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Abstract

We explicitly describe the category of modules of the Temperley-Lieb algebra
TLn(β) under specialization β = 0 for even n in terms of a quiver algebra, analo-
gous to a result of Berest-Etingof-Ginzburg. In particular, we explicitly construct
an exact sequence of the standard modules of TLn(0), which categorifies a numerical
coincidence regarding the evaluation of the Jones polynomial at t = −1. We further-
more deduce a consequence in the representation theory of symmetric groups over
characteristic two.

1 Introduction
Temperley and Lieb defined the Temperley-Lieb algebra in 1971 in their study of planar
lattice models [1, 2, 3], which has been connected to the Hecke algebra, the braid group,
and closely related variants such as its affine or nilpotent deformations [4, 5, 6].

The Temperley-Lieb algebra TLn(β), defined for an n ∈ N and parameter β ∈ C, has
standard modules W n

ℓ indexed by an integer ℓ ≤ n of the same parity as n. For q ∈ C
such that β = q1/2 + q−1/2 the algebraTLn(β) is a quotient of the Hecke algebra Hn(q),
and W n

ℓ pulls back to the Specht module S((n+ℓ)/2,(n−ℓ)/2). When q is not a root of unity,
Westbury proved by computing Gram determinants that the standard modules of TLn(β)
are irreducible and hence that TLn(β) is semisimple [7]. When q is a root of unity, as
is the case for β ∈ {0, 1,

√
2, 1+

√
5

2 ,
√

3, 2}, the Temperley-Lieb algebra may cease to be
semisimple. Goodman and Wenzl applied the algebraic methods of evaluation at critical
parameter values and spectral analysis for idempotents to obtain the block decomposition
and computed the dimensions of the irreducible modules of TLn(β) [8].

1.1 Main results
In this paper, we focus on the specialization to β = 0 corresponding to q = −1. For this
value of β, Ridout and Saint-Aubin [9] computed Gram determinants to show that, the
standard modules are irreducible for odd n, but have length two for even n.
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Our first main result, analogous to [10, Theorem 1.3] uses Ridout and Saint-Aubin’s
analysis of the projective modules P n

ℓ of TLn(0) to give an explicit description of the category
of modules of TLn(0).
Theorem 1.1. There exists an ideal J of the path algebra CQn/2 (defined in Definition 3.1)
for which the functor Φ : Rep(TLn(0)) → Rep(CQn/2/J) given by

Φ(X) = Hom(P n
2 , X) Hom(P n

4 , X) Hom(P n
6 , X) · · · Hom(P n

n , X)

is an equivalence of highest weight categories Rep(TLn(0)) ≃ Rep(CQn/2/J).
The category equivalence implies the standard modules of TLn(0) form an exact sequence,

analogous to the BGG resolution from [10, Theorem 2.3].
Theorem 1.2. Let n be even. For nonnegative even ℓ, there exist homomorphisms ϕnℓ : W n

ℓ+2 →
W n
ℓ (defined in Definition 4.1) such that the sequence

0 −→ W n
n

ϕn
n−2−−−→ W n

n−2
ϕn

n−4−−−→ · · · ϕn
2−→ W n

2
ϕn

0−→ W n
0 −→ 0 (1)

is exact. Moreover, the collection {imϕnℓ | 0 ≤ ℓ ≤ n − 2, ℓ ≡ 0 (mod 2)} are the complete
set of irreducible modules of TLn(0).

The maps ϕnℓ have explicit diagrammatic desciptions, thereby giving explicit descriptions
of all irreducible modules of TLn(0).

Since TLn(0) is a quotient of Hn(−1) the exact sequence in Theorem 1.2 is also an exact
sequence of (−1)-Specht modules. Over F2 they give rise to an exact sequence of Specht
modules of the symmetric group Sn

0 −→ S(n) −→ S(n−1,1) −→ · · · −→ S(n/2+1,n/2−1) −→ S(n/2,n/2) −→ 0. (2)

In Corollary 5.11 we explicitly describe these homomorphisms.

1.2 Relations to the Jones polynomial
Let π : Bn → Hn(q) be the natural homomorphism, and let χλ be the character of the
q-Specht module indexed by the partition λ ⊢ n. Then the Jones polynomial of the closure
of any braid α ∈ Bn is given by

Vα̂(t) = (−
√
t)e(α)−n+1

1 + t

⌊n/2⌋∑
k=0

(
n−k∑
i=k

ti
)
χ(n−k,k)(π(α)). (3)

Since Vα̂(t) has no poles, at t = −1 the numerator must vanish. If n is odd the numerator
always vanishes since ∑n−k

i=k (−1)i = 0, but if n is even, the sum ∑n−k
i=k (−1)i does not vanish,

and we expect the identity
n/2∑
k=0

(−1)kχ(n−k,k)(π(α)) = 0.

