex. Define the ideal
J = (ait1ai,bibit1, aibi — bipraiy1 | 1 <i <m) C CQ,p. (4)

Proposition 3.2. The category Rep(CQ,,,/J) exhibits a highest weight structure with poset
{1,2,...,m}°P. It has simple objects

L) = - 0 C 0

standard objects

P(i) = - 0 Cre—C —=C 0

T L2

where id is the identity, m is the projection into the first component, and 1o is the inclusion
onto the second component. Indexing is determined as follows: for each L(i) (resp. P(i)),
attach the space C (resp. C?) to the ith leftmost vertex of Q,,. For A(i), attach the leftmost
copy of C to the ith leftmost vertex of Q,,.



Proof. Since P(i) = (CQ,,/J)e; where e; is idempotent, the module P(7) is projective with
basis {e;, b;a;e;, a;e;, b;_1e;}. Now L(i) is one-dimensional and spanned by v;, with action of
CQ,,/J given by e;v; = v; and a;v; = b;_1v; = 0. Let £: P(i) — L(i) be the epimorphism
satisfying £(e;) = v; with kernel spanned by {b;a;e;, a;e;, b;_1€;}.

We check that ¢ is a projective cover. Take any submodule N C P(i) whose image under
€ equals L(i), so there exists p’ € ker & such that e; +p’ € N. Then since ker £ is annihilated
by a; and bi—l

ai(e; +p') = aies, bi(e; +p') = bie;, biaje; € N,
sokeré C N and e; = (e; +p') —p' € N. Thus N = P(7) and ¢ is an essential surjection.
One readily checks that L(i), A(i), and P(7) satisfy the first two axioms of Defini-

tion 2.12. The third axiom follows from the exact sequence A(i —1) — P(i) — A(7) written
out as

0 C C 0 0
o o

0 C c? C 0
lO lﬂl id

0 0 C C 0

]

Remark. Let Perv(P™) be the category of perverse sheaves on P with stratification P™ =

™, A’ Comparing (4) to the description of Perv(P™) in [12], we see Rep(CQ,,/J) is
equivalent to the quotient of Perv(P™™!) by the subcategory generated by the constant
sheaf.

3.2 Highest weight structure on representations of the Temperley-
Lieb algebra

We now specialize the Temperley-Lieb algebra to g = 0.

Proposition 3.3 ([9, Proposition 3.3]). Let ¢ > 0. For any basis elements x,y € W}, let
a(x) be the string diagram obtained by reflecting x horizontally. Let a(x,y) € TL,(0) be the
element obtained by diagrammatically concatenating o(x) above y, and let (-,-): W)W} —
C be the pairing such that for basis elements x,y € W/,

1 if a(z,y) € TLy(0) contains ¢ throughlines
(z,y) = .
0 otherwise.

Then, the quotient modules Ly = W /[{x € W} | (x,y) =0 Vy € W'} are irreducible.

Now, fix a positive even integer n.



Proposition 3.4 ([9, Proposition 8.2]). The collection {W; ' |2 < <n,f =0 (mod 2)}
of standard modules form a complete set of pairwise distinct irreducible modules of TL,,_1(0).
Additionally, the standard module W' is also projective.

Corollary 3.5. The algebra TL,,—1(0) is semisimple.
Proof. Follows from Proposition 3.4 as all the irreducibles are projective. O

When g = 0 the W/ are no longer necessarily irreducible, but they are the standard
modules which makes Rep(TL,(0)) into a highest weight category. This is a general fact,
but we check this directly using results of Ridout and Saint-Aubin [9].

