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Abstract

We explore properties of the Jones and Alexander polynomials of braid closures
of braids of index 3. We analyze how the evaluations of these polynomials at t = −1
force implications regarding the topological structure of the braid closure, such as its
number of circles or the existence of splittings. As a consequence, we construct an
infinite number of pairs of distinct non-split links that have the same HOMFLYPT
polynomial.

1 Introduction

A knot is an embedding of the circle S1 in S3, while a link is an embedding of several circles
in S3. Through the remainder of this paper, we tacitly work with tame links only.

Definition 1.1. A splitting of a link L is a manifold B ⊂ S3\L such that B is homeomorphic
to S2 and L intersects both connected components of S3 \B.

Informally, this occurs exactly when L can be separated into two rigid components that
can be moved arbitrarily far away from each other without disturbing isotopy classes.

Example 1.2. The Hopf link features two linked circles; physical intuition implies that it
exhibits no splitting. Indeed, if a split link has two circles, then it must be the unlink on
two circles, which has Jones polynomial − 1√

t
(1 + t). Meanwhile, the Hopf link has different

Jones polynomial − 1√
t
(1 + 1

t2
).

The Jones polynomial VL(t) is obtained upon specialization of the HOMFLYPT poly-
nomial XL(q,Λ) at q = Λ = t, where we have used the capital letter Λ instead of the more
standard λ in order to avoid confusion with the partitions λ ⊢ n.

Proposition 1.3. If L is a split link, then ∆L(t) = 0.
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Proof. If L splits into L1 and L2, then by the skein relations [1, Example 6.7] we have

XL(q,Λ) = −(1− Λq)XL1(q,Λ)XL2(q,Λ)√
Λ(1− q)

,

which must equal zero if Λq = 1 and q ̸= 1. Since the Alexander polynomial satisfies
∆L(t) = XL(t,

1
t
), it follows that ∆L(t) = 0 for all t ∈ C \ {1}. We finish by continuity.

By Proposition 1.3 that the Alexander polynomial detects all splittings. We concern
ourselves with the special value of the the knot determinant VL(−1) = ∆L(−1).

Question 1.4. Is there a link L with no splitting such that ∆L(−1) = 0?

The answer to Question 1.4 is in the positive. In fact, given any L, there is [2] an infinite
family of distinct links L′ all with Jones polynomial equal to VL′(t) = −(

√
t + 1√

t
)VL(t).

Thus ∆L′(−1) = VL′(−1) = XL′(−1,−1) = 0. However, the construction used to create
such links are quite complicated, so we will consider simpler methods.

Theorem 1.5 (Theorems 3.8 and 3.9). There exists an infinite family of links Lm,k, indexed
by pairs of integers (m, k), with the property that any link L satisfying VL(−1) = ∆L(−1) = 0
is equivalent to some Lm,k. In addition, Lm,k has a splitting if and only if m = 0.

The construction of each Lm,k is much simpler than that of [2]. It turns out our work
also yields pairs of distinct non-split links with the same HOMFLYPT polynomial, as in
our second main result.

Theorem 1.6 (Theorem 3.10). If 6 | k, then Xγ̂m,k
(q,Λ) = Xγ̂

m+ k
6 ,−k

(q,Λ).

The links Lm,k all contain either two or three circles, motivating us to consider how
∆L(−1) would behave if L had braid index at most 3 but was forced to be a knot. Surpris-
ingly, we prove the following third main result in Section 3.2.

Theorem 1.7 (Theorem 3.15). If L is a knot with braid index at most 3, then VL(−1) ≡
∆L(−1) ≡ 1 (mod 4).

2 Preliminaries

2.1 The braid group

Let n be a positive integer.

Definition 2.1. The braid group Bn is generated by σ1, σ2, . . . , σn−1 with relations

σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≥ 2.

Naturally, elements of Bn are called braids.
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We can diagrammatically depict σi as

σi =

1 2 i n

· · · · · · .

Under this interpretation, each braid can be viewed as consisting of n strands of string, each
connecting a point in the top row to a point in the bottom row. Multiplication of braids is
determined by diagrammatic concatenation.

Definition 2.2. Given a braid α ∈ Bn, the braid closure α̂ is the oriented link obtained by
identifying each endpoint on the top row with the endpoint directly below it on the bottom
row. The orientation of the link points away from the top row and towards the bottom row.

Example 2.3. The braid closure of σ3
1 ∈ B2 is the right-handed trefoil.

We reproduce a famous theorem of Alexander [3] below.

