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Abstract. We investigate the distribution of irreducible polynomials within the semido-
main of polynomials with non-negative integer coefficients. Our main result establishes that
the atomic density of this structure is 1; that is, asymptotically almost all polynomials with
non-negative integer coefficients are irreducible. We contrast this with the set of polyno-
mials having coefficients restricted to zero and one, proving that their atomic density is
exactly 1/2. Furthermore, we derive improved asymptotic bounds for the number of re-
ducible polynomials with bounded degree and height. Finally, we apply these global density
results to the local setting, providing a new proof of a Goldbach-type theorem for Laurent
polynomials.

1. Introduction

The study of the distribution of irreducible polynomials over Z[x] traces back to the work
of Hilbert in the 1890s. A central question in this area is understanding how often a randomly
chosen integer polynomial is irreducible, particularly in the context of the bounded height
model, where one fixes the degree and bounds the absolute values of the coefficients. Let
Ed(N) denote the number of monic polynomials in Z[x] of degree d and height at most N
whose Galois group Gf is not the full symmetric group Sd. Hilbert’s Irreducibility Theorem
implies that Ed(N) = o(Nd), establishing that most monic polynomials of fixed degree and
bounded height are irreducible and have Galois group Sd.

In 1936, van der Waerden [waerden] refined this result by proving that

Ed(N) = O
(
Nd− 1

6(d−2) log logN

)
.

Subsequent work in the 1960s further sharpened this picture. Chela [chela] determined
an explicit constant cd such that the number of reducible monic polynomials is given by
cdN

d−1+o(Nd−1). Chela observed that reducibility is often detected via divisibility by linear
factors, and that counting such polynomials yields a precise asymptotic. Later, Kuba [kuba]
showed that the total number of (not necessarily monic) polynomials in Z[x] of fixed degree
d and height at most N that are reducible in Q[x] is O(Nd). Dubickas [dubickas] built
upon these ideas to derive sharper asymptotics for the number of reducible polynomials with
fixed degree and bounded height, again focusing on those divisible by linear factors. A key
ingredient in his argument is a result of Kuba [kuba], which gives an upper bound on the
number of reducible polynomials that are not divisible by any linear factor, a crucial case
for obtaining accurate estimates.

Abstracting from their probabilistic framework, Borst et al. [Borst] proposed a heuristic
suggesting that the density of reducible polynomials f with “well-behaved” coefficients that
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are divisible by a factor of the form a + bxk, where a, b ̸= 0 and k = min(supp(f) \ {0}), is
equal to 1. In other words, under mild assumptions on the distribution of coefficients, almost
every such polynomial is divisible by a sparse linear factor anchored at the lowest nonzero
degree term.

We investigate the distribution of irreducible polynomials over the semidomain N0[x], the
semidomain of polynomials with nonnegative integer coefficients. Informally, a semidomain
resembles an integral domain, except that elements are not required to have additive inverses.
Semidomains have recently emerged as a rich framework for studying algebraic and arith-
metic properties beyond the classical ring-theoretic setting [chapmanmonoidsemidom,
pologottipolysemidom, subatomicity].

In the study of numerical semigroup algebras, an asymptotic invariant for understand-
ing the distribution of irreducible elements is atomic density introduced by Antoniou et
al. [antoniou]. This notion measures the limiting proportion of irreducible elements within
each graded component of the algebra. In their work, Antoniou et al. showed that the atomic
density of Fq[S], where S is a numerical semigroup and q a prime power, is zero, which means
that asymptotically almost all elements of fixed degree are reducible. Following [antoniou],
we define an analogous notion of atomic density for the semidomain N0[x]. In Section 3,
we show that the atomic density of N0[x] is equal to 1. In other words, most polynomials in
N0[x] are irreducible.

We then turn our attention, in Section 4, to the subset of polynomials in N0[x] with
coefficients in {0, 1}, hereafter referred to as 0-1 polynomials. In the context of Z[x], these
polynomials have been studied extensively. While Konyagin [Konyagin] established an
upper bound of c · 2d/ log d for the number of irreducible 0-1 polynomials of degree d, Borst

et al. [Borst] provided a lower bound of
√
2/πd for the probability that a random degree-d

0-1 polynomial is reducible. We show that, in this restricted setting, the atomic density is
equal to 1

2
.

Section 5 is devoted to finding asymptotic bounds on the number of reducible polynomials
with fixed coefficient and degree bounds, paralleling the results of Kuba in [kuba]. In
particular, we verify that the heuristic of Borst et al. in [Borst] persists in N0[x].

We conclude, in Section 6, by studying the existence of irreducible polynomials subject
to prescribed coefficient constraints. From a probabilistic perspective, this corresponds to
conditioning the ambient distribution on finitely many coordinates and asking whether ir-
reducibility persists under such local restrictions. While atomic density captures the overall
distribution of irreducible polynomials, this study offers a finer-grained local perspective that
refines that picture.

2. Background

We now review some of the standard notation and terminology that we will use later. For
a comprehensive background on semiring theory, we recommend the monograph [JG1999].

We adopt standard mathematical symbols, using Z,Q, and R to represent the sets of
integers, rational numbers, and real numbers, respectively. The notation N designates the
set of positive integers, whereas N0 refers to the set of nonnegative integers. Given a real
number r and a subset S ⊆ R, we define S<r as the subset of elements in S that are strictly
less than r; analogous definitions apply to S>r and S≥r. For nonnegative integers m and n,
we use Jm,nK to denote the discrete interval {k ∈ Z | m ≤ k ≤ n}; observe that if m > n



ON IRREDUCIBLE POLYNOMIALS WITH POSITIVE INTEGER COEFFICIENTS 3

then Jm,nK = ∅. Lastly, given a positive rational number q, we write n(q) and d(q) for the
numerator and denominator of q when expressed in lowest terms. For a positive integer n
and prime p, we define νp(n) to be the largest integer k for which pk | n over integers.

2.1. Commutative Monoids. Throughout this paper, a monoid is defined to be a semi-
group with identity that is cancellative and commutative. Unless we specify otherwise, we
will use multiplicative notation for monoids. For the rest of the section, let M be a monoid.
We use the notation M× to denote the group of units (i.e., invertible elements) of M . We
say that M is reduced provided that the group of units of M is trivial. Given a subset S of
M , we let ⟨S⟩ denote the smallest submonoid of M containing S.

For elements b, c ∈M , we say that b divides c in M and write b |M c if there exists b′ ∈M
such that c = bb′. A submonoid N of M is divisor-closed if for every c ∈ N and b ∈ M the
relation b |M c implies that b ∈ N . Let S be a nonempty subset of M . We use the term
common divisor of S to refer to an element d ∈ M that divides all elements of S. We call
a common divisor d of S a greatest common divisor if it is divisible by all other common
divisors of S. We denote by gcdM(S) the set consisting of all greatest common divisors of S
and drop the subscript when there is no risk of confusion.