The exact sequence (1) categorifies this identity.
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1.3 Outline of the paper
In Section 2, we review preliminaries such as the Temperley-Lieb algebra, the Hecke algebra,
and quiver representations. In Section 3, we compute homomorphism spaces to prove The-
orem 1.1. In Section 4, we construct the explicit diagrammatic homomorphisms between
standard modules by way of proving Theorem 1.2 and illustrate the irreducible modules of
TLn(0). In Section 5, we work with Specht modules over F2 to prove the exact sequence (2).

2 Preliminaries

2.1 Definition of the Temperley-Lieb algebra
Let n be a positive integer.

Definition 2.1. The Temperley-Lieb algebra TLn(β) at a parameter β ∈ C is the algebra
generated by e1, e2, . . . , en−1 under the relations

e2
i = βei, eiei±1ei = ei, and eiej = ejei if |i− j| ≥ 2.

Its dimension is the nth Catalan number 1
n+1

(
2n
n

)
.

TLn(β) has a description in terms of diagrams of strings, which consist of:

• a pair of horizontal lines,

• a collection of marked points on the horizontal lines, and,

• a collection of curves with endpoints being marked points such that no two curves
intersect, and also that each marked point lies on exactly one curve.

Then, each generator is

ei =
1 2 i n

· · · · · · .

Multiplication of basis elements amounts to the concatenation of their respective diagrams,
in which the bottom of the first diagram is identified with the top of the second, and closed
loops are factored out as the scalar β.
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Example 2.2. The product e1e3e2e1e3 ∈ TL5(β) can be computed diagrammatically as

e1e3e2e1e3 = e3

e1

e2

e3

e1

= β = βe1e3,

as we factor out the closed loop in the string diagram for e1e3e2e1e3.
Definition 2.3. In a string diagram, we refer to curves connecting two points in its top
row as cups and curves connecting two points in its bottom row as caps. Curves connecting
the top and bottom rows are referred to as throughlines.
Example 2.4. The element

e1e3 = ∈ TL5(β).

has two cups, two caps, and one throughline.
Now let ℓ ≤ n be a nonnegative integer such that ℓ ≡ n (mod 2).

Definition 2.5. A diagram of strings from n points above to ℓ points below is monic if
there are no caps. The C-vector space spanned by the basis of all monic diagrams forms
the standard module W n

ℓ , which has dimension
(

n
n−ℓ

2

)
−
(

n
n−ℓ

2 −1

)
. The standard modules are

naturally acted upon by TLn(β) via concatenation of diagrams, with any resultant non-
monic diagram due to the formation of caps defined to be equal to 0.

Example 2.6. If x = ∈ W 6
2 then

e3x = =

is monic and is thus another basis element of W 6
2 .

On the other hand,

e1x = =

is not monic, so e1x = 0.
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As discussed in Section 1, the standard modules are irreducible for generic values of β.

Definition 2.7. The braid group Bn is generated by σ1, σ2, . . . , σn−1 with relations

σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≥ 2.

Each braid can be seen as n intersecting strands of string, in which each σi introduces a
twist on the strands in the ith and (i+ 1)th positions.

Definition 2.8. The Hecke algebra Hn(q) at a parameter q ∈ C\{0} is the algebra generated
by g1, g2, . . . , gn−1 with relations

(gi − q)(gi + 1) = 0, gigi+1gi = gi+1gigi+1, and gigj = gjgi if |i− j| ≥ 2.

When β = q1/2 + q−1/2, the Temperley-Lieb algebra TLn(β) is a quotient of Hn(q).

Proposition 2.9. Let β, q ∈ C such that β = q1/2 + q−1/2 and q ̸= 0. Then the homomor-
phism θ : Hn(q) → TLn(β) where θ(gi) = q1/2ei − 1 is surjective.

2.2 Quivers
We briefly review quivers and their representations.

Definition 2.10. A quiver Q is a directed graph in which loops and multiple edges are
allowed. A path in Q is defined in the familiar graph-theoretic manner, with vertices and
edges permitted to appear multiple times. Trivial paths of length zero are also allowed. For
every path p of Q, let s(p) and t(p) denote the starting and terminal vertices of p.

Given two paths p and q such that s(p) = t(q), define p ◦ q to be the path that starts at
s(q), traverses along q to reach s(p) = t(q), and then traverses along p to terminate at t(p).

Definition 2.11. Let Q be a quiver. The path algebra CQ of Q is the C-vector space
spanned by all paths on Q such that, for paths p and q of Q, we have

pq =
p ◦ q if s(p) = t(q)

0 otherwise.

A representation of Q is a collection of vector spaces and maps endowed with a bijection
assigning each vertex of Q to a vector space and each directed edge e of Q to a map between
the vector spaces associated with s(e) and t(e). Then representations of Q are equivalent
to CQ-modules. Let Rep(CQ) denote the category of CQ-modules.
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2.3 Highest weight categories
Recall from [11] the notion of a highest weight category.
Definition 2.12. Let O be a C-linear artinian abelian category, and let (Λ,⪯) be a poset
labeling the simple objects L(λ) of O. Let P (λ) be the projective cover of L(λ). A highest
weight structure on O is a set of standard objects {∆(λ) | λ ∈ Λ}, such that

• if Hom(∆(λ),∆(µ)) ̸= 0 then λ ⪯ µ,

• End(∆(λ)) = C, and

• there is an epimorphism P (λ) ↠ ∆(λ) whose kernel is filtered with quotients of the
form ∆(µ) for µ ≻ λ.