Theorem 2.4 ([3, Alexander’s Theorem]). Let L be a link. Then there exists an integer n
and a braid α ∈ Bn such that L is isotopic to the braid closure α̂.

Definition 2.5. The braid index of a link L is the minimal satisfactory value of n in the
statement of Theorem 2.4.

2.2 Young diagrams

Now we discuss partitions of n and their Young diagrams.

Definition 2.6. Let λ ⊢ n be a partition. For a box b ∈ λ in its Young diagram, the hook
length h(b) is the number of boxes directly below or to the right to b, including b itself.
Let r(b) be the number of rows below the topmost row that b resides in, and define c(b)
analogously but in comparison to the leftmost column.

Example 2.7 ([4, Example A.4]). Consider the partition

(9, 9, 7, 5, 3, 2, 1) =

♣ ♢ ♢ ♢ ♢ ♢ ♢
♡
♡
♡

.

The box b marked with a club (♣) has 3 boxes below it, denoted with a heart (♡), and 6
boxes to its right, denoted with a diamond (♢). Its hook length is h(b) = 3 + 6 + 1 = 10.
Also check that r(b) = 1 and c(b) = 2.

3



2.3 Specht modules of the Hecke algebra

We now introduce the Hecke algebra.

Definition 2.8. For q ∈ C\{0}, the Hecke algebra Hn(q) is the generated by g1, g2, . . . , gn−1

with relations

(gi − q)(gi + 1) = 0, gigi+1gi = gi+1gigi+1, and gigj = gjgi if |i− j| ≥ 2.

There is a canonical epimorphism π : C[Bn] → Hn(q) satisfying π(σi) = gi for all i.

It is well-known that the irreducible representations of C[Sn] are the Specht modules
Sλ, which are indexed by partitions λ ⊢ n. As Hn(q) is a deformation of Hn(1) ∼= C[Sn],
the q-Specht modules themselves deform as q varies. They remain irreducible for generic q.

Definition 2.9. For σ ∈ Sn, let ℓ(σ) = {(a, b) | 1 ≤ a < b ≤ n, σ(a) > σ(b)} be its length.
For τ = (i i+ 1) ∈ Sn, define Tτ = gi ∈ Hn(q) for all i < n, and define for all σ

Tστ :=

{
TσTτ if ℓ(στ) = ℓ(σ) + 1

q−1(TσTτ + (1− q)Tσ) otherwise.

Remark. One can show without much difficulty that {Tσ | σ ∈ Sn} forms a basis for Hn(q),
and hence it is clear that dimHn(q) = n! regardless of the choice of q ∈ C. Writing out
each Tσ as a product of generators gi also expresses this basis in a “normal form” of Jones.

We can now finally demonstrate how the Specht modules deform as q changes value [5].

Definition 2.10. Let λ ⊢ n be a partition. The canonical Young tableau tλ is formed by
writing the first n positive integers in increasing order in the boxes of the Young diagram of
λ, going row by row from left to right. Let the row stabilizer Pλ ⊂ Sn be the subgroup of
all permutations that fix the numbers in each row under the natural action of Sn. Define
the q-Young symmetrizer to be

zλq :=

(∑
σ∈Pλ

Tσ

)
Twλ

 ∑
σ∈P

λ⊤

(−q)−ℓ(σ)Tσ

 ,

where wλ ∈ Sn is the unique permutation mapping tλ to the mirror image of tλ
⊤
. The

q-Specht module Sλq is the ideal zλqHn(q), where Hn(q) acts from the right.

Definition 2.11. Let χλ : Bn → C denote the character of π(α) with respect to Sλq .

Remark. Regardless of the value of q, its dimension [1, Remark 3.5] is given by the hook-
length formula

dimSλq =
n!∏

b∈λ h(b)
.

Recall the hook length h(b) of a box from Definition 2.6.
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Example 2.12. We first consider the q-Specht module S
(n)
q , which is of dimension 1 by the

hook-length formula. Indeed, P(n) = Sn, P(n)⊤ = {e}, and w(n) = e, so

z(n)q =
∑
σ∈Sn

Tσ.

For the transposition τ = (i i+ 1), by Definition 2.9

Tσgi =

{
Tστ if ℓ(στ) = ℓ(σ) + 1

qTστ + (q − 1)Tσ otherwise.

Define Qi = {σ | ℓ(στ) = ℓ(σ) + 1} ⊂ Sn, and note that σ ∈ Qi iff στ /∈ Qi. Thus,

z(n)q gi =
∑
σ∈Sn

Tσgi

=
∑
σ∈Qi

Tστ +
∑
σ/∈Qi

(qTστ + (q − 1)Tσ)

=
∑
σ/∈Qi

Tσ + q
∑
σ∈Qi

Tσ + (q − 1)
∑
σ/∈Qi

Tσ

= qz(n)q .

