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Abstract

We explore properties of the Jones and Alexander polynomials of braid closures
of braids of index 3. We analyze how the evaluations of these polynomials at t = —1
force implications regarding the topological structure of the braid closure, such as its
number of circles or the existence of splittings. As a consequence, we construct an
infinite number of pairs of distinct non-split links that have the same HOMFLYPT
polynomial.

1 Introduction

A knot is an embedding of the circle S* in S?, while a link is an embedding of several circles
in S3. Through the remainder of this paper, we tacitly work with tame links only.

Definition 1.1. A splitting of a link L is a manifold B C S3\ L such that B is homeomorphic
to S? and L intersects both connected components of 5%\ B.

Informally, this occurs exactly when L can be separated into two rigid components that
can be moved arbitrarily far away from each other without disturbing isotopy classes.

Example 1.2. The Hopf link features two linked circles; physical intuition implies that it
exhibits no splitting. Indeed, if a split link has two circles, then it must be the unlink on
two circles, which has Jones polynomial —\/%(1 +t). Meanwhile, the Hopf link has different

Jones polynomial — (1 + ).

The Jones polynomial V,(t) is obtained upon specialization of the HOMFLYPT poly-
nomial X (¢, A) at ¢ = A = t, where we have used the capital letter A instead of the more
standard A in order to avoid confusion with the partitions A F n.

Proposition 1.3. If L is a split link, then Ap(t) = 0.



Proof. 1f L splits into Ly and Lg, then by the skein relations [1, Example 6.7] we have

_ (1 - AQ)XLl (Q7 A)XLQ (CZa A)
XL(Q? A) - \/K(l _ q) )

which must equal zero if Aq = 1 and ¢ # 1. Since the Alexander polynomial satisfies
Ap(t) = Xp(t, 1), it follows that Ap(t) =0 for all ¢ € C\ {1}. We finish by continuity. O

By Proposition 1.3 that the Alexander polynomial detects all splittings. We concern
ourselves with the special value of the the knot determinant Vi,(—1) = Ap(—1).

Question 1.4. Is there a link L with no splitting such that Ap(—1) =07

The answer to Question 1.4 is in the positive. In fact, given any L, there is [2] an infinite
family of distinct links L' all with Jones polynomial equal to Vi(t) = —(v/t + \/%)VL(t).
Thus Ap(—1) = V(=1) = X (—1,—1) = 0. However, the construction used to create
such links are quite complicated, so we will consider simpler methods.

Theorem 1.5 (Theorems 3.8 and 3.9). There exists an infinite family of links L., ., indexed
by pairs of integers (m, k), with the property that any link L satisfying Vi (—1) = Ap(=1) =0
is equivalent to some Ly, . In addition, Ly, has a splitting if and only if m = 0.

The construction of each L, is much simpler than that of [2]. It turns out our work
also yields pairs of distinct non-split links with the same HOMFLYPT polynomial, as in
our second main result.

Theorem 1.6 (Theorem 3.10). If 6 | k, then X5, (q,A) = X5 ok q,A).
m+g,—

The links L,, all contain either two or three circles, motivating us to consider how
Ap(—1) would behave if L had braid index at most 3 but was forced to be a knot. Surpris-
ingly, we prove the following third main result in Section 3.2.

Theorem 1.7 (Theorem 3.15). If L is a knot with braid index at most 3, then Vi(—1) =
Ap(=1) =1 (mod 4).

2 Preliminaries

2.1 The braid group
Let n be a positive integer.

Definition 2.1. The braid group B, is generated by oy, 09,...,0,_1 with relations
0;0i4+10; = 04410041 and 0,05 = 005 if ‘Z —j’ Z 2.

Naturally, elements of B,, are called braids.



We can diagrammatically depict o; as

1 2 1 n

. T

Under this interpretation, each braid can be viewed as consisting of n strands of string, each
connecting a point in the top row to a point in the bottom row. Multiplication of braids is
determined by diagrammatic concatenation.

Definition 2.2. Given a braid a € B,,, the braid closure & is the oriented link obtained by
identifying each endpoint on the top row with the endpoint directly below it on the bottom
row. The orientation of the link points away from the top row and towards the bottom row.

Example 2.3. The braid closure of 03 € By is the right-handed trefoil.
We reproduce a famous theorem of Alexander [3] below.

Theorem 2.4 ([3, Alexander’s Theorem)). Let L be a link. Then there ezists an integer n
and a braid o € B,, such that L is isotopic to the braid closure (.