3 A description of the category of representations of
the Temperley-Lieb algebra

3.1 Highest weight structure on representations of the quiver
We first introduce the straight-line quiver.
Definition 3.1. The straight-line quiver Qm is the quiver on m vertices has the structure

• • • · · · •.
a1

b1

a2

b2

a3

b3

am−1

bm−1

We let ei denote the trivial path on the ith leftmost vertex. Define the ideal
J = (ai+1ai, bibi+1, aibi − bi+1ai+1 | 1 ≤ i ≤ m) ⊂ CQm. (4)

Proposition 3.2. The category Rep(CQm/J) exhibits a highest weight structure with poset
{1, 2, . . . ,m}op. It has simple objects

L(i) := · · · 0 C 0 · · · ,

standard objects

∆(i) := · · · 0 C C 0 · · · ,
id

0

and projective objects

P (i) := · · · 0 C C2 C 0 · · · ,
ι2

π1

π1

ι2

where id is the identity, π1 is the projection into the first component, and ι2 is the inclusion
onto the second component. Indexing is determined as follows: for each L(i) (resp. P (i)),
attach the space C (resp. C2) to the ith leftmost vertex of Qm. For ∆(i), attach the leftmost
copy of C to the ith leftmost vertex of Qm.
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Proof. Since P (i) ∼= (CQm/J)ei where ei is idempotent, the module P (i) is projective with
basis {ei, biaiei, aiei, bi−1ei}. Now L(i) is one-dimensional and spanned by vi, with action of
CQm/J given by eivi = vi and aivi = bi−1vi = 0. Let ξ : P (i) → L(i) be the epimorphism
satisfying ξ(ei) = vi with kernel spanned by {biaiei, aiei, bi−1ei}.

We check that ξ is a projective cover. Take any submodule N ⊂ P (i) whose image under
ξ equals L(i), so there exists p′ ∈ ker ξ such that ei+p′ ∈ N . Then since ker ξ is annihilated
by ai and bi−1

ai(ei + p′) = aiei, bi(ei + p′) = biei, biaiei ∈ N,

so ker ξ ⊂ N and ei = (ei + p′) − p′ ∈ N . Thus N = P (i) and ξ is an essential surjection.
One readily checks that L(i), ∆(i), and P (i) satisfy the first two axioms of Defini-

tion 2.12. The third axiom follows from the exact sequence ∆(i−1) → P (i) → ∆(i) written
out as

· · · 0 C C 0 0 · · ·

· · · 0 C C2 C 0 · · ·

· · · 0 0 C C 0 · · · .

id ι2 0

0 π1 id

Remark. Let Perv(Pm) be the category of perverse sheaves on Pm with stratification Pm =⋃m
i=0 Ai. Comparing (4) to the description of Perv(Pm) in [12], we see Rep(CQm/J) is

equivalent to the quotient of Perv(Pm+1) by the subcategory generated by the constant
sheaf.

3.2 Highest weight structure on representations of the Temperley-
Lieb algebra

We now specialize the Temperley-Lieb algebra to β = 0.

Proposition 3.3 ([9, Proposition 3.3]). Let ℓ > 0. For any basis elements x, y ∈ W n
ℓ , let

α(x) be the string diagram obtained by reflecting x horizontally. Let α(x, y) ∈ TLℓ(0) be the
element obtained by diagrammatically concatenating α(x) above y, and let ⟨·, ·⟩ : W n

ℓ ⊗W n
ℓ →

C be the pairing such that for basis elements x, y ∈ W n
ℓ ,

⟨x, y⟩ =
1 if α(x, y) ∈ TLℓ(0) contains ℓ throughlines

0 otherwise.

Then, the quotient modules Lnℓ = W n
ℓ /{x ∈ W n

ℓ | ⟨x, y⟩ = 0 ∀y ∈ W n
ℓ } are irreducible.

Now, fix a positive even integer n.
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Proposition 3.4 ([9, Proposition 8.2]). The collection {W n−1
ℓ−1 | 2 ≤ ℓ ≤ n, ℓ ≡ 0 (mod 2)}

of standard modules form a complete set of pairwise distinct irreducible modules of TLn−1(0).
Additionally, the standard module W n−1

ℓ−1 is also projective.

Corollary 3.5. The algebra TLn−1(0) is semisimple.

Proof. Follows from Proposition 3.4 as all the irreducibles are projective.

When β = 0 the W n
ℓ are no longer necessarily irreducible, but they are the standard

modules which makes Rep(TLn(0)) into a highest weight category. This is a general fact,
but we check this directly using results of Ridout and Saint-Aubin [9].

Proposition 3.6 ([9, Corollary 7.4]). The collection {Lnℓ | 2 ≤ ℓ ≤ n, ℓ ≡ 0 (mod 2)} of
quotient modules form a complete set of distinct irreducible modules of TLn(0). Moreover,
the sequence

0 −→ Lnℓ+2 −→ W n
ℓ −→ Lnℓ −→ 0

is exact and non-split for each ℓ.