It follows that each gi acts by multiplication by q in S
(n)
q . This is the trivial representation

of Hn(q) and generalizes the trivial representation of C[Sn]. Indeed, choosing an eigenvalue
of q makes sense as (gi − q)(gi + 1) = 0.

Example 2.13. Following Example 2.12, one can analogously check that S
(n)⊤
q is the sign

representation, in which each gi acts as −1.

Example 2.14. The Burau representation is the q-Specht module S
(n−1,1)⊤
q [1, Note 5.7].

Let us investigate the case where n = 3 and λ = (2, 1). One verifies using Definition 2.10
that P(2,1) = P(2,1)⊤ = ⟨g1⟩, so

z(2,1)q = (1 + g1)g2

(
1− g1

q

)
.

We check that (q − g1)g1 = g1 − q, so z
(2,1)
q g1 = −z(2,1)q . Since by Remark 2.3 we have that

dimS
(2,1)
q = 3!

3·1·1 = 2, it follows that S
(2,2)
q is spanned by z

(2,1)
q and z

(2,1)
q g2.

Now, one can verify, say by direct computation, that z
(2,2)
q g2g1 = −q2z(2,2)q + qz

(2,2)
q g2,

while by the relations of H3(q) we have z
(2,2)
q g22 = qz

(2,2)
q + (q − 1)z

(2,2)
q g2. It follows that

S
(2,1)
q is the two-dimensional module on which each gi acts as Hi where

(H1, H2) =

((
−1 −q2
0 q

)
,

(
0 q
1 q − 1

))
.
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The Burau representation for n = 3 is often portrayed with each gi acting as Gi, where

(G1, G2) =

((
q 0
1 −1

)
,

(
−1 q
0 q

))
.

This is valid as Gi = CHiC
−1 for each i, where C = [ 0 q1 q ].

Example 2.15. The q-Specht module S
(2,2)
q exhibits similarities to the Burau representation

from Example 2.14. Again, Definition 2.10 implies that P(2,2) = ⟨g1, g3⟩, so

z(2,2)q = (1 + g1)(1 + g3)g2

(
1− g1

q

)(
1− g3

q

)
.

Note that (q − g1)(q − g3)gi = −(q − g1)(q − g3) and thus z
(2,2)
q gi = −z(2,2)q for i ∈ {1, 3},

and by Remark 2.3 we also have dimS
(2,2)
q = 4!

3·2·2·1 = 2. Again, S
(2,2)
q is spanned by z(2,2)

and z(2,2)g2.
In fact, the same computations from Example 2.14 hold: it can be shown by hand that

z
(2,2)
q g2gi = −q2z(2,2)q + qz

(2,2)
q g2 and z

(2,2)
q g22 = qz

(2,2)
q + (q − 1)z

(2,2)
q g2 for i ∈ {1, 3}. Hence,

the representation S
(2,2)
q copies the Burau representation S

(2,1)
q by having g1 and g3 act as

H1 and g2 acts as H2. Again using a change of basis with matrix C, equivalently we can
replace each Hi with Gi in the above statement.

2.4 The HOMFLYPT polynomial

In [1, Section 6], Jones proposed a multivariable polynomial link invariant XL(q,Λ), which
reduces to the Jones polynomial under the specialization q = Λ = t and to the Alexander
polynomial under the specialization q = 1

Λ
= t. We recall the key definitions organized

in [4].

Definition 2.16 ([6, Theorem 1.1]). Let λ ⊢ n be a partition. The Ocneanu weight corre-
sponding to λ is the product

Ωλ =
∏
b∈λ

qr(b)w − qc(b)z

1− qh(b)
,

where z = − 1−q
1−Λq

and w = 1− q + z.

Definition 2.17. Let e : Bn → Z denote the braid exponent, the additive homomorphism
where e(σi) = 1 for all i.

Definition 2.18 ([1, Definition 6.1]). For a braid α ∈ Bn, the HOMFLYPT polynomial
under Jones normalization is the product

Xα̂(q,Λ) :=

(
− 1− Λq√

Λ(1− q)

)n−1

(
√
Λ)e(α)

∑
λ⊢n

Ωλχλ(α).

This two-variable polynomial Xα̂(q,Λ) is a link invariant. The sum
∑

λ⊢nΩλχλ(α) is some-
times referred to as the Ocneanu trace.
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Remark. The HOMFLYPT polynomial often admits the much more common normalization
PL(a, z), related to the Jones normalization by XL(q,Λ) = PL((Λq)

−1/2, q1/2 − q−1/2).