Definition 2.5. The braid index of a link L is the minimal satisfactory value of n in the
statement of Theorem 2.4.

2.2 Young diagrams
Now we discuss partitions of n and their Young diagrams.

Definition 2.6. Let A - n be a partition. For a box b € A in its Young diagram, the hook
length h(b) is the number of boxes directly below or to the right to b, including b itself.
Let r(b) be the number of rows below the topmost row that b resides in, and define ¢(b)
analogously but in comparison to the leftmost column.

Example 2.7 ([4, Example A.4]). Consider the partition

QLOIQIQIQIQ

(9,9,7,5,3,2,1) =

SIRCIREIk

The box b marked with a club (&) has 3 boxes below it, denoted with a heart (©), and 6
boxes to its right, denoted with a diamond (<). Its hook length is h(b) =3+ 6 + 1 = 10.
Also check that r(b) =1 and ¢(b) = 2.



2.3 Specht modules of the Hecke algebra

We now introduce the Hecke algebra.

Definition 2.8. For ¢ € C\{0}, the Hecke algebra H,(q) is the generated by g1, g, . - ., gn_1
with relations

(9i —a)(9i +1) =0, gigit19: = gi+19igi+1. and gig; = g;gi if |i — j| > 2.
There is a canonical epimorphism 7: C[B,] — H,(q) satisfying 7(o;) = g; for all i.

It is well-known that the irreducible representations of C[S&,,] are the Specht modules
S*, which are indexed by partitions A - n. As H,(q) is a deformation of H, (1) = C[&,,],
the g-Specht modules themselves deform as ¢ varies. They remain irreducible for generic q.

Definition 2.9. For 0 € G, let £(0) = {(a,b) | 1 <a <b<n,o(a) > c(b)} be its length.
For 7= (ii+1) € &, define T, = g, € H,(q) for all i < n, and define for all &

T 15T, if {(o7) =4(0) +1
T ¢ YT, T, + (1 —q)T,) otherwise.

Remark. One can show without much difficulty that {7, | o € &,,} forms a basis for H,(q),
and hence it is clear that dim H,(q) = n! regardless of the choice of ¢ € C. Writing out
each T, as a product of generators g; also expresses this basis in a “normal form” of Jones.

We can now finally demonstrate how the Specht modules deform as ¢ changes value [5].

Definition 2.10. Let A F n be a partition. The canonical Young tableau t* is formed by
writing the first n positive integers in increasing order in the boxes of the Young diagram of
A, going row by row from left to right. Let the row stabilizer Py, C &,, be the subgroup of
all permutations that fix the numbers in each row under the natural action of &,,. Define
the g-Young symmetrizer to be

A= (Tn)n | ¥ coon).

ocePy O’EP)\T

where wy € &, is the unique permutation mapping ¢t* to the mirror image of t*". The
q-Specht module S} is the ideal z)H,(q), where H,(q) acts from the right.

Definition 2.11. Let x,: B, — C denote the character of m(«) with respect to S;\.

Remark. Regardless of the value of ¢, its dimension [1, Remark 3.5] is given by the hook-

length formula

|
. n
dim S} = — =

[Toer h(0)
Recall the hook length h(b) of a box from Definition 2.6.
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Example 2.12. We first consider the ¢-Specht module Sén), which is of dimension 1 by the
hook-length formula. Indeed, P,y = &,, Pt = {e}, and w(,) = e, so

=Y T,

oeG,

For the transposition 7 = (¢ ¢ + 1), by Definition 2.9

T o — T, if ((o7) =L(0) +1
o9 = qTyr 4+ (¢ —1)T, otherwise.

Define Q; = {o | l(o7) = l(0) + 1} C &,,, and note that o € Q; iff o7 ¢ @Q;. Thus,

= Z Tagi

ce6G,

= Z Tm— —+ Z (qTUT + (q - 1)T0>
TEQ; o¢Qi

=Y Totagy T+@-1)) T,
o¢Q; o€Q; o¢Q;

= qzé").

It follows that each g; acts by multiplication by ¢ in S},”) . This is the trivial representation
of H,(q) and generalizes the trivial representation of C[&,,]. Indeed, choosing an eigenvalue
of ¢ makes sense as (¢; — ¢)(g; +1) = 0.

Example 2.13. Following Example 2.12, one can analogously check that S(gn)T is the sign
representation, in which each g; acts as —1.