These irreducible objects admit a projective cover.

Proposition 3.7 ([9, Proposition 8.2]). For each ℓ > 0 the modules

P n
ℓ := IndTLn(0)

TLn−1(0) W
n−1
ℓ−1

form a projective cover of Lnℓ . They sit in a short exact sequence

0 −→ W n
ℓ−2 −→ P n

ℓ −→ W n
ℓ −→ 0. (5)

Remark. The quotient and projective modules admit diagrammatic descriptions. From
Proposition 3.7, the basis of P n

ℓ = IndTLn(0)
TLn−1(0) W

n−1
ℓ−1 can be interpreted as consisting of

diagrams of strings from n points above to ℓ points below in which the only cap permitted
connects the rightmost two points on the bottom.

The diagrammatic description of Lnℓ is more subtle, which we give in Section 4.

Proposition 3.8 ([9, Corollary 4.2]). There exists an isomorphism of TLn(0)-modules

W n
ℓ |TLn−1(0) ∼= W n−1

ℓ−1 ⊕W n−1
ℓ+1 .

Using the above, we deduce some new results.

Proposition 3.9. Let ℓ and m be positive even integers no greater than n. Then

dim HomTLn(0)(P n
ℓ ,W

n
m) =

1 if ℓ ∈ {m,m+ 2}
0 otherwise.
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Proof. By Proposition 3.7 and Frobenius reciprocity

HomTLn(0)(P n
ℓ ,W

n
m) = HomTLn−1(0)(W n−1

ℓ−1 ,W
n
m|TLn−1(0)).

Hence by Proposition 3.8, we find that

HomTLn(0)(P n
ℓ ,W

n
m) = HomTLn(0)(W n−1

ℓ−1 ,W
n−1
m−1 ⊕W n−1

m+1).

Since W n−1
ℓ−1 , W n−1

m−1, and W n−1
m+1 are irreducible by Proposition 3.4, the result follows.

Theorem 3.10. Let ℓ and m be positive even integers no greater than n. Then

dim HomTLn(0)(P n
ℓ , P

n
m) =


2 if ℓ = m

1 if |ℓ−m| = 2
0 otherwise.

Proof. By Frobenius reciprocity,

HomTLn(0)(P n
ℓ , P

n
m) = HomTLn(0)(IndTLn(0)

TLn−1(0) W
n−1
ℓ−1 , P

n
m) = HomTLn−1(0)(W n−1

ℓ−1 , P
n
m|TLn−1(0)).

By restricting the exact sequence of Proposition 3.7 to TLn−1(0) ⊂ TLn(0) and applying
Proposition 3.8 we see

0 −→ W n−1
m−3 ⊕W n−1

m−1 −→ P n
m|TLn−1(0) −→ W n−1

m−1 ⊕W n−1
m+1 −→ 0

is exact. By Corollary 3.5 the sequence splits so

P n
m|TLn−1(0) ∼= W n−1

m−3 ⊕W n−1
m−1 ⊕W n−1

m−1 ⊕W n−1
m+1, (6)

and the result follows.

The category Rep(TLn(0)) carries a highest weight structure.

Corollary 3.11. The category Rep(TLn(0)) with the simple objects Lnℓ and standard objects
W n
ℓ forms a highest weight category with respect to {2, . . . , n}op.

Proof. We check each axiom of Definition 2.12 directly. By (5) we see Hom(W n
ℓ ,W

n
m) ⊂

Hom(P n
ℓ ,W

n
m), so by Proposition 3.9 we conclude that if Hom(W n

ℓ ,W
n
m) ̸= 0 then ℓ ≥ m.

Moreover when ℓ = m we see Hom(W n
ℓ ,W

n
ℓ ) must be one-dimensional. Finally (5) gives a

standard filtration on P n
ℓ .
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3.3 A category equivalence
Let ωnℓ : P n

ℓ → P n
ℓ+2 and γnℓ : P n

ℓ+2 → P n
ℓ be nonzero maps between adjacent projectives as

in Theorem 3.10. We organize them into the diagram

P n
2 P n

4 P n
6 · · · P n

n .
ωn

2

γn
2

ωn
4

γn
4

ωn
6

γn
6

ωn
n−2

γn
n−2

We check that the morphisms ωnℓ and γnℓ satisfy the relations (4).

Lemma 3.12. For all ℓ, the compositions ωnℓ ◦ γnℓ and γnℓ+2 ◦ ωnℓ+2 are nonzero and equal.

Proof. Comparing Propositions 3.9 and 3.10, observe that ωnℓ : P n
ℓ → P n

ℓ+2 factors through
W n
ℓ , and so the composition ωnℓ ◦ γnℓ factors as P n

ℓ+2 → W n
ℓ ⊂ P n

ℓ+2, which by Frobenius
reciprocity corresponds to a homomorphism

W n−1
ℓ+1 −→ P n

ℓ |TLn−1(0) −→ W n
ℓ |TLn−1(0).