Ocneanu originally calculated the eponymous weights, but this work has been lost. A
reproof of the validity of these weights was given by Geck [6].

Example 2.19 ([4, Example A.10]). Under the Jones specialization q = Λ = t, the weights
Ωλ simplify drastically, as shown in [4]. Specifically, Ωλ = 0 if λ has more than two columns,
and the braid closure of any α ∈ Bn has Jones polynomial

Vα̂(t) =
(−1)n−1(

√
t)e(α)−n+1

t+ 1

⌊n/2⌋∑
k=0

(
n−k∑
i=k

ti

)
χ(n−k,k)⊤(α).

When n = 3, this simplifies to

Vα̂(t) = (
√
t)e(α)−2((t2 + 1)χ(1,1,1)(α) + tχ(2,1)(α)).

Example 2.20 ([1, Section 7]). Under the Alexander specialization q = 1
Λ
= t, the sim-

plification of the weights is less clear as it seems like z = − 1−q
1−Λq

will exhibit a singularity.

However, it turns out that such singularities are removable due to the factor of (1−Λq)n−1

in Definition 2.18.
Let µi be the hook-type partition made up of one row of i squares and one column of

n− i squares beneath. As computed in [1, Equation 7.2], we find that

∆α(t) =
(−1)n(t− 1)

(
√
t)e(α)−n+1(tn − 1)

n∑
i=1

(−1)iχµi(α).

When n = 3, this implies that

∆α̂(t) =
χ(1,1,1)(α)− χ(2,1)(α) + χ(3)(α)

(
√
t)e(α)−2(t2 + t+ 1)

.

Remark. If we substitute t = ζn = e2πi/n into Example 2.20 above, the denominator vanishes,
implying that the numerator must vanish too. In particular, we must have

n∑
i=1

(−1)iχµi(α) = 0

at t = ζn. If we apply the KZ functor to the exact sequence proven due to the BGG resolution
in [7], we expect an exact sequence of ζn-Specht modules on hook-shape partitions.
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3 Closures of 3-braids

We investigate the Jones and Alexander polynomials of 3-braid closures at −1.
Recall from Examples 2.12 and 2.13 that S

(1,1,1)
q is the sign representation, where each

gi acts as −1, while S
(3)
q is the trivial representation, where each gi acts as q. When q = −1,

the representations become isomorphic, so χ(1,1,1)(α) = χ(3)(α). Hence

Vα̂(−1) = (
√
−1)e(α)−2(2χ(1,1,1)(α)− χ(2,1)(α))

and

∆α̂(−1) = (
√
−1)−e(α)+2(χ(1,1,1)(α)− χ(2,1)(α) + χ(3)(α))

= (
√
−1)−e(α)+2(2χ(1,1,1)(α)− χ(2,1)(α)).

Note the use of
√
−1 rather than i or −i due to the lack of a continuous, single-valued square

root over C. If we define
√
−1 to be {i,−i}, then clearly Vα̂(−1) = ∆α̂(−1) = Xα̂(−1,−1).

Otherwise, the usual convention where i =
√
−1 yields that Vα̂(−1) = (−1)e(α)∆α̂(−1).

From now on, we will adopt the latter convention where Vα̂(−1) = (−1)e(α)∆α̂(−1).

Definition 3.1. Let ϕ : B3 → SL2(Z) be the homomorphism satisfying ϕ(σi) =Mi, where

(M1,M2) =

((
1 0
−1 1

)
,

(
1 1
0 1

))
.

Proposition 3.2. For a braid α ∈ B3, the Jones and Alexander polynomials of α̂ satisfy
Vα̂(−1) = (−i)e(α)(tr(ϕ(α))− 2) and ∆α̂(−1) = ie(α)(tr(ϕ(α))− 2).

Proof. From Example 2.14 we note that gi acts as −Mi in S−1
(2,1), while gi acts as −1 in

S−1
(1,1,1). Thus, as found above, we have

Vα̂(−1) = ie(α)−2(2χ(1,1,1)(α)− χ(2,1)(α))

= ie(α)(−1)(2(−1)e(α) − (−1)e(α) tr(ϕ(α)))

= (−i)e(α)(tr(ϕ(α))− 2),

as claimed.

An interesting question to consider is which integer values Vα̂(−1) can possibly take,
and what type of link α̂ corresponds to. Here, we shall consider two extremal cases: when
α̂ is split and when α̂ is a knot.
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3.1 Split Links

From from Proposition 1.3 we have VL(−1) = ∆L(−1) = 0 for all split links. We show that
this condition is not sufficient.