Example 2.14. The Burau representation is the g-Specht module S Gl [1, Note 5.7].
Let us investigate the case where n = 3 and A = (2,1). One verifies using Definition 2.10
that P(271) = P(271)T = <gl>7 SO

2V = (1+g1)g (1 - &)

q
We check that (¢ — g1)g1 = g1 — q, so zé )gl = — (2’1) Since by Remark 2.3 we have that
dlmS (2:1) = 331'1 = 2, it follows that Sq is spanned by z( Y and ZéQ’l)gg.
Now, one can verify, say by direct computation, that zé ’ )9291 = —q z(g 24 qzé )gQ,

while by the relations of Hs(q) we have zi7¢2 = 2% + (¢ — 1) g,. It follows that
5(52’1) is the two-dimensional module on which each g; acts as H; where

anea = (3 7))
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The Burau representation for n = 3 is often portrayed with each g; acting as G;, where

= ((1%)-(3 1)

This is valid as G; = CH;C~" for each i, where C' = [9 7].

q

Example 2.15. The ¢g-Specht module 5(52’2) exhibits similarities to the Burau representation
from Example 2.14. Again, Definition 2.10 implies that P2y = (g1, g3), so

2% = (14 g1)(1+ )92 (1 — ﬂ) (1 _ @)

q q

Note that (¢ — g1)(¢ — 93)9: = —(q¢ — 91)(q — gg) and thus z*%g; = 2152’2) for i € {1,3},

and by Remark 2.3 we also have dim 8(52’2) = 32 2 - = 2. Again, S is spanned by z(29)
and z(2,2)92.

In fact, the same computations from Example 2.14 hold: it can be shown by hand that

( 2 0gi = —q z( 2) +qz( 2 gy and zq 2)95 = qu 2 4 (g — 1) (22) 0 for i € {1,3}. Hence,

the representation Sq copies the Burau representation Sq by having g; and g3 act as

H, and ¢y acts as Hy. Again using a change of basis with matrix C, equivalently we can

replace each H; with G; in the above statement.

2.4 The HOMFLYPT polynomial

In [1, Section 6], Jones proposed a multivariable polynomial link invariant X (g, A), which
reduces to the Jones polynomial under the Specialization g = A =t and to the Alexander
polynomial under the specialization ¢ = + = t. We recall the key definitions organized
in [4].

Definition 2.16 ([6, Theorem 1.1]). Let A - n be a partition. The Ocneanu weight corre-

sponding to A is the product
r(b)

()
- qw—qrrz
Q*_H 1— gh®
where z = —11_;Aqq andw=1-—q+ z.
Definition 2.17. Let e: B, — Z denote the braid exponent, the additive homomorphism
where e(0;) = 1 for all 1.

Definition 2.18 ([1, Definition 6.1]). For a braid « € B,, the HOMFLYPT polynomial
under Jones normalization is the product

N ]-_Aq o e(a a
Xala ) =~ ) (VAR Y o)

AFn

This two-variable polynomial X4(g, A) is a link invariant. The sum ), Q\xa(a) is some-
times referred to as the Ocneanu trace.



Remark. The HOMFLYPT polynomial often admits the much more common normalization
Pp(a, z), related to the Jones normalization by X (q, A) = Pr((Aq)~Y/2,¢'/% — ¢~ 1/2).
Ocneanu originally calculated the eponymous weights, but this work has been lost. A

reproof of the validity of these weights was given by Geck [6].

Example 2.19 ([4, Example A.10]). Under the Jones specialization ¢ = A = t, the weights
Q) simplify drastically, as shown in [4]. Specifically, 2, = 0 if A has more than two columns,
and the braid closure of any o € B,, has Jones polynomial

_1)71 e(a)—nt1 /2] /n—k
Via(t) = (—1) (\/ﬂ Z ( tl> . (@),

t+1 k=0 1=k

When n = 3, this simplifies to

V&(t) = (\/E)e(a)_Q((tQ + 1)X(1,171)(Oé) + tX(z,l)(Oé))-

Example 2.20 ([1, Section 7]). Under the Alexander specialization ¢ = % = t, the sim-
plification of the weights is less clear as it seems like z = —11_—_Aqq will exhibit a singularity.

However, it turns out that such singularities are removable due to the factor of (1 — Ag)"!
in Definition 2.18.