An element a ∈ M \ M× is called an atom (or irreducible) if for every b, c ∈ M the
equality a = bc implies that either b ∈M× or c ∈M×. We denote by the set of atoms of M
by A(M). We say that M is atomic if every element in M \M× can be written as a finite
product of atoms. On the other hand, we say that M is antimatter if A(M) = ∅. It is not
hard to show that if M is an atomic monoid that is antimatter then M is an abelian group.

2.2. Semirings and Semidomains. A semiring S is a (nonempty) set endowed with two
binary operations denoted by ‘·’ and ‘+’ and called multiplication and addition, respectively,
such that the following conditions hold:

(1) (S \ {0}, ·) is a commutative semigroup with an identity element denoted by 1;
(2) (S,+) is a monoid with its identity element denoted by 0;
(3) b · (c+ d) = b · c+ b · d for all b, c, d ∈ S.

We usually write bc instead of b·c for elements b, c in a semiring S. We would like to emphasize
that a more general notion of a ‘semiring’ does not usually assume the commutativity of the
underlying multiplicative semigroup, but throughout this article we will assume that the
multiplication operation is commutative. A subset S ′ of a semiring S is a subsemiring of S if
(S ′,+) is a submonoid of (S,+) that contains 1 and is closed under multiplication. Clearly,
every subsemiring of S is a semiring.

Definition 2.1. A semidomain is a subsemiring of an integral domain. 1

Let S be a semidomain. We say that (S \{0}, ·) is the multiplicative monoid of S, and we
denote it by S∗. Following standard notation from ring theory, we denote the group of units
of the multiplicative monoid S∗ as S×, and they are referred to simply as the units of S. For
b, c ∈ S such that b divides c in S∗, we write b |S c (instead of b |S∗ c). Also, for a nonempty
subset B of S, we use gcd(B) to denote the set of greatest common divisors of B in the
monoid S∗. On the other hand, we denote the set of atoms of the multiplicative monoid S∗

by A(S) instead of A(S∗), while we denote the set of atoms of the additive monoid (S,+)
by A+(S). A semidomain S is additively reduced if 0 is the only invertible element of the
monoid (S,+).

1Zero divisors are implicitly excluded.
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We now define polynomial semidomains. Let R be an integral domain containing the
semidomain S as a subsemiring. Then the semiring of polynomials S[x] over S, also referred
to as the polynomial semidomain of S is a subsemiring of R[x], and so S[x] is also a semido-
main. The elements of S[x] are also polynomials in R[x], and thus all standard terminology
for polynomials, such as degree and leading coefficient, applies to elements of S[x]. Similarly,
the semiring of Laurent polynomials S[x±1] over S is also a semidomain.

3. Atomic Density of N0[x]

In this section, we investigate the asymptotic density of irreducible elements in the semido-
main N0[x]. Specifically, we show that, in a precise asymptotic sense, almost every polynomial
in N0[x] is irreducible, but before formalizing this idea, let us establish some notation.

Definition 3.1. For given nonnegative integers d and N , we define T (d,N) to be the number
of polynomials in N0[x] of degree at most d and height at most N . Similarly, I(d,N) (resp.,
R(d,N)) denote the number of such polynomials which are irreducible (resp., reducible).

Observe that the identity T (d,N) = I(d,N)+R(d,N) = (N+1)d+1 holds. Moreover, we
define Td(N) and TN(d) as the number of polynomials of exact degree d and height at most
N , and of exact height N and degree at most d, respectively. The corresponding counts of
irreducible and reducible polynomials are denoted Id(N),Rd(N) and IN(d),RN(d).

We can now define atomic density.

Definition 3.2. The atomic density of N0[x] is defined as the common value of

lim
d→∞

lim
N→∞

I(d,N)

T (d,N)
and lim

N→∞
lim
d→∞

I(d,N)

T (d,N)
,

provided that both limits exist and agree.

Note that the fact that the two iterated limits in the above definition coincide is nontrivial
and is part of the proof of the subsequent theorem. We are now in a position to show that
the atomic density of N0[x] is 1.

Theorem 3.3. The atomic density of N0[x] is equal to 1.

Proof. Take nonnegative integers d,N ∈ N0. To estimate the cardinality of the set R(d,N),
we partition it into two subsets according to whether a given reducible polynomial is divisible
by a monomial. Let A represent the set of elements of R(d,N) that are not divisible by
any monomial, and let B represent the set of elements of R(d,N) that are divisible by a
monomial.

It is straightforward to verify that the set B contains exactly (N + 1)d polynomials with
zero constant term, and at most ∑

p∈P
p≤N

(⌊
N

p

⌋
+ 1

)d+1
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polynomials divisible by a constant greater than one. Additionally, observe that the following
inequality holds:

∑
p∈P
p≤N

(⌊
N

p

⌋
+ 1

)d+1

≤
∑
p∈P
p≤N

d+1∑
k=0

(
d+ 1

k

)(
N

p

)k

=
d+1∑
k=0

Nk

(
d+ 1

k

)∑
p∈P
p≤N

(
1

p

)k

 .

(3.1)

We now estimate the cardinality of the set A. To this end, we introduce the following
notation. Set

Rd(N) := {f ∈ Rd(N) : f(0) > 0 and k ∤ f for any k ∈ N>1}.

Note that Rd(N) counts all reducible polynomials of exact degree d that are not divisible by
any monomial. We claim that

(3.2) |Rd(N)| ≤ (N + 1)d (lnN + γ +O(1/N))2
(
2N + 2

N

)
,

where γ is the Euler-Mascheroni constant, and the implied constant of O(1/N) is absolute.
Without loss of generality, we can assume that d ≥ 3. Consider the set

C =
{
(f, g) ∈ (N0[x] \ xN0[x])

2 : 2 ≤ 2 deg f ≤ deg f + deg g = d and H(fg) ≤ N
}
.