Proposition 3.6 ([9, Corollary 7.4]). The collection {L} | 2 < ¢ < n,{ =0 (mod 2)} of
quotient modules form a complete set of distinct irreducible modules of TL,(0). Moreover,
the sequence

0— Ly, — W' — Ly —0

is exact and non-split for each (.
These irreducible objects admit a projective cover.
Proposition 3.7 ([9, Proposition 8.2]). For each ¢ > 0 the modules
b= Ind%:(j)(o) Wi
form a projective cover of L}. They sit in a short exact sequence
00— W'y — P — W' —0. (5)

Remark. The quotient and projective modules admit diagrammatic descriptions. From
Proposition 3.7, the basis of P;' = Ind%iol)(o) W, ' can be interpreted as consisting of
diagrams of strings from n points above to ¢ points below in which the only cap permitted
connects the rightmost two points on the bottom.

The diagrammatic description of L} is more subtle, which we give in Section 4.

Proposition 3.8 ([9, Corollary 4.2]). There exists an isomorphism of TL,(0)-modules
Wi, o = Wi @ Wi
Using the above, we deduce some new results.

Proposition 3.9. Let ¢ and m be positive even integers no greater than n. Then

1 ifte{m,m+2}

0 otherwise.

dim Homy,, o) (P, W,,) = {

0]



Proof. By Proposition 3.7 and Frobenius reciprocity
Homry,, o) (F7', Wyy) = Homre, o) (WS Win v, 0):
Hence by Proposition 3.8, we find that

Homy, o) (P, Wi,) = Homry, o) (Wy', Wi Zy @ With).
Since W;5!, WiZh, and W1} are irreducible by Proposition 3.4, the result follows. m
Theorem 3.10. Let ¢ and m be positive even integers no greater than n. Then
2 ifl=m
dim Homr, () (P)', P) = 1 if |[{ —m|=2

0 otherwise.
Proof. By Frobenius reciprocity,
Homi,,o)(P7', Ppy) = Home, o) (Indy %) Wi, Pr) = Homre, o) (WES's Plr, o o)-

By restricting the exact sequence of Proposition 3.7 to TL,_1(0) C TL,(0) and applying
Proposition 3.8 we see

0— W' taWr !l — P — Wi leWr — 0

nl(

is exact. By Corollary 3.5 the sequence splits so
Pllri, o EWeioWr leWr e Wr, (6)
and the result follows. O
The category Rep(TL,(0)) carries a highest weight structure.

Corollary 3.11. The category Rep(TL,(0)) with the simple objects L} and standard objects
W} forms a highest weight category with respect to {2, ..., n}°P.

Proof. We check each axiom of Definition 2.12 directly. By (5) we see Hom(W} W) C
Hom(P}*, W), so by Proposition 3.9 we conclude that if Hom(W}*, W) # 0 then ¢ > m.
Moreover when ¢ = m we see Hom(W}*, W) must be one-dimensional. Finally (5) gives a
standard filtration on P} O



3.3 A category equivalence

Let wy: P! — P}y and v;': P}, — P;' be nonzero maps between adjacent projectives as
in Theorem 3.10. We organize them into the diagram

n*% n UJZ n wg wn72 n
P2 <TP4 P6 AR Pn

Y2 Ya oy Yr—2

We check that the morphisms wj and v} satisfy the relations (4).
Lemma 3.12. For all ¢, the compositions wi o vy and 7y, 0wy, are nonzero and equal.

Proof. Comparing Propositions 3.9 and 3.10, observe that wy: P;* — P}, factors through
W, and so the composition w}' o v factors as P, — W/ C PJ.,, which by Frobenius
reciprocity corresponds to a homomorphism

WE—H - PﬂTLn—l(O) — WﬂTLn—l(U)'
This can be rewritten by Proposition 3.8 and (6) as
Win — WS e Wi e Wi e WL — WS e Wi

and the above composition is the inclusion of W;'3! into the second factor.
Similarly, the composition v}, , o wg,, factors as P/, — W}, — P/ ,, which by
Frobenius reciprocity corresponds to

Win' — WiR e WG — Wi e WS e Wi e Wi
which is again the inclusion of W;5! into the second factor. O

We now have all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Since P°" := @2 P is a projective generator of Rep(TL,(0)), we
have an equivalence

Hom(P°", —): Rep(TL,(0)) ~ Rep(End(P")).