Corollary 3.3. Let α ∈ B3. Then Vα̂(−1) = ∆α̂(−1) = 0 if and only if trϕ(α) = 2.

Proof. Immediate by Proposition 3.2.

The following result is due to Serre [8].

Proposition 3.4 ([8, Theorem 2.1.4]). The group SL2(Z) has presentation

SL2(Z) ∼= ⟨s, t | s4 = 1, (st)3 = s2⟩

where the correspondence of matrices is given from (s, t) to

(S, T ) =

((
0 1
−1 0

)
,

(
1 0
1 1

))
.

Now we claim the following.

Lemma 3.5. The following statements are true.

(a) The matrices M1 and M2 generate the group SL2(Z).

(b) The group SL2(Z) admits the presentation

SL2(Z) ∼= ⟨m1,m2 | (m1m2m1)
4 = m1m2m1m

−1
2 m−1

1 m−1
2 = 1⟩.

Proof. Retain the notation as in Proposition 3.4. Check that (S, T ) = (M1M2M1,M
−1
1 ) and

(M1,M2) = (T−1, TST ), so that any word in the alphabet {s, s−1, t, t−1} can be translated
to one in the alphabet {m1,m

−1
1 ,m2,m

−1
2 } and vice versa. This proves part (a) of the

desired result.
Now, we can simply make the substitution (s, t) = (m1m2m1,m

−1
1 ), which has the inverse

substitution (m1,m2) = (t−1, tst), as follows from the above matrix transformations. Hence

SL2(Z) ∼= ⟨s, t | s4 = 1, (st)3 = s2⟩
∼= ⟨m1,m2 | (m1m2m1)

4 = 1, (m1m2)
3 = (m1m2m1)

2⟩
∼= ⟨m1,m2 | (m1m2m1)

4 = m1m2m1m
−1
2 m−1

1 m−1
2 = 1⟩,

which proves part (b).

Following Garside [9], define ∆3 = σ1σ2σ1 ∈ B3.

Proposition 3.6. The map ϕ induces an isomorphism between the groups B3/⟨∆4
3⟩ and

SL2(Z).
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Proof. From [9] we have that Z(B3) = ⟨∆2
3⟩. In particular, quotienting by ⟨∆4

3⟩ simply
introduces a corresponding relation, so by Lemma 3.5 we have

⟨σ1, σ2 | σ1σ2σ1σ−1
2 σ−1

1 σ−1
2 = 1⟩/⟨∆4

3⟩ ∼= ⟨m1,m2 | (m1m2m1)
4 = m1m2m1m

−1
2 m−1

1 m−1
2 = 1⟩

with an isomorphism sending σi to mi.
Since ϕ(∆4

3) acts as the identity, ϕ is constant over all elements within any coset of ⟨∆4
3⟩

as embedded in B3, so the above isomorphism is well-defined.

We can thus reduce our original task of finding 3-braids whose braid closures have Jones
polynomial with root −1 with the task of finding conjugacy classes in SL2(Z).

Proposition 3.7. Let α ∈ B3 satisfy ϕ(α) = 2. Then there exists some α0 ∈ B3 and k ∈ Z
such that ϕ(α0) =Mk

2 and α̂ = α̂0.

Proof. It suffices to show that, given some matrix A ∈ SL2(Z) such that trA = 2, there
exists some B ∈ SL2(Z) such that BAB−1 = Mk

2 for some k ∈ Z. Indeed, let A = ϕ(α).
By Lemma 3.5, the Mi generate SL2(Z), so there exists some β ∈ B3 such that B = ϕ(β).
Define α0 ∈ B3 to be α0 = βαβ−1. Then ϕ(α0) = BAB−1 = Mk

2 and α̂0 = α̂ as we can
simply rotate the braid closure of α0 such that the components corresponding to β and β−1

cancel out.
We now give an explicit construction of our above claim. Let

A =

(
a b
c d

)
.

Since trA = 2 and detA = 1, the eigenvalue of A is 1 with multiplicity 2. Thus, there exists
some (x, y, z, w) ∈ Z4 such that gcd(x, y) = 1, xw− yz = 1, and A(xe1 + ye2) = xe1 + ye2.
Then define the matrix

B =

(
x z
y w

)−1

=

(
w −z
−y x

)
,

which is an element of SL2(Z) by construction. Letting {e1, e2} be the canonical basis for
Z2, we can now check that

BAB−1e1 = BA(xe1 + ye2) = B(xe1 + ye2) = e1

and
(BAB−1e2) · e2 = w(dx− by) + z(cx− ay) = detB(trA− 1) = 1.