For an arbitrary element (f, g) ∈ C, we can write

f = nkx
k + nk−1x

k−1 + · · ·+ n0 and g = md−kx
d−k +md−k−1x

d−k−1 + · · ·+m0,

where the coefficients nk, nk−1, . . . , n0,md−k,md−k−1, . . . ,m0 are nonnegative integers. Since
H(fg) ≤ N , we obtain nkmd−k ≤ N and n0m0 ≤ N . Moreover, note that the inequalities
n0 > 0 and m0 > 0 hold, which leads to ni + mi ≤ N for each index i ∈ J1, k − 1K.
Consequently, if we set

Ck :=


(nk, nk−1, . . . , n0, md−k,md−k−1, . . . ,m0) ∈ (N0)

d :

0 < n0m0 ≤ N,

0 < nkmd−k ≤ N,

ni +mi ≤ N for each i ∈ J1, k − 1K


for each k ∈ J1, ⌊d

2
⌋K then there exists an injective function

φ : C ↪→
⌊d/2⌋⋃
k=1

Ck, (f, g) 7→ (nk, nk−1, . . . , n0, md−k,md−k−1, . . . ,m0).
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Now for every k ∈ J1, ⌊d
2
⌋K, we have

|Ck| ≤ (N + 1)d−2k

(
N + 2

2

)k−1
(

N∑
j=1

⌊
N

j

⌋)2

≤ N2 (lnN + γ +O(1/N))2 (N + 1)d−2k

(
N + 2

2

)k−1

≤ (N + 1)d (lnN + γ +O(1/N))2
(
N + 2

2N + 2

)k−1

given that
∑N

j=1 1/j = lnN + γ + O(1/n) (see, for instance, [GKP94]), where γ is the
Euler-Mascheroni constant. Thus,

|Rd(N)| ≤ |C| ≤
⌊d/2⌋∑
k=1

|Ck| ≤
⌊d/2⌋∑
k=1

[
(N + 1)d (lnN + γ +O(1/N))2

(
N + 2

2N + 2

)k−1
]

≤ (N + 1)d (lnN + γ +O(1/N))2
∞∑
k=1

(
N + 2

2N + 2

)k−1

= (N + 1)d (lnN + γ +O(1/N))2
(
2N + 2

N

)
,

which proves Claim (3.2). This, in turn, allows us to estimate the cardinality of the set A
of reducible polynomials of degree at most d and height at most N that are not divisible by
any monomial. In fact,

|A| ≤
d∑

i=0

|Ri(N)| ≤ 2 (lnN + γ +O(1/N))2
(
N + 1

N

) d∑
i=0

(N + 1)i

≤ 2 (lnN + γ +O(1/N))2 (N + 1)d+2

N2
.

We are now in a position to establish that the atomic density of N0[x] is equal to 1. By
Inequality (3.1), we have

lim
d→∞

lim
N→∞

R(d,N)

T (d,N)

≤ lim
d→∞

lim
N→∞

1

N + 1
+

d+1∑
k=0

 Nk
(
d+1
k

)
(N + 1)d+1

·
∑
p∈P
p≤N

(
1

p

)k

+
2(N + 1) (lnN + γ +O(1/N))2

N2

= lim
d→∞

lim
N→∞

d+1∑
k=0

 Nk
(
d+1
k

)
(N + 1)d+1

·
∑
p∈P
p≤N

(
1

p

)k

 ,
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with the first and third term of the sum vanishing as N → ∞. Moving the outermost
summation out of the coefficient limit,

lim
d→∞

d+1∑
k=0

 lim
N→∞

Nk
(
d+1
k

)
(N + 1)d+1

·
∑
p∈P
p≤N

(
1

p

)k



≤ lim
d→∞

 lim
N→∞

∑
p∈P
p≤N

(
1

p

)d+1


= lim

d→∞

∑
p∈P

(
1

p

)d+1

= 0.

It remains to show that

lim
N→∞

lim
d→∞

R(d,N)

T (d,N)
= 0.

As before, for each fixed N , we have

lim
d→∞

R(d,N)

T (d,N)
≤ 1

N + 1
+
∑
p∈P
p≤N

(
N
p
+ 1

N + 1

)d+1

+
2(N + 1) (lnN + γ +O(1/N))2

N2
.

For every prime p ≤ N ,

0 <

N
p
+ 1

N + 1
=

N + p

p(N + 1)
< 1,

so each term

(
N
p
+1

N+1

)d+1

tends to 0 as d→ ∞. Therefore

lim
d→∞

R(d,N)

T (d,N)
≤ 1

N + 1
+

2(N + 1) (lnN + γ +O(1/N))2

N2
.

Taking the limit as N → ∞ on the right-hand side gives 0, and hence

lim
N→∞

lim
d→∞

R(d,N)

T (d,N)
= 0.

Consequently,

lim
N→∞

lim
d→∞

I(d,N)

T (d,N)
= 1.

We can then conclude that the atomic density of N0[x] is equal to 1. □

The following two graphs illustrate the growth of density for low values of degree and
coefficient bounds.



8 NEIL KOLEKAR, MAIYA QIU, AND RICHARD WANG

Figure 1. Degree bound ≤ 9 (left) and coefficient bound ≤ 16 (right) v.s.
proportion of irreducibles in N0[x]

3.1. Atomic Density of Q[x] and Q0[x]. Having established that most polynomials in
N0[x] are irreducible—paralleling the classical case of Z[x], where irreducibility is closely
connected to that in Q[x] via Gauss’ lemma—we now turn to subsemidomains of Q[x].
While the behavior of N0[x] and Z[x] suggests that atomic density 1 might be typical, this
phenomenon does not, in general, extend to all subsemidomains of Q[x]. In what follows,
we first extend the notion of atomic density to arbitrary subsemidomains of Q[x] and then
provide explicit examples showing that the atomic density can take any prescribed value in
the interval [0, 1]. In particular, we begin by exhibiting a subdomain of Q[x] whose atomic
density equals 0.

Given a polynomial f = qnx
n + · · · + q0 ∈ Q[x] (written in canonical form), we let d(f)

denote the smallest positive integer such that d(f)f ∈ Z[x].

Definition 3.4. Let S ⊆ Q[x] be a subsemidomain. For c, d,N ∈ N, let TS(c, d,N) be the
number of polynomials f ∈ S of degree at most d with d(f) ≤ c and whose integral multiple
d(f)f has height in [−N,N ]. Among these, let IS(c, d,N) denote the irreducible ones.

The atomic density of S is the real number, when it exists,

ψ(S) := lim
c→∞

lim
d→∞

lim
N→∞

IS(c, d,N)

TS(c, d,N)
.

Observe that when the semidomain S is N0[x], Definition 3.4 coincides with Definition 3.2.

Lemma 3.5. There exists a bijection φ : Q[x]∗
∼−→ Q∗×P , where P denotes the set of prim-

itive polynomials in N0[x]. (Note that a polynomial is primitive if its the greatest common
divisor of its coefficients is 1).

Proof. Given a nonzero polynomial f = q0+ q1x+ · · ·+ qmxm ∈ Q[x]∗, where each coefficient
qi =

ni

di
is written in lowest terms with gcd(ni, di) = 1, set

qf :=
lcm(d0, . . . , dm)

gcd(n0, . . . , nm)
.
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The map φ : Q[x]∗ → Q∗ × P is given by the assignment f 7→ (qf , qff). Verifying that φ is
a well-defined bijection (i.e. φ satisfies both injectivity and surjectivity) is straightforward,
so we leave this task to the reader. □

Before formally defining atomic density in Q[x], we prove the following lemma.