This can be rewritten by Proposition 3.8 and (6) as

W n−1
ℓ+1 −→ W n−1

ℓ−3 ⊕W n−1
ℓ−1 ⊕W n−1

ℓ−1 ⊕W n−1
ℓ+1 −→ W n−1

ℓ−1 ⊕W n−1
ℓ+1 ,

and the above composition is the inclusion of W n−1
ℓ+1 into the second factor.

Similarly, the composition γnℓ+2 ◦ ωnℓ+2 factors as P n
ℓ+2 −→ W n

ℓ+2 −→ P n
ℓ+2, which by

Frobenius reciprocity corresponds to

W n−1
ℓ+1 −→ W n−1

ℓ+1 ⊕W n−1
ℓ+3 −→ W n−1

ℓ−1 ⊕W n−1
ℓ+1 ⊕W n−1

ℓ+1 ⊕W n−1
ℓ+3

which is again the inclusion of W n−1
ℓ+1 into the second factor.

We now have all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Since P ◦n := ⊕n/2
i=1 P

n
2i is a projective generator of Rep(TLn(0)), we

have an equivalence

Hom(P ◦n,−) : Rep(TLn(0)) ≃ Rep(End(P ◦n)).

By an abuse of notation, we write ωnℓ and γnℓ for the corresponding endomorphisms of P ◦n.
Consider the homomorphism Ψ: CQn/2/J → End(P ◦n) where Ψ(ai) = ωn2i and Ψ(bi) = γn2i.
Then Ψ(ai+1ai) = ωn2i+2 ◦ ωn2i = 0, Ψ(bibi+1) = γn2i ◦ γn2i+2 = 0, and Ψ(aibi − bi+1ai+1) =
ωn2i ◦ γn2i − γn2i+2 ◦ ωn2i+2 = 0 by Theorem 3.10 and Lemma 3.12. It follows that J ⊂ ker Ψ,
implying that Ψ is a well-defined homomorphism.

The surjectivity of Ψ is clear. Thus, it still remains to check that CQn/2/J and End(P ◦n)
have equal dimension. Both CQn/2/J and End(P ◦n) are bigraded vector spaces, so we can
just check that the graded pieces have equal dimension, which is clear from simple counting.
Comparing Corollary 3.11 and Proposition 3.2 implies the construction of Φ.
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Remark. Equivalently, we could directly apply Barr-Beck to the restriction functor Rep(TLn(0)) →
Rep(TLn−1(0)) and use that TLn−1(0) is semisimple (Corollary 3.5).

Corollary 3.13. There exists a long exact sequence on the standard modules

0 −→ W n
n −→ W n

n−2 −→ · · · −→ W n
2 −→ W n

0 −→ 0. (7)

Proof. Retain the same notation from Theorem 1.1. We can compute Φ(W n
ℓ ) for even ℓ by

Proposition 3.9, as

Φ(W n
ℓ ) =


C 0 0 · · · 0, if ℓ = 0
0 0 · · · C C · · · 0, if ℓ /∈ {0, n}
0 0 0 · · · C, if ℓ = n.

Now the exact sequence follows from the obvious exact sequence

0 −→ Φ(W n
n ) −→ Φ(W n

n−2) −→ · · · −→ Φ(W n
2 ) −→ Φ(W n

0 ) −→ 0.

4 An exact sequence of homomorphisms on the stan-
dard modules

In this section, we explicitly construct the homomorphisms in (7).

Definition 4.1. For any monic basis element x ∈ W n
ℓ+2, let the diagram xδℓi ∈ W n

ℓ connect
the (i + 1)th and (i + 2)th lower leftmost points of x with a cup. Let ϕnℓ : W n

ℓ+2 → W n
ℓ be

the alternating sum

ϕnℓ (x) =
ℓ/2∑
i=0

(−1)ixδn2i.

Example 4.2. In W 6
4 ,

(δ4
0, δ

4
2, δ

4
4) =

 , ,

 .
Consider the element

x = ∈ W 10
6 .

The diagram xδ4
2 entails joining the third and fourth lower leftmost points of x, yielding

xδ4
2 = = .
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In particular, we have ϕ10
4 (x) = x(δ4

0 − δ4
2 + δ4

4), so

ϕ10
4 (x) = − + .

Proposition 4.3. The map ϕnℓ is a well-defined homomorphism between standard modules.

Proof. We first show that ϕnℓ (x) = 0 when x is a non-monic string diagram. Let k be
the number of caps in x. Observe that a cup is created if xδℓi joins two throughlines of
x; otherwise, if xδℓi joins a cap with a throughline or another cap, then exactly one cap
is removed. Hence, the diagram xδℓi has at most k − 1 caps. As a result, if k ≥ 2, then
ϕnℓ (x) = 0.

Now suppose that k = 1. Then x is of the form

x =
1 2 j ℓ + 2

w1 w2 wj wℓ+1· · · · · · ,

where the sole cap connects the jth and (j+ 1)th leftmost points on the bottom and the wi
are subdiagrams consisting only of nested cups. We now consider the parity of j.