By an abuse of notation, we write w;’ and ;" for the corresponding endomorphisms of P°".
Consider the homomorphism V: CQ,,/5/J — End(P°") where ¥(a;) = wy; and W(b;) = 75;.
Then V(a;11a;) = wh o owy; = 0, U(bbip1) = 75 0¥5,0 = 0, and V(ab; — biy1a,41) =
Wy; O Vi — Vain © Wy o = 0 by Theorem 3.10 and Lemma 3.12. It follows that J C ker ¥,
implying that U is a well-defined homomorphism.

The surjectivity of W is clear. Thus, it still remains to check that CQ,,/»/J and End(P°")
have equal dimension. Both CQ,,/»/.J and End(P°") are bigraded vector spaces, so we can
just check that the graded pieces have equal dimension, which is clear from simple counting.
Comparing Corollary 3.11 and Proposition 3.2 implies the construction of ®. O
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Remark. Equivalently, we could directly apply Barr-Beck to the restriction functor Rep(TL,(0)) —
Rep(TL,-1(0)) and use that TL,_1(0) is semisimple (Corollary 3.5).

Corollary 3.13. There exists a long exact sequence on the standard modules
0—W! —W', —. .- — W — Wj —0. (7)

Proof. Retain the same notation from Theorem 1.1. We can compute ®(W}") for even ¢ by
Proposition 3.9, as

C 0 0 0, if 0 =0
W) ={ 0 0 C C 0, if¢ée{0,n}
0 0 0 C, if ¢ = n.

Now the exact sequence follows from the obvious exact sequence

00— eW)) — ®(W),) — - — W) — ®(W;) — 0. 0

4 An exact sequence of homomorphisms on the stan-
dard modules

In this section, we explicitly construct the homomorphisms in (7).

Definition 4.1. For any monic basis element x € W}, let the diagram z6; € W;* connect
the (¢ + 1)th and (¢ + 2)th lower leftmost points of & with a cup. Let ¢} : W, — W} be
the alternating sum

02 A
¢y (x) = Y _(—=1)'wdy;.
i=0
Example 4.2. In W9,
(04,64, = | J1TY T ™
Counsider the element
T = o e Wy

The diagram xd; entails joining the third and fourth lower leftmost points of x, yielding

UUU
U Y

4 _ —
xhy = =

11



In particular, we have ¢1°(z) = z(53 — 05 + d3), so

iO(x): w . U U U + U U U

Proposition 4.3. The map ¢} is a well-defined homomorphism between standard modules.

Proof. We first show that ¢j(x) = 0 when x is a non-monic string diagram. Let k be
the number of caps in x. Observe that a cup is created if #0¢ joins two throughlines of
x; otherwise, if 0% joins a cap with a throughline or another cap, then exactly one cap
is removed. Hence, the diagram x0¢ has at most k — 1 caps. As a result, if & > 2, then
93 (z) = 0.

Now suppose that £k = 1. Then x is of the form

w1 Wo Wy We1
T = . e ~ . e ’
1 2 j {42

where the sole cap connects the jth and (j 4 1)th leftmost points on the bottom and the w;
are subdiagrams consisting only of nested cups. We now consider the parity of j.

If j is odd, then in order for 6! to feature no caps while i is even we must have i = j—1.
Hence x6¢ = 0 for all even i such that i # j — 1. However, observe that méf_l is formed by
joining the jth and (j + 1)th leftmost points on the bottom, thus completing a closed loop
and vanishing due to the specialization § = 0. Since ¢} (x) is a linear combination of the
z6¢ restricted to even values of 4, it follows that ¢7(x) = 0.