Lemma 3.6. There exists a bijection f : Q[x] 7−→ (Q, PZ[x]) where PZ[x] denotes the set of
primitive polynomials of Z[x].

Proof. Take a polynomial g(x) in Q[x], and let it be expressed as anx
n+an−1+x

n−1+ · · ·+a0
where each coefficient is in its reduced form. Let us express each ai = di/ni. Then let
L = lcm(di) and N = gcd(ni). It is quite clear that g is surjective as we can take N

L
g′(x) ∈

(Q, PZ[x]) where

g′(x) =
n∑

i=0

(
Lai
N

)
xi.

Note that the coefficient is an integer by definition. Also, note that gcd({Lai}) = gcd({ni}) =
N (if otherwise, we would be able to divide away a constant from L and reach a smaller
LCM). Hence after each coefficient Lai is divided by N , the resulting polynomial g′(x) is
primitive.

It is easy to show that this mapping f is also injective. For the sake of contradiction
suppose we have a

b
g(x) = a′

b′
g′(x) for some a/b, a′/b′ ∈ Q[x] and g(x), g′(x) ∈ PZ[x]. Hence

we have ab′g(x) = a′bg′(x). Clearly gcd(ab′g(x)) = ab′ ̸= gcd(a′bg′(x)) = a′b unless ab′ = a′b,
in which case a/b = a′/b′. Hence we have that f is both surjective and injective and we are
done. □

We can now define atomic density as

lim
s→∞

lim
d,n→∞

Is(d,N)

Tp(d,N)

if the limit converges. Note that it would not make sense to also consider the double limit
with d, n → ∞ and s → ∞ switched as this would lead to a non-converging sequence of 0’s
and 1’s. For the density of Q[x] (resp. Q0[x]) Tp(d,N) denotes the cardinality of{a′

b′
· f(x) | f(x) ∈ A(T ′(d,N)); (a′, b′) ∈ N0 × N0

}
where T ′(d,N) is the number of primitive polynomials in Z[x] (resp. N0[x]) with height
bounded by n and degree by d. We use Is(d,N) to denote the number of polynomials in the
above set that are irreducible in Z[x] (resp. N0[x]).

Theorem 3.7. Under the definition above, the atomic density of Q[x] and Q0[x] are both 1.

Proof. Following our definition, note that we have Tp(d,N) = k · T ′(d,N) and Is(d,N) =
k · I(d,N) where I(d,N) is the number of irreducibles in Z[x] (resp. N0[x]) with degree
bounded by d and height by n for some constant k ≤ s+1 (we use k instead of simply s+1
as we do not want to count equivalent fractions multiple times). Since T ′(d,N) ⊆ T (d,N)
we have Tp(d,N) = k ·T ′(d,N) ≤ k · T (d,N) whereas Is(d,N) = k · I(d,N). Hence we have
that

lim
s→∞

lim
d,n→∞

Is(d,N)

Tp(d,N)
≤ lim

s→∞
lim

d,n→∞

k · I(d,N)

k · T (d,N)
= lim

s→∞
1 = 1.

And so we have proven that the density of Q[x] and Q0[x] are both 1. □
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We are now in a position to prove that the atomic density of subsemidomains of Q[x] can
take any prescribed real value in the interval [0, 1].

Lemma 3.8. Let r ∈ R such that 0 ≤ r ≤ 1. Then there exists a subset Pr ⊆ P such that∏
p∈Pr

(
1− 1

p

)
= r.

Proof. Recall that the Euler product tells us that∏
p∈P

(
1− 1

p

)
= lim

s→1+

∏
p∈P

(
1− 1

ps

)
= lim

s→1+

1

ζ(s)
= 0,

so we can take P0 = P. Since the empty product is defined as 1, we also have P1 = ∅. Let
r ∈ (0, 1). We construct two sequences (rn)n∈N and (pn)n∈N satisfying that r0 = 1, p0 = 1,
and if rn−1 > r for some n ∈ N then set rn := rn−1(1 − 1

pn
), where pn is the smallest prime

such that pn > pn−1 and rn ≥ r.
Now, we observe that the sequence of rn terminates if rk = r for some k, and otherwise

converges to r. To show this, define A ⊆ N as the set of indices i for which pi is defined. We
let Pr = {pi | i ∈ A}, and note that Pr is not empty, since p1 exists because r < 1 = r0. If
A is finite, it is necessarily of the form {1, 2, . . . , n} for some n ∈ N. This is only possible if
rn = r, so if A is finite then∏

p∈Pr

(
1− 1

p

)
=
∏
i∈A

(
1− 1

pi

)
= rn = r.

Otherwise, A = N. In this case, note that P \ Pr is an infinite set; otherwise, we would

have r = c ·
∏

p∈P

(
1− 1

p

)
= 0 for some finite c, contradicting our assumption that r > 0.

We have ∏
p∈Pr

(
1− 1

p

)
=
∏
i∈A

(
1− 1

pi

)
= lim

n→∞

n∏
i=1

(
1− 1

pi

)
= lim

n→∞
rn.

It remains to verify that this limit exists and converges to r. Clearly, by definition,
ri > rj > r for any positive integers i < j. Thus, it suffices to show that for any ε > 0, there
exists some k ∈ N such that rk < r + ε.

For the sake of contradiction, suppose rk ≥ r + ε for all k ∈ N. Since we proved P \ Pr is

an infinite set, it follows that there exists some q ∈ P \ Pr such that
(
1− 1

q

)
≥ r

r+ε
, so that

rk

(
1− 1

q

)
≥ r for all k. Now, since q is fixed and A is infinite, let m be the least integer such

that pm > q. Letting k = m− 1, we have rm−1

(
1− 1

q

)
≥ r. Since q < pm, this contradicts

the definition of pm, which states that it is the least prime p satisfying rm−1

(
1− 1

p

)
≥ r.

Therefore, we conclude that limn→∞ rn = r. □

Now for every real number r ∈ (0, 1), we set Dr :− Z + xZ[ 1
p
| p ∈ Pr][x] to be a

subsemidomain of Q[x]. Next we show that ψ(Dr) = r.

Proposition 3.9. The atomic density of Dr is equal to r.
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Proof. For c, d,N ∈ N, let TDr(c, d,N) be the number of polynomials f ∈ Dr of degree at
most d with d(f) ≤ c and whose integral multiple d(f)f has height in [−N,N ]. Among
these, let IDr(c, d,N) denote the irreducible ones.