Let p; be the hook-type partition made up of one row of ¢ squares and one column of
n — i squares beneath. As computed in [1, Equation 7.2, we find that

I G VL (kIR e VR
Aa(t) - (\/Be(a)fnJrl(tn . 1) ;( 1) Xui(a)'

When n = 3, this implies that

~ xan (@) = xenl(a) + xe (@)
Aa(t) = (VD@ —2(2 + 1 1) .

Remark. If we substitute t = (,, = e*™/™ into Example 2.20 above, the denominator vanishes,

implying that the numerator must vanish too. In particular, we must have

n

Z(‘l)iXm (Oé) =0

=1

at t = (,. If we apply the KZ functor to the exact sequence proven due to the BGG resolution
in [7], we expect an exact sequence of (,-Specht modules on hook-shape partitions.



3 Closures of 3-braids

We investigate the Jones and Alexander polynomials of 3-braid closures at —1.
Recall from Examples 2.12 and 2.13 that Sél’l’l) is the sign representation, where each

g; acts as —1, while 5(53) is the trivial representation, where each g; acts as ¢. When ¢ = —1,
the representations become isomorphic, so x(1.1,1y(c) = x(3)(«). Hence

Va(=1) = (V=D (2x.11() = Xz (@)
and

)2 (i (@) = Xen(@) + X (@)
)~ (2x 011y (@) — X1 (@)

>

2.

|

I
93

Note the use of v/—1 rather than i or —i due to the lack of a continuous, single-valued square

root over C. If we define v/—1 to be {i, —i}, then clearly Vi(—1) = Asz(—1) = X4a(—1,—1).

Otherwise, the usual convention where i = \/—1 yields that V4(—1) = (=1)4®A4(-1).
From now on, we will adopt the latter convention where Va(—1) = (—1)9®A4(—1).

Definition 3.1. Let ¢: By — SLo(Z) be the homomorphism satisfying ¢(o;) = M;, where

(Ml,M2):(<_11 (1))((1) m

Proposition 3.2. For a braid o € Bz, the Jones and Alexander polynomials of & satisfy
Va(=1) = (=) (tr(¢()) — 2) and Aa(—1) = ¥ (tr(¢(a)) — 2).

Proof. From Example 2.14 we note that g; acts as —M; in S(_Qll), while g; acts as —1 in
S—l

(L11)" Thus, as found above, we have

Va(=1) =i (2x @11 (@) — (@)
=i (=1)(2(=1)* — (=1)“ tr(¢()))
= (=) (tr(¢()) — 2),

as claimed. O

An interesting question to consider is which integer values Vj;(—1) can possibly take,
and what type of link & corresponds to. Here, we shall consider two extremal cases: when
« is split and when & is a knot.



3.1 Split Links

From from Proposition 1.3 we have V;(—1) = A(—1) = 0 for all split links. We show that
this condition is not sufficient.

Corollary 3.3. Let a € By. Then Va(—1) = As(—1) =0 if and only if tr p(a) = 2.
Proof. Immediate by Proposition 3.2. O]
The following result is due to Serre [8].
Proposition 3.4 ([8, Theorem 2.1.4]). The group SLs(Z) has presentation
SLy(Z) = (s,t | s* =1, (st)® = 5%

where the correspondence of matrices is given from (s,t) to

so=((5 0.0 0)

Now we claim the following.
Lemma 3.5. The following statements are true.
(a) The matrices My and My generate the group SLy(7Z).

(b) The group SLo(Z) admits the presentation

SL2(Z) = <m1,m2 \ (m1m2m1)4 = mlmgmlmglmflm; = 1>,

Proof. Retain the notation as in Proposition 3.4. Check that (S,T) = (M;MyM;, M; ') and
(My, My) = (T~',TST), so that any word in the alphabet {s, s ¢, ¢t71} can be translated
to one in the alphabet {m;,m;' ms,my;'} and vice versa. This proves part (a) of the
desired result.

Now, we can simply make the substitution (s,t) = (mymymy, m; "), which has the inverse
substitution (mq, my) = (¢!, tst), as follows from the above matrix transformations. Hence

SLo(Z) = (5, | s* = 1, (st)" = &)
= (ma,my | (m1m2m1)4 =1, (m1m2)3 = (m1m2m1)2>
= <m17 ma | (771177127711)4 = mlmgmlmglmflmgl = 1>’
which proves part (b). —

Following Garside [9], define Az = 010901 € Bs.