If j is odd, then in order for xδℓi to feature no caps while i is even we must have i = j−1.
Hence xδℓi = 0 for all even i such that i ̸= j − 1. However, observe that xδℓj−1 is formed by
joining the jth and (j + 1)th leftmost points on the bottom, thus completing a closed loop
and vanishing due to the specialization β = 0. Since ϕnℓ (x) is a linear combination of the
xδℓi restricted to even values of i, it follows that ϕnℓ (x) = 0.

Otherwise, if j is even, then for xδℓi to have no caps while i is even we must have
i ∈ {j − 2, j}. Hence, we have xδℓi = 0 for all even i /∈ {j − 2, j}, so it follows that

ϕnℓ (x) = (−1)j/2−1x(δℓj−2 − δℓj).

However, note that

xδℓj−2 = w1 w2 wj wℓ+1· · · · · ·
and

xδℓj = w1 w2 wj wℓ+1· · · · · · .

As a result
xδℓj−2 = xδℓj =

1 2 j − 1 j ℓ

w1 w2 wj wℓ+1· · · · · ·

and thus ϕnℓ (x) = 0. Thus, in both cases, we have ϕnℓ (x) = 0, so ϕnℓ is indeed well-defined.
Now it suffices to verify that ϕnℓ intertwines. But this is apparent as the left action of

TLn(0) on W n
ℓ operates by concatenation above, while ϕnℓ acts by concatenation below.

12



Proposition 4.4. The composition ϕnℓ−2 ◦ ϕnℓ = 0 holds.

Proof. For a basis element x ∈ W n
ℓ+2,

ϕnℓ−2(ϕnℓ (x)) = ϕnℓ−2

 ℓ/2∑
i=0

(−1)ixδℓ2i

 =
ℓ/2∑
i=0

ℓ/2−1∑
j=0

(−1)i+jxδℓ2iδℓ−2
2j .

For i > j we have xδℓ2iδℓ−2
2j = xδℓ2jδ

ℓ−2
2i−2, while for i ≤ j we have xδℓ2iδℓ−2

2j = xδℓ2j+2δ
ℓ−2
2i . For

both cases, we join the same pairs of points on the bottom edge of the diagram. By a pairing
argument on the sign factor (−1)i+j, the above double summation vanishes.

Now we are ready to begin proving Theorem 1.2. We first need the following lemma.

Lemma 4.5. The composition W n
ℓ+1

gn
ℓ+2−−→ W n

ℓ+2
ϕn

ℓ−→ W n
ℓ ↠ W n

ℓ / im gnℓ is an isomorphism
of vector spaces.

Proof. For a basis element

x =
1 2 ℓ + 1

w1 w2 wℓ+2· · · ∈ W n−1
ℓ+1 ,

where the wi are subdiagrams consisting only of cups, we have

gnℓ+2(x) = w1 w2 wℓ+2· · · (8)

We have

ϕnℓ (gnℓ+2(x)) =
ℓ/2∑
i=0

(−1)ignℓ+2(x)δℓ2i. (9)

By (8), we see gnℓ+2(x)δℓ2i will always have a rightmost throughline unless i = ℓ
2 , in which

case we connect the two rightmost points on the bottom of gnℓ+2(x). Thus all summands of
(9) lie in the image of gnℓ except for gnℓ+2(x)δℓℓ, hence

f̃(x) = η(ϕnℓ (gnℓ+2(x))) = (−1)ℓ/2gnℓ+2(x)δℓℓ = (−1)ℓ/2 w1 w2 wℓ+2· · · .

In other words, the map f̃ simply bends the rightmost throughline of some x ∈ W n−1
ℓ+1 into

the rightmost maximal arc of x while leaving everything else intact. Thus f̃ is bijective.

Proof of Theorem 1.2. Retain the notation used in Lemma 4.5. The map f = ϕnℓ ◦ gnℓ+2
satisfies im f ⊂ imϕnℓ . By Lemma 4.5 we see f is injective. Thus

dim imϕnℓ ≥ dim im f ≥ dimW n−1
ℓ+1 ,

13



implying that
dim imϕnℓ ≥ dimW n−1

ℓ+1 and dim imϕnℓ−2 ≥ dimW n−1
ℓ−1 . (10)

On the other hand, by Proposition 4.4 we know ϕnℓ−2 ◦ ϕnℓ = 0 for all ℓ, so imϕnℓ ⊂ kerϕnℓ−2.
In particular, rank-nullity implies that

dim imϕnℓ−2 + dim imϕnℓ ≤ dim imϕnℓ−2 + dim kerϕnℓ−2 = dimW n
ℓ . (11)

By Proposition 3.8 we know dimW n
ℓ = dimW n−1

ℓ−1 + dimW n−1
ℓ+1 , so by comparing with (10)

we conclude the inequality in (11) must be an equality and

dim imϕnℓ−2 = dimW n−1
ℓ−1 , dim imϕnℓ = dimW n−1

ℓ+1 .

Since we saw above that imϕnℓ ⊂ kerϕnℓ−2, the result follows.
The classification of irreducible modules is immediate from Proposition 3.6 and (1).