For a fixed N ∈ N, let ψ(Dr, N) denote the density of irreducibles in Dr with all coeffi-
cients bounded in absolute value by N . Let us also define ψk(Dr, N) to be the density of
irreducibles among all f ∈ Dr with constant term k ∈ Z and coefficients bounded by N . We
then define

ψ(Dr) = lim
N→∞

ψ(Dr, N) = lim
N→∞

1

2N + 1

N∑
k=−N

ψk(Dr, N).

We will now evaluate ψk(Dr, N). In the case that there exists some p ∈ Pr such that p | k,
it is clear that all f with constant term k are divisible by the irreducible element p ∈ Pr.
Thus, if k is divisible by some p ∈ Pr then ψk(Dr, N) = 0. Otherwise, if such a p does not
exist then all reducible f with constant term k are expressible as gh, for nonconstant g and
h. This occurs precisely when f is irreducible over Q[x], which has atomic density 1. Thus,
ψk(Dr, N) = 1 in these cases.

By the Chinese remainder theorem, the number of integers in the interval J−N,NK co-
prime to all elements of Pr must be between ⌊(2N + 1)r⌋ and ⌈(2N + 1)r⌉. Hence,

r = lim
N→∞

⌊(2N + 1)r⌋
2N + 1

≤ lim
N→∞

1

2N + 1

N∑
k=−N

ψk(Dr, N) ≤ lim
N→∞

⌈(2N + 1)r⌉
2N + 1

= r.

Therefore, we conclude that ψ(Dr) = r, completing the proof. □

The approach used to define atomic density for polynomials in N0[x] cannot be directly
extended to the setting of power series with coefficients in N0, even though every irreducible
polynomial remains irreducible when regarded as a power series. The main obstacle lies in
the fact that N0JxK is uncountable, whereas our previous definition fundamentally relies on
approximating the ambient space by an increasing sequence of finite sets. In the polynomial
case, this sequence exhausts the countable set of polynomials by bounding both the degree
and the height of the coefficients. In contrast, for power series, no such sequence of finite
subsets can approximate the entire uncountable space of series with coefficients in N0. Con-
sequently, the notion of atomic density, as developed for N0[x], does not naturally extend to
N0JxK.

4. Atomic Density of 0-1 Polynomials

In this section, we turn our attention to the subset of polynomials in N0[x] with coefficients
in {0, 1}, hereafter referred to as 0-1 polynomials. We show that, in this restricted setting,
the atomic density is equal to 1

2
. It has been proved that 0-1 polynomials in Z0[x] have

density 1/2 (see, for instance, [Borst]).

Theorem 4.1. For the number of reducible polynomials of degree d or less, denoted R(d),
we have R(d) ≤ 2d +O(φd−1), where φ ≈ 1.618 is the golden ratio.

Proof. For degree d let us denote the number of such polynomials as R(d). Then we can
write R(d) ≤ 2d+R′(d) where 2d denotes the number of 0-1 polynomials with constant term
0, and R′(d) denotes the number of tuples (a1 . . . aj−1, b1 . . . bd−j−1) where each ai and bi is
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either 0 or 1. Note that we are essentially counting the number of reducible polynomials
that can be expressed as

f(x) = (1 + a1x+ · · ·+ aj−1x
j−1 + xj)(1 + b1x+ · · · bd−j−1x

d−j−1 + bd−jx
d−j),

We can partition all coefficients of b into the following sequences based on the indices’
remainder modulo j: 

bj, b2j, . . .

b1, bj+1, . . .
...

bj−1, b2j−1, . . .

.

Then notice that there would not exist consecutive pairs of 1’s in each sequence because
it would lead to coefficients greater than 1 when multiplied by the leading and constant in
1 + a1x+ · · ·+ aj−1x

j−1 + xj. If we count the number of possible such sequences for a given
length n using Fn, we have F0 = 2, F1 = 3, and the recurrence relation Fn = Fn−1 + Fn−2

(Fn−1 with the additional term 0, or alternatively the last term is 1 and so the second to last
term is 0 with Fn−2 to count the rest of the sequence. Notice that this is the well-known
Fibonacci recurrence relation with the sequence terms shifted by 3, so we have that for each

sequence the number of different choices would be fk = φk−3−ϕk−3
√
5

where k = ⌈(d − j)/j⌉
and ϕ is the conjugate of φ, equal to 1−

√
5

2
. Since there are j such sequences the number of

reducible polynomials is bounded above by(
φk−3 − ϕk−3

√
5

)j

≤ O
(
φk−3

√
5

)j

.

Finally we sum this over each possible j from 1 to ⌊d/2⌋ to get

1√
5
· (φd−3 − ϕd−3) · (1− 1

φ
√
5

d−2/2
)

1
1−φ

√
5

≤ O(2d).

And so adding the constant term zero polynomials we have that R(d) ≤ 2d +O(φd). □

Corollary 4.2. The density of irreducibles of all 0-1 polynomials in N0[x] is 1/2.

Proof. Defining density to be limd→∞
I(d)
T (d)

where I(d) is the number of irreducible 0-1 poly-

nomials of degree d or less and T (d) = 2d+1, we have that

I(d)
T (d)

=
2d+1 −R(d)

2d+1
=

2d −O(φd)

2d+1
=

1

2
.

□

We now provide a lower bound on the number of reducibles by considering the number
of polynomials divisible by x + 1, ultimately proving that the asymptotic of reducible 0-1
polynomials of degree d or less with constant term 1 is O(φd).

For a fixed degree d, consider factors of the form xk + 1 for each k ∈ J1, dK. For a
polynomial f that can be expressed as (xk + 1)g(x), we can directly count the number of
possible f : Let fd denote the number of possible 0-1 polynomials of degree d or less divisible
by x+ 1. Then we can write fd = fd−1 + fd−2, where fd−1 accounts for all such polynomials
with degree < d, and fd−2 accounts for polynomials of the form xd + xd−1 + f ′: note that
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if the coefficient of xd is 1 we must have the coefficient of xd−1 to be 1 then removing these
two terms the remaining polynomial f ′ must be another 0-1 polynomial divisible by x+1 of
degree d−2 or less. Its initial terms are f0 = 1 (accounting for 0), f1 = 2 (0 and x+1), and we
can verify f2 = 3 (0, x+1, x2+x). This is the well-known recurrence for Fibonacci numbers
with the terms shifted by 1 and so we have that the exact number of such polynomials is

fd =
φd+1 − ϕd+1

√
5

= O(φd+1)

since |φ| = |1+
√
5

2
| > |ϕ| = |1−

√
5

2
|.

Lastly if we were to combine this with polynomials of constant term 0, note that we
would have overcounted the number of polynomials divisible by x(x + 1). Note that each
such polynomial would be equivalent to x multiplied by a polynomial of degree d− 1 or less,
which is counted for by fd−1 = O(φd). Hence by the inclusion-exclusion principle we still
have

R(d) ≥ 2d +O(φd+1)−O(φd) = 2d +O(φd+1) = 2d +O(φd).