Otherwise, if j is even, then for 26! to have no caps while i is even we must have
i €{j — 2,7} Hence, we have 26! = 0 for all even i ¢ {j — 2,5}, so it follows that

0f (@) = (=1)"* 1a(dj_, — &)

0 o w1 wa wy We41
2ty — IS

However, note that

and
w w: w5 w.
x(sf = 1 2 « o o } o o o £+1
As a result
¢ _ 0 W1 W2 wj Wet1
T0;_o = x0; =
1 2 i—1 ¢

and thus ¢} (z) = 0. Thus, in both cases, we have ¢} (z) = 0, so ¢} is indeed well-defined.
Now it suffices to verify that ¢; intertwines. But this is apparent as the left action of
TL,(0) on W} operates by concatenation above, while ¢} acts by concatenation below. [

12



Proposition 4.4. The composition ¢} 40 ¢y =0 holds.

Proof. For a basis element x € W7,

/2 /2 £/2-1
07-2(67 (1)) = 0L (Z ) 2 2 (1) adyd
=0 =0 5=0
For 2 > j we have xégi%f = x5§j5§i__22, while for ¢ < 7 we have :1:(5%55} 205150 572, For
both cases, we join the same pairs of points on the bottom edge of the diagram. By a pairing
argument on the sign factor (—1)/, the above double summation vanishes. O

Now we are ready to begin proving Theorem 1.2. We first need the following lemma.

"y 97 oy
Lemma 4.5. The composition W[, — =2, Wh, — Wi — W /imgy is an isomorphism
of vector spaces.
Proof. For a basis element
w w w
€T = 1 2 o o o £+2 E WZL+117
1 2 f+1

where the w; are subdiagrams consisting only of cups, we have

giala)y= """ P (8)
We have
/2 '
&7 (9rya()) = D (=1) gy o ()05, (9)
=0

By (8), we see gf,,(2)d5; will always have a rightmost throughline unless i = £, in which

case we connect the two rightmost points on the bottom of g}, ,(«). Thus all summands of
(9) lie in the image of g} except for g7, ,(x)d}, hence

F@) = n(@F(ga(@) = (~1)Pgip(@)st = (—p2 [ ] e

In other words, the map f simply bends the rightmost throughline of some z € Wit 1 into
the rightmost maximal arc of x while leaving everything else intact. Thus f is bijective. [

Proof of Theorem 1.2. Retain the notation used in Lemma 4.5. The map f = ¢} o gj',,
satisfies im f C im ¢j. By Lemma 4.5 we see f is injective. Thus

dimim ¢y > dimim f > dim VVngl ,

13



implying that
dimim ¢} > dim W;'5! and dimim ¢} , > dim W, (10)

On the other hand, by Proposition 4.4 we know ¢} , o ¢} = 0 for all ¢, so im ¢} C ker ¢} ,.
In particular, rank-nullity implies that

dimim ¢}, + dimim ¢; < dimim ¢, _, + dim ker ¢;_, = dim W". (11)

By Proposition 3.8 we know dim W7 = dim Wy'' 4+ dim W;'5', so by comparing with (10)
we conclude the inequality in (11) must be an equality and

dimim ¢} , = dim W', dimim ¢} = dim W;'5".

Since we saw above that im ¢} C ker ¢} ,, the result follows.
The classification of irreducible modules is immediate from Proposition 3.6 and (1). O

5 The symmetric group algebra over characteristic two

Let n be a positive integer. The ring k[zy, 29, ..., 2,] carries an action of &,, by permuting
the variables z;, and we realize the Specht modules as submodules of this ring.

Definition 5.1. For any Young tableau t of shape A, let F; € Kk|z1, 2o, .. ., 2,] be the product
of z; — z; where ¢ and j are the respective labels of cells b; and b; in the same column of A,
with b; above b;. The Specht module S* is the k[&,,]-module spanned by F; for all Younge
tableu t of shape .

Example 5.2. Let

1/3]2]
4

t, = and t9 =

4
1
2]
Then Fy, = 2y — z4 while F,, = (24 — 21)(24 — 22)(21 — 22).