Hence, for some k ∈ Z,

BAB−1 =

(
1 k
0 1

)
=Mk

2 ,

as desired.

Now we introduce the main results of this subsection.
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Theorem 3.8. Let α ∈ B3 satisfy Vα̂(−1) = ∆α̂(−1) = 0. Then there exist integers m and
k for which α̂ is equivalent to the braid closure of σk2∆

4m
3 .

Proof. By Corollary 3.3 and Proposition 3.7, there exists some α0 ∈ B3 and k ∈ Z satis-
fying ϕ(α0) = Mk

2 and α̂ = α̂0. Thus σ−k
2 α0 is sent by ϕ to the identity, from which by

Proposition 3.6 it follows that σ−k
2 α0 ∈ ⟨∆4

3⟩. Then α0 is of the form σk2∆
4m
3 for some m.

Theorem 3.9. For m, k ∈ Z, let γm,k denote the braid σk2∆
4m
3 , so that γ̂m,k denotes its

oriented link closure.

(a) The link γ̂m,k is split if and only if m = 0.

(b) For m1,m2, k1, k2 ∈ Z, the links γ̂m1,k1 and γ̂m2,k2 are equivalent iff (m1, k1) = (m2, k2).

Proof. First, suppose that 2 | k. Consider the homomorphism ψ : B3 → S3 with ψ(σi) =
(i i + 1). Then γ̂m,k has three circles as ψ(γm,k) = (2 3)k((1 2)(2 3)(1 2))4m = 1. By
inspection, one can check that removing the strand unaffected by σ2 from γm,k results in
the braid σ4m+k

1 ∈ B2, while if any other strand is removed, the resulting braid is σ4m
1 ∈ B2.

For part (a), if γ̂m,k is split, then at least two out of the three elements in the multiset
{4m, 4m, 4m + k} are equal to zero, forcing m = 0. For part (b), if γ̂m1,k1 and γ̂m2,k2 are
equivalent for even ki, then the multisets {4m1, 4m1, 4m1 + k1} and {4m2, 4m2, 4m2 + k2}
are equal, implying that (m1, k1) = (m2, k2).

Otherwise, if 2 ∤ k, then γ̂m,k is a link of two circles as ψ(γm,k) = (2 3)k = (2 3). Then the
two strands affected by σ2 form a T (2, 4m+ k) torus link. Let W be the bounding torus of
this link. Then the third strand is an unknot that wraps 2m times around a cross-sectional
disk ofW . Hence, for part (a), if γ̂m,k is split, then the third strand cannot wrap around the
bounding torus at all, again forcing m = 0. For part (b), if γ̂m1,k1 and γ̂m2,k2 are equivalent
for odd ni, then (2m1, 4m1 + k1) = (2m2, 4m2 + k2), and the desired conclusion follows.

Note for part (b) that counting circles gives k1 ≡ k2 (mod 2), as subsumed above.

Thus we have an infinite family of distinct links with no splitting whose Jones and
Alexander polynomials vanish at t = −1. It turns out that certain pairs of links fail to be
detected by the HOMFLYPT polynomial.

Theorem 3.10. If 6 | k, then Xγ̂m,k
(q,Λ) = Xγ̂

m+ k
6 ,−k

(q,Λ).

Proof. We first compute χ(2,1)(γm,k). The Burau representation lets σi act as −Li, where

(L1, L2) =

((
−q 0
−1 1

)
,

(
1 −q
0 −q

))
.

One can check that (L1L2L1)
4 acts as scalar multiplication by q6. Also note that Lk2e1 =

e1 as e1 is an eigenvector and (Lk2e2) · e2 = −q(Lk−1
2 (e1 + e2)) · e2 = −q(e1 +Lk−1

2 e2) · e2 =

11



−q(Lk−1
2 e2) ·e2. Thus (Lk2e2) ·e2 = (−q)k by induction, so it follows that tr(Lk2) = 1+(−q)k.

We thus have

χ(2,1)(γm,k) = (−1)e(γm,k) tr(Lk2(L1L2L1)
4m) = (−1)e(γm,k)q6m(1 + (−q)k).

Since e(γm,k) = e(γm+ k
6
,−k) = 12m+ k, one checks that χ(2,1)(γm,k) = χ(2,1)(γm+ k

6
,−k).

In addition, it is clear that χ(1,1,1)(γm,k) = χ(1,1,1)(γm+ k
6
,−k) and χ(3)(γm,k) = χ(3)(γm+ k

6
,−k).