Combining this with the upper bound we reach the following theorem on the number of
reducible 0-1 polynomials of degree d or less.

Theorem 4.3. The asymptotic number of reducible 0-1 polynomials in N0[x] with degree d

or less is 2d−1 +O(φd), where φ takes the fixed value of 1+
√
5

2
.

The following figure demonstrates how the density approaches 1
2
as the degree increases.

Figure 2. Irreducibles proportion for 0-1 polynomials converging to 1
2
.

5. Counting Reducible Polynomials in N0[x]

In this section, we will find refined bounds on R(d,N) for the individual asymptotics
d→ ∞ andN → ∞. Using a recursive approach, we obtain both upper and lower asymptotic
bounds on R(d,N) as d → ∞. We also obtain an asymptotic upper bound on R(d,N) as
N → ∞, via a lattice point interpretation of divisibility in N0[x].
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5.1. Asymptotics for d→ ∞.

Definition 5.1. For every positive integer n, denote ρn by the spectral radius of the n× n
matrix Tn defined by

(Tn)ij =

{
1 i+ j ≤ n+ 1

0 otherwise.

Furthermore, set

Cn := lim
k→∞

1

ρkn
u · T k−1

n · uT ,

where u = [0, 1, . . . , 1].

In order to ensure that Cn is well defined, we must check that the Perron-Frobenius
theorem applies to the matrix Tn. A sufficient condition for Perron-Frobenius is that the
directed graph Gn on [n] associated with Tn is strongly connected. Note that two, not
necessarily distinct vertices i and j of Gn are adjacent if and only if i+ j ≤ n+ 1. As such,
the edges between any two vertices of Gn are bidirectional, so we may delete the self-loops
of Gn and regard it as a simple finite graph; it suffices to show that the resulting graph is
connected. It is not hard to check that Gn is connected for n = 1, 2, 3. Suppose that n > 3.
For all 3 ≤ i < j ≤ n, we note that i and j are connected because of the path i→ 2 → 1 → j.
Therefore, Gn is connected, so we conclude that Cn is well defined.

Definition 5.2. Let S(d,N) denote the set of polynomials in N0[x] with degree at most d,
height at most N , and nonzero constant term.

Lemma 5.3. Let a and b be positive integers with gcd(a, b) = 1. Then, the number of
polynomials in S(d,N) that are divisible by the binomial a+ bx is at most ∼ ρd+1

N+1 ·CN+1 as
d→ ∞, with equality at a = b = 1.

Proof. For 0 ≤ k ≤ N , let A(k, d) denote the number of polynomials in S(d,N) that are
divisible by a+ bx and have xd coefficient equal to bk. Note the recurrence

A(k, d) =
N∑

k′=0

A(k′, d− 1) · 1ak+bk′≤N

for every d ≥ 1, by casework on the leading coefficient of polynomials in S(d,N). Thus,
if we let vd denote the vector [A(0, d), . . . , A(N, d)]T , then we have vd ⪯ TN+1 · vd−1, or
equivalently,

vd ⪯ T d
N+1 · v0 = T d

N+1 · uT .

The desired result follows. □

Proposition 5.4. Let f(x) ∈ N0[x] be a nonconstant polynomial. Then, the number of
polynomials in S(d,N) that are divisible by f(x) is at most ∼ ρd+1

N+1 · Ck
N+1, with equality at

f(x) = 1 + xk for every k ≥ 1.

Proof. Note that the number of polynomials in S(d,N) that are divisible by f(x) is at most
the number of polynomials in S(d,N) that are divisible by ([x0]f(x))+xdeg(f)([xdeg(f)]f(x)).
The result follows via application of Lemma 5.3. □

Theorem 5.5. We have the following asymptotic bounds for R(d,N) as d→ ∞, by casework
on the value of CN+1.
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(1) (N +1)d +O(ρdN+1) ≤ R(d,N) ≤ (N +1)d +O((N +1)
d
2C

d
2
N+1ρ

d
N+1) provided that

CN+1 >
1

N+1
;

(2) (N + 1)d +O(ρdN+1) ≤ R(d,N) ≤ (N + 1)d +O(dρdN+1) if CN+1 =
1

N+1
;

(3) R(d,N) = (N + 1)d +O(ρdN+1) if CN+1 <
1

N+1
.

Proof. Note that R(d,N) − (N + 1)d is the number of reducible polynomials in S(d,N).
Bounding the number of reducible polynomials in S(d,N) below by the number of polyno-
mials in S(d,N) that are divisible by 1 + x, we immediately obtain the desired lower bound
in all cases of CN+1.

We will now prove the desired upper bound. Observe that the number of reducible
polynomials in S(d,N) is bounded above by the sum

∑
f∈S(d,N)

deg(f)≤ d
2

∣∣∣∣ {P ∈ S(d,N) : f | P, f ̸= P}
∣∣∣∣ =

 ∑
f∈S(d,N)

deg(f)≤ d
2

∣∣∣∣{P ∈ S(d,N) : f | P}
∣∣∣∣
− (N + 1)

d
2
+1.

Note that ∑
f∈S(d,N)

deg(f)≤ d
2

∣∣∣∣{P ∈ S(d,N) : f | P}
∣∣∣∣ ≤d

∑
1≤k≤ d

2

N2(N + 1)k−1 · ρd+1
N+1 · C

k
N+1

by Proposition 5.7 and the fact that there are N2(N + 1)k−1 polynomials in S(d,N) degree
exactly k. We have∑

1≤k≤ d
2

N2(N + 1)k−1 · Ck
N+1 =

N2

N + 1

∑
1≤k≤ d

2

((N + 1)CN+1)
k.

Observe that

∑
1≤k≤ d

2

((N + 1)CN+1)
k =


O((N + 1)

d
2C

d
2
N+1) CN+1 >

1
N+1

O(d) CN+1 =
1

N+1

O(1) CN+1 <
1

N+1

as d→ ∞. Therefore, the desired upper bounds follow for all cases of CN+1. □

As a corollary, we have the following precise asymptotic for the number of 0-1 polynomials
of degree at most d.

Corollary 5.6. We have R(d, 1) = 2d +O(φd) as d→ ∞.

Proof. By virtue of Theorem 5.5, it suffices to show that C2 <
1
2
. This follows from the fact

that C2 =
1

φ
√
5
< 1

2
. □

5.2. Asymptotics for N → ∞.

Proposition 5.7. Let a and b be positive integers at most N . Then, there exists a constant
Cd dependent only on d such that the number of polynomials in S(d,N) that are divisible by
the binomial a+ bx is at most Nd/ad + Cd ·Nd−1/ad−1 as N → ∞.
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Proof. Let L denote the lattice generated by the set

{(a, b, 0, . . . , 0), (0, a, b, 0, . . . , 0), . . . , (0, . . . , 0, a, b), (0, . . . , 0, a)} ⊆ Nd
0.