Proposition 3.6. The map ¢ induces an isomorphism between the groups Bs/{A3) and
SLy(Z).



Proof. From [9] we have that Z(Bs) = (A2). In particular, quotienting by (A3) simply
introduces a corresponding relation, so by Lemma 3.5 we have

<O'1, 09 ‘ 0102010510;1051 = 1>/<A§> = <m1, mo ‘ (m1m2m1)4 = mlmzmlmglmflmgl = 1>

with an isomorphism sending o; to m;.
Since ¢(Aj) acts as the identity, ¢ is constant over all elements within any coset of (A1)
as embedded in Bz, so the above isomorphism is well-defined. O

We can thus reduce our original task of finding 3-braids whose braid closures have Jones
polynomial with root —1 with the task of finding conjugacy classes in SLy(Z).

Proposition 3.7. Let o € By satisfy ¢(«) = 2. Then there exists some oy € Bs and k € Z
such that ¢(cg) = My and & = ay.

Proof. 1t suffices to show that, given some matrix A € SLy(Z) such that tr A = 2, there
exists some B € SLy(Z) such that BAB™! = MJ for some k € Z. Indeed, let A = ¢(a).
By Lemma 3.5, the M; generate SLy(Z), so there exists some 8 € Bs such that B = ¢(5).
Define o € Bs to be ag = faf™t. Then ¢(ap) = BAB™ = M¥ and 4y = & as we can
simply rotate the braid closure of oy such that the components corresponding to 3 and f~!
cancel out.

We now give an explicit construction of our above claim. Let

A:(g Z).

Since tr A = 2 and det A = 1, the eigenvalue of A is 1 with multiplicity 2. Thus, there exists
some (7,y, z,w) € Z* such that ged(x,y) =1, 2w — yz = 1, and A(zve; + yey) = ze; + ye,.

Then define the matrix 1
Yy w —Y i

which is an element of SLy(Z) by construction. Letting {e,es} be the canonical basis for
72, we can now check that

BAB 'e; = BA(we, + ye,) = B(ve, +ye;) = e;

and
(BAB 'ey) - ey = w(dr — by) + 2(cx —ay) = det Btr A — 1) = 1.

BAB ! = <é ’f) = M,

as desired. O

Hence, for some k € 7Z,

Now we introduce the main results of this subsection.
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Theorem 3.8. Let o € Bs satisfy Va(—1) = Aa(—1) = 0. Then there exist integers m and
k for which & is equivalent to the braid closure of ok A3™.

Proof. By Corollary 3.3 and Proposition 3.7, there exists some oy € Bs and k € Z satis-
fying ¢(ap) = MF and & = d. Thus o, aq is sent by ¢ to the identity, from which by
Proposition 3.6 it follows that o, "ag € (A3). Then ayg is of the form o¥ Ad™ for some m. [

Theorem 3.9. For m,k € Z, let vy, denote the braid o—’;Agm, s0 that Y, 1 denotes its
oriented link closure.

(a) The link Ay is split if and only if m = 0.
(b) Formy,ma, ki, ke € Z, the links Ypm, kg, and Y, i, are equivalent iff (mq, ki) = (ma, k).

Proof. First, suppose that 2 | k. Consider the homomorphism ¢: By — &3 with ¥ (0;) =
(i i +1). Then 4, has three circles as ¥(ymx) = (2 3)F((1 2)(2 3)(1 2))*™ = 1. By
inspection, one can check that removing the strand unaffected by o9 from 7, ; results in
the braid o{™"* € B,, while if any other strand is removed, the resulting braid is o™ € B.
For part (a), if 4, is split, then at least two out of the three elements in the multiset
{4m,4m,4m + k} are equal to zero, forcing m = 0. For part (b), if 4, x, and Y, x, are
equivalent for even k;, then the multisets {dmy,4my,4my + k1} and {dmy, 4mo, dmy + ko}
are equal, implying that (mq, k1) = (ma, ko).

Otherwise, if 2 { k, then 4, is a link of two circles as ¥ (7, 1) = (2 3)¥ = (2 3). Then the
two strands affected by o9 form a T'(2,4m + k) torus link. Let W be the bounding torus of
this link. Then the third strand is an unknot that wraps 2m times around a cross-sectional
disk of W. Hence, for part (a), if 4, is split, then the third strand cannot wrap around the
bounding torus at all, again forcing m = 0. For part (b), if 4,,, x, and i, x, are equivalent
for odd n;, then (2mq,4my + k1) = (2mg, 4msy + k2), and the desired conclusion follows.

