BOUNDS ON THE DISTINGUISHING (CHROMATIC) NUMBER OF
POSETS

AIDEN JEONG

ABSTRACT. In 2021, Collins and Trenk introduced the distinguishing number and distin-
guishing chromatic number of posets as analogs for the distinguishing (chromatic) number of
graphs. A coloring c of a poset P is distinguishing if there are no nontrivial automorphisms of
P preserving ¢. The distinguishing number D(P) is the minimum number of colors in a dis-
tinguishing coloring. The distinguishing chromatic number y p(P) is the minimum number
of colors in a proper distinguishing coloring. We present the bound D(L) < |Q|—h(L)+2,
where L is a lattice with join-irreducible set @ and height h(L). For distributive lattices,
Collins and Trenk showed that xp (L) < |Qr|+xp(Qr)—1 when xp(Qr) > 3. We improve
the bound to |Qr| + k, where k < 3 is determined by Q. Our bound is sharp for boolean
lattices. We also establish bounds on the distinguishing number of graded lattices via the mo-
tion lemma, and we compute the distinguishing (chromatic) number of the Young-Fibonacci
lattice.

1. INTRODUCTION

Albertson and Collins [1] defined distinguishing colorings and the distinguishing number
of graphs. A vertex coloring of a graph G is distinguishing if the only automorphism of the
graph that preserves colors is the identity. The distinguishing number D(G) of a graph G
is the minimum number of colors in any distinguishing coloring of G. Collins and Trenk [9]
introduced the distinguishing chromatic number xp(G) of a graph G, which is the minimum
number of colors in any distinguishing and proper coloring of G, where a coloring is proper
if no two adjacent vertices are the same color.

The distinguishing (chromatic) number of graphs has been studied extensively. For exam-
ple, the distinguishing number of the hypercube [4], trees and forests [5], and the cartesian
product of graphs |12] have been calculated. Furthermore, Collins, Hovey, and Trenk [§]
bounded the distinguishing chromatic number of graph G by x(G) and Aut(G), and Cavers
and Seyffarth [6] characterized graphs with large distinguishing chromatic numbers.

A natural extension then is to define the distinguishing (chromatic) number of a poset,
which was done by Collins and Trenk [10]. A coloring of a poset is distinguishing if the only
automorphism of the poset that preserves the coloring is the identity. The distinguishing
number D(P) of a poset P is the minimum number of colors in any distinguishing coloring
of P. Furthermore, a coloring is proper if no two comparable elements are the same color.
The distinguishing chromatic number xp(P) of a poset P is the minimum number of colors
in a proper distinguishing coloring of P.

The comparability graph Gp of poset P has elements of P as vertices and edges between
two elements if and only if those elements are comparable. Comparing poset P to Gp, we
have D(P) < D(Gp) and xp(P) < xp(Gp). However, Collins and Trenk [10, Proposition
22] demonstrated that D(Gp) — D(P) and xp(Gp) — xp(P) can be arbitrarily large. Hence,
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the ordering of posets alters the number of colors needed to break symmetries, and the
distinguishing (chromatic) number of posets merits independent study.

Posets are a subset of directed graphs, and many results for the distinguishing (chromatic)
number of graphs also hold for posets. For example, Choi [7] established analogues for posets
for the bounds presented by Albertson and Collins [1] and Collins and Trenk [9].

We extend the work of Collins and Trenk [10] and Choi [7]. In Section |2, we formally
define the distinguishing (chromatic) number and present elementary bounds. In Section ,
we establish a bound for D(P) based on Aut(P), which is sharper than previous bounds by
up to a factor of A(P). In Section [4] we improve the bounds for the distinguishing chromatic
number for distributive lattices. Our bound is sharp for boolean lattices. We also present
bounds on the distinguishing (chromatic) number for arbitrary lattices. In Section , we
establish a bound on the distinguishing number for graded lattices via the motion lemma.
In Section @, we compute the distinguishing (chromatic) number of the Young-Fibonacci
lattice.

2. PRELIMINARIES

2.1. Posets. A poset P = (5, <) is defined by a ground set of elements S and a reflexive,
antisymmetric, transitive order < between the elements. We assume S is finite. An auto-
morphism ¢ of P is a bijection on S preserving <. For elements {s,t} C S, we write s < ¢
if s <tands#t If s <tort=s, then s and t are comparable. Otherwise, s and t are
incomparable. If s < t and there exists no element r» € S such that s < r < t, then t covers
s and we write s < t. The comparability graph of poset P, denoted by Gp, is the graph with
vertex set S and edges drawn between any two comparable elements. The Hasse diagram of
a poset P is a graph with vertex set S and edges drawn between {a,b} C Sif a> b or a <b.
Furthermore, a is drawn with a higher y coordinate than b if a > b.