The points in L represent the first d coefficients of polynomials in S(d,N) that are divisible
by a + bx. As such, the number of polynomials in S(d,N) that are divisible by a + bx is
equal to |[0, N ]d ∩ L|. Note that the volume of the basis vectors of L is given by∣∣∣∣∣∣∣∣∣

a b 0 . . . 0
0 a b . . . 0

...
0 0 0 . . . a

∣∣∣∣∣∣∣∣∣ = ad.

Thus, by the Davenport’s Lemma [Davenport˙Browning˙2005], we have |[0, N ]d ∩ L| ≤
Nd

ad
+ Cd · Nd−1

ad−1 for some constant Cd dependent only on d as N → ∞ as desired. □

Remark 5.8. We briefly remark that the lattice point interpretation of divisibility over N0[x]
has been used in the context of factorization algorithms over boolean polynomials; we refer
the reader to [Kim2005] for more details.

Proposition 5.9. Let f(x) ∈ N0[x] be a polynomial with constant coefficient a ∈ (0, N ]
and leading coefficient b ∈ (0, N ]. Then, there exists a constant Cd,k dependent only on d
and k such that the number of polynomials in S(d,N) that are divisible by f(x) is at most
Nd−k+1/ad−k+1 + Cd,k ·Nd−k/ad−k as N → ∞.

Proof. Note that the number of polynomials in S(d,N) that are divisible by f(x) is at most
the number of polynomials in S(d,N) that are divisible by a+ bxk. For 0 ≤ i ≤ k − 1, set

gi(x) :=
∑

m≡i mod k

([xm]g(x)) · xm

for all polynomials g(x) ∈ N0[x]. Since
∑k−1

i=0 deg(gi) = deg(g) + 1 − k for all g(x) ∈ N0[x],
the desired result follows from Proposition 5.7. □

Theorem 5.10. For all d ≥ 6, we have R(d,N) = O(Nd) as N → ∞.

Proof. Note that when b ≥ a, the number of polynomials in S(d,N) that are divisible by
f(x) = a+ · · ·+bxk is at most Nd−k+1/bd−k+1+Cd ·Nd−k/bd−k, as the number of polynomials
in S(d,N) that are divisible by f(x) is the same as the number of those that are divisible
by the polynomial g(x) = b + · · · + axk whose coefficients are the same as that of f(x)
but reversed in order. Thus, the number of polynomials in S(d,N) that are divisible by a
polynomial x ∤ f(x) of degree k is at most

2
N∑
a=1

a∑
b=1

(
Nd−k

ad−k
+ Cd,k ·

Nd−k+1

ad−k+1

)
= 2

N∑
a=1

(
Nd−k

ad−k−1
+ Cd,k ·

Nd−k+1

ad−k

)
≤ 2Nd−k(ζ(d− k − 1) +NCd,k · ζ(d− k)) = O(Nd−k+1),

as long as d − k − 1 ≥ 2. Summing over 1 ≤ k ≤ d/2 returns a final upper bound of
O(Nd). □

Kuba [kuba] showed that in the context of Z[x], one has R(d,N) = O(Nd) as the pair
(d,N) approaches (∞,∞). We conjecture that the same holds over N0[x].
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Conjecture 5.11. The number of reducible polynomials in N0[x] of degree at most d and
height at most N is O(Nd) as (d,N) approaches (∞,∞).

Now that we have found asymptotic bounds on R(d,N) for both d → ∞ and N → ∞,
we have the following corollary, which partially resolves Conjecture 5.11.

Corollary 5.12. The number of reducible polynomials R(d,N) in N0[x] of degree at most d
and height at most N satisfies

R(d,N) = O(Nd) N → ∞, then d→ ∞
and

R(d,N) = O(Nd) d→ ∞, then N → ∞.

Proof. The first bound readily follows from Theorem 5.10. Since ρN+1 ≥ N
2
+ 1 >

√
N + 1

by the Rayleigh quotient bound [HornJohnson2013], the second asymptotic follows from
Theorem 5.5. □

We also have the following N0[x]-analogue of the heuristic proposed by Borst et al. in
[Borst].

Corollary 5.13. Let RL(d,N) denote the number of reducible polynomials in N0[x] of degree
at most d and height at most N which are divisible by a factor of the form a+ bx for positive
integers a and b. Then for all d ≥ 6, we have

lim
N→∞

RL(d,N)

R(d,N)
= 1.

Proof. By Proposition 5.7, the number of reducible polynomials in N0[x] of degree at most d
and height at most N which are divisible by is Nd+O(Nd−1) as N → ∞. Thus, RL(d,N) ≥
Nd +O(Nd−1) as N → ∞, so by Theorem 5.10, the desired result follows. □

6. Irreducible Polynomials with Prescribed Coefficients

We conclude by examining the existence of irreducible polynomials subject to prescribed
coefficient constraints. Probabilistically, this corresponds to conditioning the ambient dis-
tribution on finitely many coordinates and testing the stability of irreducibility under local
restrictions. In particular, we prove in Proposition 6.2 that after prescribing all but one
coefficient of a polynomial, irreducibility in N0[x] can still be achieved by a suitable choice of
the remaining coefficient. As an application, we offer a shorter proof for an analogue of the
Goldbach conjecture in the context of N0[x, x

−1] as formulated in [kaplanpolo, sophialiao].

Definition 6.1. We say that a nonzero polynomial f ∈ N0[x] is monolithic if f = gh implies
that either g or h is a monomial of N0[x

±1].

Observe that since all monomials are units in N0[x
±1], monolithic polynomials are essen-

tially the subset of irreducible polynomials of N0[x
±1] which lie in N0[x].