Note for part (b) that counting circles gives k; = ko (mod 2), as subsumed above. [

Thus we have an infinite family of distinct links with no splitting whose Jones and
Alexander polynomials vanish at ¢ = —1. It turns out that certain pairs of links fail to be
detected by the HOMFLYPT polynomial.

Theorem 3.10. If6 | k, then X5, ,(q,A) =X5 ,  (q,7).

m+g

Proof. We first compute x(2,1)(7m,x). The Burau representation lets o; act as —L;, where

_((—a O\ (1 —q
One can check that (L;LyL;)* acts as scalar multiplication by ¢°. Also note that Lie; =

e, as e; is an eigenvector and (L5ey) -es = —q(LE (e, +e5)) - ey = —q(er + L ey) - ey =
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—q(Ly'ey) - ey. Thus (Lkey)-e; = (—¢q)* by induction, so it follows that tr(L5) = 14 (—¢q)*.
We thus have

X20) (mi) = (=1)°0m#) tr(LE(Ly LyLy)*™) = (=1)20ma) g5m(1 4 (—q)").

Since e(Ymi) = e(7m+%,_k) = 12m + k, one checks that x(21)(Ymx) = X(g71)(7m+%7_k).

In addition, it is clear that x(1,1,1)(Ymx) = X(l,l,l)(7m+§,—k) and X (3)(Vm.k) = X(3) (7m+§7_k).
The desired result then follows by Definition 2.18. O

We finish this subsection by constructing the Jones and Alexander polynomials of 4, x.

Proposition 3.11. The Jones and Alexander polynomials of Yy, x are
1
Vi (£) = (=) <t6m((—t)’f 1) t)

and

(_t)12m+k _ t6m((_t)k + 1) +1
(=) th=2(2 4t 4 1)

Proof. From Theorem 3.10, we have that x(2,1)(Ymx) = (—1)%¢*"(1 4 (—¢)*) and e(ymx) =
12m + k. Tt follows from Examples 2.19 and 2.20 that

Vi (8) = (VOB 2 (8 + 1) xa.1,0) (V) + tX@1) (Yt
12m 6m 1
= (—/t)12mrk (t (=)F+1) +t+ ;)

and
A (1) = X1, (Ymk) = X (Pme) + X3 (Ymk)
ok (ﬂ)e(’Ym,k)—2<t2 i 1)
R GE RV
In both cases, we have substituted ¢ for q. 0

Remark. For even k, Proposition 3.11 simplifies to

Vi, () = om+5-1 + fom+5+1 + pl2m+d + Aem+

m,k

and
t6m+g+1 _ tg-i—l _ t—g-ﬁ-l + t—6m—§+1

A ult) = 21t
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3.2 Knots

Recall from Proposition 3.9 the natural homomorphism v¢: B3 — &3 from the braid group
to the symmetric group, given by v (o;) = (¢ i + 1). The number of circles in the link & is
determined by the cycle type of ¢(a), with & being a knot iff ¢)(«) is a 3-cycle.

Proposition 3.12. Braids oy, oy € By satisfy ¥(a1) = ¥(az) iff ¢(a1) = ¢(ae) (mod 2).

Proof. Tt suffices to show that a € Bj satisfies ¢(a) = e iff ¢p(a) =1 (mod 2).
First, we have by definition that

B3 = (01,02 | 01020102’101’10;1 =1)
while
63 = (51,5 | Si - Sg - 5182315515;1551 =e) = (51,59 | 8182518518f15;1 = €>/<S?>5%>-

Hence, ¢ (a) = e iff we can reduce a to the trivial braid by deleting instances of 2.
Next, M2 = M2 = I (mod 2). Then one checks that

SLZ(Z/QZ) = <m1,m2 ! mf = m% = mlQOlmglmIImgl = 1>7

where again m; is represented by the matrix M;. The relation (m1m2m1)4 = 1 may be
dropped as it is implied by setting m? = m% = 1. We find again that ¢(a) = I (mod 2) iff
we can reduce a to the trivial braid by deleting instances of o7, as claimed. O

Remark. Observe that &3 and SLy(Z/2Z) are isomorphic, as both groups are nonabelian
of order 6. The isomorphism map 0: &3 — SLy(Z/27Z) is canonically constructed via the
permutation action of SLy(Z/2Z) on {(}), (}), (1)} C F3. Let mo: SLa(Z) — SLa(Z/2Z) be
the usual projection. Then Proposition 3.12 induces # to be precisely the lift from 1) to
o 0 ¢, as in the following commutative diagram.