The desired result then follows by Definition 2.18.

We finish this subsection by constructing the Jones and Alexander polynomials of γ̂m,k.

Proposition 3.11. The Jones and Alexander polynomials of γ̂m,k are

Vγ̂m,k
(t) = (−

√
t)12m+k

(
t6m((−t)k + 1) +

1

t
+ t

)
and

∆γ̂m,k
(t) =

(−t)12m+k − t6m((−t)k + 1) + 1

(−
√
t)12m+k−2(t2 + t+ 1)

.

Proof. From Theorem 3.10, we have that χ(2,1)(γm,k) = (−1)kq6m(1 + (−q)k) and e(γm,k) =
12m+ k. It follows from Examples 2.19 and 2.20 that

Vγ̂m,k
(t) = (

√
t)e(γm,k)−2((t2 + 1)χ(1,1,1)(γm,k) + tχ(2,1)(γm,k))

= (−
√
t)12m+k

(
t6m((−t)k + 1) + t+

1

t

)
and

∆γ̂m,k
(t) =

χ(1,1,1)(γm,k)− χ(2,1)(γm,k) + χ(3)(γm,k)

(
√
t)e(γm,k)−2(t2 + t+ 1)

=
(−t)12m+k − t6m((−t)k + 1) + 1

(−
√
t)12m+k−2(t2 + t+ 1)

.

In both cases, we have substituted t for q.

Remark. For even k, Proposition 3.11 simplifies to

Vγ̂m,k
(t) = t6m+ k

2
−1 + t6m+ k

2
+1 + t12m+ k

2 + t12m+ 3k
2

and

∆γ̂m,k
(t) =

t6m+ k
2
+1 − t

k
2
+1 − t−

k
2
+1 + t−6m− k

2
+1

t2 + t+ 1
.

12



3.2 Knots

Recall from Proposition 3.9 the natural homomorphism ψ : B3 → S3 from the braid group
to the symmetric group, given by ψ(σi) = (i i + 1). The number of circles in the link α̂ is
determined by the cycle type of ψ(α), with α̂ being a knot iff ψ(α) is a 3-cycle.

Proposition 3.12. Braids α1, α2 ∈ B3 satisfy ψ(α1) = ψ(α2) iff ϕ(α1) ≡ ϕ(α2) (mod 2).

Proof. It suffices to show that α ∈ B3 satisfies ψ(α) = e iff ϕ(α) ≡ I (mod 2).
First, we have by definition that

B3
∼= ⟨σ1, σ2 | σ1σ2σ1σ−1

2 σ−1
1 σ−1

2 = 1⟩

while

S3
∼= ⟨s1, s2 | s21 = s22 = s1s2s1s

−1
2 s−1

1 s−1
2 = e⟩ ∼= ⟨s1, s2 | s1s2s1s−1

2 s−1
1 s−1

2 = e⟩/⟨s21, s22⟩.

Hence, ψ(α) = e iff we can reduce α to the trivial braid by deleting instances of σ2
i .

Next, M2
1 ≡M2

2 ≡ I (mod 2). Then one checks that

SL2(Z/2Z) ∼= ⟨m1,m2 | m2
1 = m2

2 = m1m2m1m
−1
2 m−1

1 m−1
2 = 1⟩,

where again mi is represented by the matrix Mi. The relation (m1m2m1)
4 = 1 may be

dropped as it is implied by setting m2
1 = m2

2 = 1. We find again that ϕ(α) ≡ I (mod 2) iff
we can reduce α to the trivial braid by deleting instances of σ2

i , as claimed.

Remark. Observe that S3 and SL2(Z/2Z) are isomorphic, as both groups are nonabelian
of order 6. The isomorphism map θ : S3 → SL2(Z/2Z) is canonically constructed via the
permutation action of SL2(Z/2Z) on {

(
0
1

)
,
(
1
0

)
,
(
1
1

)
} ⊂ F2

2. Let π2 : SL2(Z) → SL2(Z/2Z) be
the usual projection. Then Proposition 3.12 induces θ to be precisely the lift from ψ to
π2 ◦ ϕ, as in the following commutative diagram.

B3 SL2(Z)

S3 SL2(Z/2Z)

ϕ

ψ π2

θ

Note that Proposition 3.12 implies that the number of circles in the link α̂ depends only
on the parity of the entries of ϕ(α).

Corollary 3.13. If α̂ is a knot for α ∈ B3, then ϕ(α) ∈ {( 0 1
1 1 ), (

1 1
1 0 )} (mod 2). In partic-

ular, tr(ϕ(α)) is odd.