Remark. Specht modules are typically defined using Young symmetrizers. The polynomial
ideal formulation from Definition 5.1 was the original construction given by Specht [13].

When ) is a two-row partition, the Specht module S* may be realized as a submodule of
the finite-dimensional vector space k|[zy, 22, . .., 2]/ (22, 22, ..., 22) rather than the infinite-
dimensional k[z1, 2o, . . ., 2,].

Definition 5.3. Let T? be the image of S* under the quotient
k21, 22, .. 2n] — K21, 20, ..., 20) (22, 25, .., 22).

rn

Lemma 5.4. For a two-row partition A\ F n, the k[&,]-modules S* and T are isomorphic.
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Proof. By definition S* is spanned by the polynomials F} for ¢t a Young tableau of shape
A= (n—k k). If u; (resp. v;) is the label of the ith leftmost box on the top (resp. bottom)

row, then
k

Fy = H(Zuz - ZUi)’ (12)

i=1

so Fy lies in the span of all squarefree monomials. Thus S* N (2%, 23,...,22) = {0} and

’rn

Sh =T, []

Definition 5.5. For k < 2, let G7_,,.: W, — T""*k) send a basis element = € W) ,,
to the product of all terms of the form z; — z; for all ¢ < j such that the ¢th and jth leftmost
points on top are connected by a cup.

Example 5.6. Let
12345678 9101112

- T T e

Since nodes 1 and 4, 2 and 3, 6 and 11, 7 and 8, and 9 and 10 are connected by cups,

Gy*(x) = (21 — 24) (22 — 23) (26 — 211) (27 — 28)(20 — 210).
Proposition 5.7. The map G*_,.: W o, — T %K) js an isomorphism of k-vector spaces.

Proof. Let A = (n — k, k). By the hook length formula and Lemma 5.4

dim 7 = dim S* = <k> — (k B 1) =dim W ,,,

so it suffices to show that G]._,, is a surjection.
The vector space T? is spanned by polynomials F; for Young tableau t of shape \ as
in (12). We can represent F; using a diagram of strings using the following procedure:

o Draw two parallel horizontal lines, each containing n equally-spaced points.
« For all z; — z; dividing F}, connect the ¢th and jth leftmost upper points with a cup.

« For any points on the upper line that are not an endpoint of a cup, connect a vertical
throughline through it.

Denote the resulting diagram by z;. If 2; does not contains intersections between two cups,
or intersections between a cup and a throughline, then F; = GI'_,,(z;) by construction. So
we deal with the problematic cases in succession.

Step 1. First, we deal with intersections between cups. Because of this, we may ignore
the bottom horizontal line and all throughlines in x;, wrapping everything around a circle.

15



Thus we arrive at the diagram w, containing n evenly spaced points around a circle labeled
from 1 to n such that there exists a chord from ¢ to j if and only if 2z, — 2; divides F;.
For any ¢y, ¢o, c3, and ¢4 that

(ch - 263)(202 - 264) - (201 - ZC2)(ZC3 - ZC4) + (ZC1 - ZC4)(ZC2 - ZC3)

in k[zy, 29,...,20)/(23,23,...,22), so any intersection of chords can be resolved by
c 1 €1
Cq cy _ G4 & C4 &
o 2 4 2
c3 C3 e3

where the diagrams add by adding their corresponding polynomials. The number of cross-
ings on each component above strictly decreases every time we apply the above resolution.
Hence, using a finite number of resolutions, we may write w = .7 , w; where the w; are
all circle diagrams for which no two chords intersect. Unfurling each w; back into a string
diagram, it follows that Fy = >°7 | F}, for some a, where each F}, is of the form given in (12)
such that their analogous string diagrams x;, contain no intersections between cups.
Thus we can assume that x; has no intersections between cups.