Bs —2 SL,(2)

wl lm

Note that Proposition 3.12 implies that the number of circles in the link & depends only

on the parity of the entries of ¢(a).

Corollary 3.13. If & is a knot for a € Bg, then ¢(a) € {(91), (1)} (mod 2). In partic-
ular, tr(op(a)) is odd.

Proof. Recall that & is a knot iff ¥(a) € {(1 2 3),(1 3 2)} = {¥(0102),¥(0201)}. Then
by Proposition 3.12 it follows that ¢(a) is congruent to either M;Ms or MyM; modulo 2,
which is exactly the desired claim. O
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Recall from Proposition 3.2 that
Va(=1) = (=) (t(¢() - 2)

and Az(—1) = (=1)%@V;(—1). Thus, the residue class of e(a) modulo 4 may affect the
true value of V;(—1) and As(—1).

Proposition 3.14. For o € Bs, the trace tr(¢(«)) is odd only when e(a) is even. In this
case, tr(d(a)) = e(a) — 1 (mod 4).

Proof. Express o as a word in oy, 09, 07!, and o, *. Correspondingly, write ¢(«) in terms of
My, My, M; ' and M, '. The signed length of this word is exactly e(a). Now we can replace
each instance of M; ! with a word in only M; and M, of length 11, as M; ' = (MyM?2)3 My M,
and My' = (M, M2)3M, M,. This gives us a new word whose length is congruent to e(a)
modulo 4. It suffices to look at the trace of words of length k that are generated by {M;, Ms}.

For i < 3,let X; C SLy(Z/47Z) be the set containing all such words with length congruent
to ¢ modulo 4. We check that X is a subgroup and isomorphic to the alternating group
Ay, while the X; are its cosets. By enumerating the X; for each j we find that tr(¢(a)) is 0
or 2 modulo 4 for ¢(a) € X; U X3. For ¢(a) € X we find that tr(¢(«)) is 2 or 3 modulo 4,
and for ¢(a) € Xy we find that tr(¢(«)) is 1 or 2 modulo 4. Either way, we are done.  [J

Remark. Observe the semidirect decomposition Sly(Z/4Z) = Xo x Z/AZ, and Xy = Ay is
the commutator of SLy(Z/4Z). This implies the epimorphism n: SLy(Z/47) — Z/AZ. In
the case of Proposition 3.14, n(m) =i if m € X;. Letting my: SLo(Z) — SLa(Z/47Z) be the
usual projection, the composition of all relevant maps from Bj to Z/47Z is exactly the braid
exponent modulo 4, yielding the following commutative diagram.

e mod 4

By —cmedd 747,

| d

SLo(Z) —— SLo(Z/4Z)

The main result of this subsection now follows.
Theorem 3.15. If L is a knot with index at most 3, then Vi(—1) = Ap(—1) =1 (mod 4).

Proof. If L = & then tr(¢(«)) is odd by Corollary 3.13. Let tr(¢(a)) = 2b — 1 (mod 4)
where b € {0,1}. By Proposition 3.14 we have e(a) = 2b (mod 4), so

Vi(=1) = (=) (tr(¢(a)) —2) = (-1)"(2b = 3) =1 (mod 4),

and Ar(—1) = (—=1)?V,(=1) =1 (mod 4), so we are done. O
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3.3 4-braids and beyond

Consider the Jones polynomial of 4-braid closures. In particular, Example 2.19 yields that

(VOE (A +t+ 2+ + ) v (@) + (E+ 2+ ) x@11)(@) + X @2)(@))
$3/2 + $5/2

Va(t) = —
for « € B4. Substituting t = —1, it must then be the case that

X0 (@) = xen(a) + xez)(a) =0
for all « € B, upon specialization to ¢ = —1, which can also seen to be true as, applying
categorification, we have the long exact sequence

0— S(_ll’l’l’l) — S(_Ql’l’l) — S(_21’2) — 0

due to one of the main results developed in [4]. We may possibly circumvent this issue is
to instead look at the braid o = aoy € Bs, as & and &' are equivalent links. Thus, we can
avoid discussing 4-braids and instead discuss 5-braids, where the singularity of the Jones
polynomial at ¢ = —1 is easily removable.
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