5 The symmetric group algebra over characteristic two
Let n be a positive integer. The ring k[z1, z2, . . . , zn] carries an action of Sn by permuting
the variables zi, and we realize the Specht modules as submodules of this ring.

Definition 5.1. For any Young tableau t of shape λ, let Ft ∈ k[z1, z2, . . . , zn] be the product
of zi − zj where i and j are the respective labels of cells bi and bj in the same column of λ,
with bi above bj. The Specht module Sλ is the k[Sn]-module spanned by Ft for all Younge
tableu t of shape λ.

Example 5.2. Let

t1 = 1 3 2
4 and t2 =

4 3
1
2

.

Then Ft1 = z1 − z4 while Ft2 = (z4 − z1)(z4 − z2)(z1 − z2).

Remark. Specht modules are typically defined using Young symmetrizers. The polynomial
ideal formulation from Definition 5.1 was the original construction given by Specht [13].

When λ is a two-row partition, the Specht module Sλ may be realized as a submodule of
the finite-dimensional vector space k[z1, z2, . . . , zn]/(z2

1 , z
2
2 , . . . , z

2
n) rather than the infinite-

dimensional k[z1, z2, . . . , zn].

Definition 5.3. Let T λ be the image of Sλ under the quotient

k[z1, z2, . . . , zn] −→ k[z1, z2, . . . , zn]/(z2
1 , z

2
2 , . . . , z

2
n).

Lemma 5.4. For a two-row partition λ ⊢ n, the k[Sn]-modules Sλ and T λ are isomorphic.
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Proof. By definition Sλ is spanned by the polynomials Ft for t a Young tableau of shape
λ = (n− k, k). If ui (resp. vi) is the label of the ith leftmost box on the top (resp. bottom)
row, then

Ft =
k∏
i=1

(zui
− zvi

), (12)

so Ft lies in the span of all squarefree monomials. Thus Sλ ∩ (z2
1 , z

2
2 , . . . , z

2
n) = {0} and

Sλ ∼= T λ.

Definition 5.5. For k ≤ n
2 , let Gn

n−2k : W n
n−2k → T (n−k,k) send a basis element x ∈ W n

n−2k
to the product of all terms of the form zi−zj for all i < j such that the ith and jth leftmost
points on top are connected by a cup.

Example 5.6. Let

x =
1 2 3 4 5 6 7 8 9 10 11 12

∈ W 12
2 .

Since nodes 1 and 4, 2 and 3, 6 and 11, 7 and 8, and 9 and 10 are connected by cups,

G12
2 (x) = (z1 − z4)(z2 − z3)(z6 − z11)(z7 − z8)(z9 − z10).

Proposition 5.7. The map Gn
n−2k : W n

n−2k → T (n−k,k) is an isomorphism of k-vector spaces.

Proof. Let λ = (n− k, k). By the hook length formula and Lemma 5.4

dimT λ = dimSλ =
(
n

k

)
−
(

n

k − 1

)
= dimW n

n−2k,

so it suffices to show that Gn
n−2k is a surjection.

The vector space T λ is spanned by polynomials Ft for Young tableau t of shape λ as
in (12). We can represent Ft using a diagram of strings using the following procedure:

• Draw two parallel horizontal lines, each containing n equally-spaced points.

• For all zi − zj dividing Ft, connect the ith and jth leftmost upper points with a cup.

• For any points on the upper line that are not an endpoint of a cup, connect a vertical
throughline through it.

Denote the resulting diagram by xt. If xt does not contains intersections between two cups,
or intersections between a cup and a throughline, then Ft = Gn

n−2k(xt) by construction. So
we deal with the problematic cases in succession.
Step 1. First, we deal with intersections between cups. Because of this, we may ignore
the bottom horizontal line and all throughlines in xt, wrapping everything around a circle.
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Thus we arrive at the diagram w, containing n evenly spaced points around a circle labeled
from 1 to n such that there exists a chord from i to j if and only if zi − zj divides Ft.

For any c1, c2, c3, and c4 that
(zc1 − zc3)(zc2 − zc4) = (zc1 − zc2)(zc3 − zc4) + (zc1 − zc4)(zc2 − zc3)

in k[z1, z2, . . . , zn]/(z2
1 , z

2
2 , . . . , z

2
n), so any intersection of chords can be resolved by

c1

c2

c3

c4 =

c1

c2

c3

c4 +

c1

c2

c3

c4 ,

where the diagrams add by adding their corresponding polynomials. The number of cross-
ings on each component above strictly decreases every time we apply the above resolution.
Hence, using a finite number of resolutions, we may write w = ∑a

i=1 wi where the wi are
all circle diagrams for which no two chords intersect. Unfurling each wi back into a string
diagram, it follows that Ft = ∑a

i=1 Fti for some a, where each Fti is of the form given in (12)
such that their analogous string diagrams xti contain no intersections between cups.