Proposition 6.2. Fix ci ∈ N0 for each i ∈ J0, dK except i = k for some k ∈ N0. Then there
exists N ∈ N such that for all n ≥ N , the polynomial f = cdx

d + cd−1x
d−1 + · · · + c0 with

ck = n is monolithic.
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Proof. Set N := (n + 1)(m + 1)2 where m is the maximum of the set coefficients. Again
suppose for the sake of contradiction that there exists some n ≥ N where the polynomial f
as expressed above with ck = n is not monolithic. Then f must be able to be expressed as
gh for some non-constant polynomials g = a0+a1 . . . ajx

j and h = b0+ b1 . . . bd−jx
d−j. Then

since

ck =
k∑

i=0

aibk−i ≤ (k + 1)m2 < (n+ 1)(m+ 1)2,

we have that there must be some coefficient of g or h that is greater than m. However in
this case since g and h have at least one other term with non-zero coefficient we would have
some other coefficient of f be greater than m, contradiction. Hence f is monolithic and we
are done. □

Remark 6.3. In fact, we can prove that there exists a much tighter bound to N . Let
N = ⌊(d + 2)m2/2⌋ + 1 where m is the maximum number of the set of fixed coefficients
{c0, c1 . . . ck, ck+1 . . . cd}. We prove that the proposition holds for all n ≥ N . Suppose for the
sake of contradiction that f is not monolithic, and it can be expressed as the product of two
nonnegative integer coefficient polynomials

a(x)b(x) = (a0 + a1x+ · · ·+ ajx
j)(b0 + b1x+ · · · bn−jx

d−j)

where j is some nonnegative integer less than d. Then we can write

ck =
k∑

i=0

aibk−i

where ai (resp. bi) is equal to zero if i > j (resp. i > d− j). Without loss of generality let
j < d− j then j ≤ ⌊n/2⌋ and so we can rewrite

ck =

j∑
i=0

aibk−i.

Since ck = N and we are summing ⌊(d + 2)/2⌋ products, by the Pigeonhole Principle we
must have albk−l > m2 for some l ∈ J0, jK, and so we have al > m or bk−l > m. If al > m
(resp. bk−l > m) and b(x) (resp. a(x)) is not a monomial, there would be some other nonzero
coefficient bl′ with l

′ ̸= k − l (resp. al′ with l
′ ̸= l) resulting in cl+l′ (resp. ck−l+l′) greater

than m, contradiction. Hence f must be monolithic.
Observe that this bound on N is sharp: if we consider quadratics ax2 + bx + c in N0[x]

with a, c = 1 the bound would give us N = 2m2 + 1 = 3. If we took n = N − 1, x2 + 2x+ 1
fails for obvious reasons.

Note that this bound is not optimal. In particular, we provide a refined bound for the
specific case of fixing all coefficients except the leading coefficient or the constant term in
the following proposition.

Proposition 6.4. Let c0, . . . , ck ∈ N be fixed. Then there exists N ∈ N such that, for all
n ≥ N , the polynomials

fn = nxtk+1 + ckx
Tk + · · ·+ c0 and gn = ckx

Tk + · · ·+ c0x
t0 + n

are monolithic.
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Proof. Set N := max(c0, . . . , ck)
2 + 1. Suppose towards a contradiction that the polynomial

fn (resp., gn) is not monolithic for some n ≥ N . Then we have fn = gh (resp., gn = gh),
where neither g nor h is a monomial. Hence we may assume that the leading coefficient
(resp., independent term) of g is bigger than or equal to

√
n. Since h is a not a monomial,

one of the coefficients c0, . . . , ck is bigger than or equal to
√
n. Thus, for some i ∈ J0, kK, we

obtain the inequality

ci ≥
√
n ≥

√
N >

√
max(c0, . . . , ck)2 = max(c0, . . . , ck) ≥ ci,

which is impossible. Therefore fn and gn are both monolithic for all n ≥ N . □

Corollary 6.5. Let c0, . . . , ck ∈ N be fixed. For a prime number p ∈ P, the polynomials

pxtk+1 + ckx
Tk + · · ·+ c0 and ckx

Tk + · · ·+ c0x
t0 + p

are irreducible in N0[x] provided that p > max(c0, . . . , ck).

We can now use Corollary 6.5 to provide a simpler proof of the fact that almost every
Laurent polynomial can be written as the sum of at most two irreducibles.

Proposition 6.6. Every f ∈ N0[x
±1] can be written as the sum of at most two irreducible

polynomials provided that |supp(f)| > 1 and f(1) > 3.

Proof. Write f = ckx
k + · · · + c0 with c0, ck ∈ N and c1, . . . , ck−1 ∈ N0. Observe that, given

a polynomial g ∈ N0[x
±1], if g(1) is a prime number then g is irreducible. Consequently, we

may assume that f(1) is not the sum of at most two prime numbers. In particular, f(1) > 6.
We have two possible cases.

Case 1: ci ≤ 1 for every i ∈ J0, kK. Let p be the biggest prime number satisfying p < f(1)−2.

Since there is a prime number between p and 2p, the inequality f(1)−2
2

< p holds. Now either

⌈k/2⌉−1∑
i=1

ci ≤
f(1)− 2

2
or

k∑
i=⌊k/2⌋+1

ci ≤
f(1)− 2

2
.

Without loss of generality, suppose that
∑⌈k/2⌉−1

i=1 ci ≤ f(1)−2
2

. It is not hard to see that, for

some index t ∈ J⌊k
2
⌋+ 1, kK, we can write

f = [ckx
k + · · ·+ ctx

t + c0] + [ct−1x
t−1 + · · ·+ c1x]

such that
∑t−1

i=1 ci = p. Hence, both summands between brackets are irreducible.

Case 2: ci > 1 for some i ∈ J0, kK. Let p be the biggest prime number satisfying p ≤
max(c0, . . . , ck). Now let u and v in J0, kK be the biggest index and the smallest index,
respectively, satisfying cu ≥ p and cv ≥ p. Note that if u > v then we can write f as(

pxu + (cv − p)xv +
u−1∑

i=v+1

⌊
ci
2

⌋
xi +

v−1∑
i=0

cix
i

)

+
(
(cu − p)xu + pxv +

u−1∑
i=v+1

(
ci −

⌊
ci
2

⌋)
xi +

k∑
i=u+1

cix
i
)
.

where both summands between brackets are irreducible by Corollary 6.5. For the rest of the
proof, we may assume that 0 < v = u < k. Observe that cu ≤ 2p − 2. Without loss of
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generality, assume that

0 <
u−1∑
i=0

ci ≤
k∑

i=u+1

ci.

There exists a prime number q satisfying

cu − p+
u−1∑
i=0

ci ≤ q ≤ 2cu − 2p+ 2
u−1∑
i=0

ci ≤ f(1) + cu − 2p ≤ f(1)− 2.

Now if q ≤ f(1)− p then we can write

f =

[
pxu +

k∑
i=u+1

dix
i

]
+

[
(cu − p)xu +

k∑
i=u+1

(ci − di)x
i +

u−1∑
i=0

cix
i

]
,

where
∑k

i=u+1 di = f(1) − p − q and 0 ≤ di ≤ ci for every i ∈ Ju + 1, kK. Since the first
summand between brackets is irreducible by Corollary 6.5, we are done. On the other hand,
if f(1)− p < q then, for some index t ∈ Ju+ 1, kK, we can write

f = [(f(1)− q − 1)xu + xt] + [f − (f(1)− q − 1)xu − xt],

where both summands between brackets are irreducible. □
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