Proof. Recall that α̂ is a knot iff ψ(α) ∈ {(1 2 3), (1 3 2)} = {ψ(σ1σ2), ψ(σ2σ1)}. Then
by Proposition 3.12 it follows that ϕ(α) is congruent to either M1M2 or M2M1 modulo 2,
which is exactly the desired claim.
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Recall from Proposition 3.2 that

Vα̂(−1) = (−i)e(α)(tr(ϕ(α))− 2)

and ∆α̂(−1) = (−1)e(α)Vα̂(−1). Thus, the residue class of e(α) modulo 4 may affect the
true value of Vα̂(−1) and ∆α̂(−1).

Proposition 3.14. For α ∈ B3, the trace tr(ϕ(α)) is odd only when e(α) is even. In this
case, tr(ϕ(α)) ≡ e(α)− 1 (mod 4).

Proof. Express α as a word in σ1, σ2, σ
−1
1 , and σ−1

2 . Correspondingly, write ϕ(α) in terms of
M1, M2, M

−1
1 andM−1

2 . The signed length of this word is exactly e(α). Now we can replace
each instance ofM−1

i with a word in onlyM1 andM2 of length 11, asM−1
1 = (M2M

2
1 )

3M2M1

and M−1
2 = (M1M

2
2 )

3M1M2. This gives us a new word whose length is congruent to e(α)
modulo 4. It suffices to look at the trace of words of length k that are generated by {M1,M2}.

For i ≤ 3, let Xi ⊂ SL2(Z/4Z) be the set containing all such words with length congruent
to i modulo 4. We check that X0 is a subgroup and isomorphic to the alternating group
A4, while the Xi are its cosets. By enumerating the Xi for each j we find that tr(ϕ(α)) is 0
or 2 modulo 4 for ϕ(α) ∈ X1 ∪X3. For ϕ(α) ∈ X0 we find that tr(ϕ(α)) is 2 or 3 modulo 4,
and for ϕ(α) ∈ X2 we find that tr(ϕ(α)) is 1 or 2 modulo 4. Either way, we are done.

Remark. Observe the semidirect decomposition SL2(Z/4Z) ∼= X0 ⋊ Z/4Z, and X0
∼= A4 is

the commutator of SL2(Z/4Z). This implies the epimorphism η : SL2(Z/4Z) → Z/4Z. In
the case of Proposition 3.14, η(m) = i if m ∈ Xi. Letting π4 : SL2(Z) → SL2(Z/4Z) be the
usual projection, the composition of all relevant maps from B3 to Z/4Z is exactly the braid
exponent modulo 4, yielding the following commutative diagram.

B3 Z/4Z

SL2(Z) SL2(Z/4Z)

e mod 4

ϕ η

π4

The main result of this subsection now follows.

Theorem 3.15. If L is a knot with index at most 3, then VL(−1) ≡ ∆L(−1) ≡ 1 (mod 4).

Proof. If L = α̂ then tr(ϕ(α)) is odd by Corollary 3.13. Let tr(ϕ(α)) ≡ 2b − 1 (mod 4)
where b ∈ {0, 1}. By Proposition 3.14 we have e(α) ≡ 2b (mod 4), so

VL(−1) = (−i)e(α)(tr(ϕ(α))− 2) ≡ (−1)b(2b− 3) ≡ 1 (mod 4),

and ∆L(−1) ≡ (−1)2bVL(−1) ≡ 1 (mod 4), so we are done.
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3.3 4-braids and beyond

Consider the Jones polynomial of 4-braid closures. In particular, Example 2.19 yields that

Vα̂(t) = −
(
√
t)e(α)((1 + t+ t2 + t3 + t4)χ(1,1,1,1)(α) + (t+ t2 + t3)χ(2,1,1)(α) + t2χ(2,2)(α))

t3/2 + t5/2

for α ∈ B4. Substituting t = −1, it must then be the case that

χ(1,1,1,1)(α)− χ(2,1,1)(α) + χ(2,2)(α) = 0

for all α ∈ B4 upon specialization to t = −1, which can also seen to be true as, applying
categorification, we have the long exact sequence

0 −→ S
(1,1,1,1)
−1 −→ S

(2,1,1)
−1 −→ S

(2,2)
−1 −→ 0

due to one of the main results developed in [4]. We may possibly circumvent this issue is
to instead look at the braid α′ = ασ4 ∈ B5, as α̂ and α̂′ are equivalent links. Thus, we can
avoid discussing 4-braids and instead discuss 5-braids, where the singularity of the Jones
polynomial at t = −1 is easily removable.
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