Step 2. Now we deal with intersections between cups and throughlines. In the diagram x;
if the cup corresponding to the factor z., — 2., intersects the throughline corresponding to
Zey, then zo, — zey = (26, — 265) + (263 — Ze5), giving us the resolution

C1 C2 C3 C1 C2 C3 C1 C2 C3

-VisVY,

Again, the number of crossings on each component strictly decreases each time we use the
. . / .

above resolution. Thus, we may eventually write F} as the sum 7 ; I}, where each diagram

xy, contains no intersections between any curves. Then F} , F; € im G]_,, as desired. ]

Example 5.8. We walk through the procedure of Proposition 5.7 for n = 8 on the polyno-
mial F}, = (21 — 24)(22 — 25)(25 — 27) € T3, For Step 1 of Lemma 5.7, we draw the circle
diagram for F}; and repeatedly apply resolutions to find that

SO




Transforming each of the four circle diagrams above into polynomials, we find that

F, =(21 — 22) (24 — 25)(26 — 27) + (21 — 22) (24 — 27)(26 — 26)

+ (21 — 25)(22 — 24)(26 — 27) + (21 — 27)(22 — 21) (25 — 26).

We move on to Step 2 of Lemma 5.7. Of the four above summands, the first two correspond
to valid string diagrams. The third summand requires a resolution due to an intersection
of the throughline at z3 with the arc due to 2z — z4, and the fourth summand exhibits an
intersection of the throughline at zg with the arcs due to z; — 27 and 2z, — z4. Applying these

resolutions and putting everything together, our sum becomes

Fy = (21 — 22)(24 — 25)(26 — 27) (first summand)
+ (21 — 22)(24 — 27)(26 — 26) (second summand)
+ ((21 — 25) (22 — 23) (26 — 27) (third summand)
+ (21 — 25) (23 — 24) (26 — 27))
+ ((21 — 24) (22 — 23) (25 — 26) (fourth summand)

+ (22 — 23) (24 — 27)(25 — 26)
+ (2’1 — 2’2)(23 — 2’4)(2’5 — 26)

+ (20 — 27)(23 — 24) (25 — 26))-
Now each individual summand indeed corresponds to a valid string diagram in W5,
Definition 5.9. Let o" ,, : T(=F+LE=1) 5 T(=kk) he multiplication by 7, z,.
From now on, we work only with k = [F,.

Proposition 5.10. The following diagram commutes.

. o
n—2k+2 n—2k

GL%HJ lGsz

Pn—kt1k—1) Yn=2k p(nkk)

Proof. Let £ = n — 2k, and take a basis element z € W/, ,. Number the points on the top
row of the diagrammatic representation of x with the integers from 1 to n, going from left
to right. For each j < ¢+ 2, suppose that the jth leftmost throughline occurs at the point
numbered with ¢;. Then G o ¢} takes an alternating sum over connecting the (2i —1)th and
2ith throughlines with a cup, which multiplies the polynomial G ,(x) with the binomial

Zegs1 — Zeg;- 1 characteristic 2, the alternating sum becomes

£/2+1 042
Gg(¢?($)) = Z (2021‘71 - ZCzi)G?—i-Q(x) = ZZCiG?—i-Q(x)'
i=1 i=1
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Note that G}, ,(z) = Hgi}om_l b;, where the binomials b; satisfy Z(n 0y 4 S =
S 2. Since b = 0 in Folzy, 29, . .., 2]/ (23, 22, ..., 22), it follows that

n 042 (n—0)/2—1
(Sa-Sa)amm="3 nGnm =0
i=1 =1

=1

Combining the above equations implies

42

Vi (G £+2 Z ZTLGZ+2 Z Ze; G£+2 = Gy (o7 (x)). L

Corollary 5.11. There is an exact sequence of Fo[S,]-modules

0 — 7 Ln2y p-11) Proag o YE py24in/2-1) Y8, py2n/2) ()

Proof. Follows from Theorem 1.2, Propositions 5.7 and 5.10. O
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