Thus we can assume that xt has no intersections between cups.
Step 2. Now we deal with intersections between cups and throughlines. In the diagram xt
if the cup corresponding to the factor zc1 − zc3 intersects the throughline corresponding to
zc2 , then zc1 − zc3 = (zc1 − zc2) + (zc2 − zc3), giving us the resolution

c1 c2 c3

=

c1 c2 c3

+

c1 c2 c3

.

Again, the number of crossings on each component strictly decreases each time we use the
above resolution. Thus, we may eventually write Ft as the sum ∑a′

i=1 Fti where each diagram
xti contains no intersections between any curves. Then Fti , Ft ∈ imGn

n−2k as desired.
Example 5.8. We walk through the procedure of Proposition 5.7 for n = 8 on the polyno-
mial Ft = (z1 − z4)(z2 − z6)(z5 − z7) ∈ T (5,3). For Step 1 of Lemma 5.7, we draw the circle
diagram for Ft and repeatedly apply resolutions to find that

w =

1 2

3

456

7

8

=

1 2

3

456

7

8

+

1 2

3

456

7

8

so

w =

1 2

3

456

7

8

+

1 2

3

456

7

8

+

1 2

3

456

7

8

+

1 2

3

456

7

8

.
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Transforming each of the four circle diagrams above into polynomials, we find that

Ft =(z1 − z2)(z4 − z5)(z6 − z7) + (z1 − z2)(z4 − z7)(z6 − z6)
+ (z1 − z5)(z2 − z4)(z6 − z7) + (z1 − z7)(z2 − z4)(z5 − z6).

We move on to Step 2 of Lemma 5.7. Of the four above summands, the first two correspond
to valid string diagrams. The third summand requires a resolution due to an intersection
of the throughline at z3 with the arc due to z2 − z4, and the fourth summand exhibits an
intersection of the throughline at z8 with the arcs due to z1 −z7 and z2 −z4. Applying these
resolutions and putting everything together, our sum becomes

Ft = (z1 − z2)(z4 − z5)(z6 − z7) (first summand)
+ (z1 − z2)(z4 − z7)(z6 − z6) (second summand)
+ ((z1 − z5)(z2 − z3)(z6 − z7) (third summand)

+ (z1 − z5)(z3 − z4)(z6 − z7))
+ ((z1 − z4)(z2 − z3)(z5 − z6) (fourth summand)

+ (z2 − z3)(z4 − z7)(z5 − z6)
+ (z1 − z2)(z3 − z4)(z5 − z6)
+ (z2 − z7)(z3 − z4)(z5 − z6)).

Now each individual summand indeed corresponds to a valid string diagram in W 8
2 .

Definition 5.9. Let ψnn−2k : T (n−k+1,k−1) → T (n−k,k) be multiplication by ∑n
i=1 zn.

From now on, we work only with k = F2.

Proposition 5.10. The following diagram commutes.

W n
n−2k+2 W n

n−2k

T (n−k+1,k−1) T (n−k,k)

ϕn
n−2k

Gn
n−2k+2 Gn

n−2k

ψn
n−2k

Proof. Let ℓ = n − 2k, and take a basis element x ∈ W n
ℓ+2. Number the points on the top

row of the diagrammatic representation of x with the integers from 1 to n, going from left
to right. For each j ≤ ℓ+ 2, suppose that the jth leftmost throughline occurs at the point
numbered with cj. Then Gn

ℓ ◦ϕnℓ takes an alternating sum over connecting the (2i−1)th and
2ith throughlines with a cup, which multiplies the polynomial Gn

ℓ+2(x) with the binomial
zc2i−1 − zc2i

. In characteristic 2, the alternating sum becomes

Gn
ℓ (ϕnℓ (x)) =

ℓ/2+1∑
i=1

(zc2i−1 − zc2i
)Gn

ℓ+2(x) =
ℓ+2∑
i=1

zci
Gn
ℓ+2(x).
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Note that Gn
ℓ+2(x) = ∏(n−ℓ)/2−1

i=1 bi, where the binomials bi satisfy ∑(n−ℓ)/2−1
i=1 bi +∑ℓ+2

i=1 zci
=∑n

i=1 zn. Since b2
i = 0 in F2[z1, z2, . . . , zn]/(z2

1 , z
2
2 , . . . , z

2
n), it follows that(

n∑
i=1

zn −
ℓ+2∑
i=1

zci

)
Gn
ℓ+2(x) =

(n−ℓ)/2−1∑
i=1

biG
n
ℓ+2(x) = 0.

Combining the above equations implies

ψnℓ (Gn
ℓ+2(x)) =

n∑
i=1

znG
n
ℓ+2(x) =

ℓ+2∑
i=1

zci
Gn
ℓ+2(x) = Gn

ℓ (ϕnℓ (x)).

Corollary 5.11. There is an exact sequence of F2[Sn]-modules

0 −→ T (n) ψn
n−2−−−→ T (n−1,1) ψn

n−4−−−→ · · · ψn
2−→ T (n/2+1,n/2−1) ψn

0−→ T (n/2,n/2) −→ 0.

Proof. Follows from Theorem 1.2, Propositions 5.7 and 5.10.
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