For an element s of poset P, define deg;(s) as the number of elements that cover s and
define deg(s) as the number of elements that s covers.

A chain of length h — 1 of a poset is a set of h pairwise comparable elements. An antichain
of width w is a set of w pairwise incomparable elements. Let the height h(P) be the length
of the longest chain in P and let the width w(P) be the width of the longest antichain.

An element s € S is maximal if there exists no element ¢ € S such that s < ¢t. An element
s € S is minimal if there exists no element ¢ € S such that s > t. Let max(P) and min(P)
denote the set of maximal and minimal elements for P, respectively.

A poset P is graded if all maximal chains have the same length. Each graded poset has a
rank function p: S — {0,1,...,h} which maps minimal elements to 0 and satisfies p(t) =
p(s) + 1if t > s. Even if a poset P is not graded, the order of P allows us to assign indices
to elements of P. Choi |7, Theorem 2.4] provides the following indexing.

Lemma 2.1 (Choi [7]). For each poset P = (S,=), there exists an index i(e): S —
{1,2,...,h(P) + 1} which satisfies the following conditions.
(i) The indez is preserved under automorphism.

(i1) Distinct elements of the same index are incomparable.
(111) If {e1,ea} C S are two comparable elements satisfying i(e1) < i(ez2), then e; = es.

2.2. Lattices. Let P = (5, =) be a poset. The meet of two elements {a,b} C S, denoted
by a A b, is the unique maximal element among those less than or equal to both a and b, if
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such an element exists. The join of two elements {a,b} C S, denoted by a V b, is the unique
minimal element among those greater than or equal to both a and b.

Poset P = (5, <) is a meet semi-lattice if the meet exists for all pairs of elements {a, b} C S.
Similarly, poset P is a join semi-lattice if the join exists for all pairs of elements {a,b} C S.
Poset P is a lattice if it is both a meet and join semi-lattice. A lattice L = (S, <) is distributive
if (aANb)Ve=(aVec)AN(bVe)and (aVb)Ae=(aNc)V(bAc) for all triplets {a,b,c} C S.

An element of a lattice L with only one downward edge in the Hasse diagram of L is
join-irreducible. Let ), denote the set of join-irreducible elements of lattice L. The following
lemma shows that every element of L can be represented as the join of some subset of Q7.

Lemma 2.2 (Davey and Priestley [11, Proposition 2.45)). If L is a finite lattice and a € L,
then

a:\/{xEQL|:Eja}.
For a € L define J(a) = {z € Qr | z < a} as the join-irreducible rank of a. For a poset
P = (S,=<) and subset a T" of S, let down(T") = {s € S | s <t for some t € T}. Define

J(P) as the lattice with ground set {down(T") | T C S} and ordering relation C. Birkhoff [3]
Theorem 3] showed that distributive lattices can be represented by downsets.

Theorem 2.3 (Birkhoff [3| Theorem 3|). If L is a distributive lattice, then L = J(Qp).

We define two well-studied lattices, B,, and L,. The boolean lattice B, has ground set
P({1,2,...,n}) and is ordered by inclusion. The boolean lattice B is shown in Figure [I]

{1,2,3}
/N
{1,2}{1,3} {2,3}
| X X

{1} {2} {3}
N
0
FIGURE 1. The boolean lattice Bs.

The divisibility lattice L, has ground set as the divisors of n and is ordered by divisibility.
The divisibility lattice Ly is shown in Figure [2|

12
/N
4 6
NN
2 3
NS

F1GURE 2. The divisibility lattice Lqs.

Boolean lattices are isomorphic to divisibility lattices of products of distinct primes.
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2.3. The Distinguishing Number of Posets. Collins and Trenk [10] label a coloring ¢
of a poset P = (S,=) as distinguishing if no nontrivial automorphism of P preserves c.
The distinguishing number of P, denoted by D(P), is the smallest number of colors in any
distinguishing coloring of P. An element of P is pinned by a coloring if all automorphisms
preserving colors fix the element.

Collins and Trenk [10] noted that D(P) < D(Gp), but that D(Gp)/D(P) can be arbi-
trarily large. For example, D(P) =1 and D(Gp) = k for a chain of length & — 1.

Albertson and Collins [1, Corollary 1.1] established a bound for D(G) in terms of Aut(G)
for graphs G. Choi [7, Theorem 2.2] presented an analogous result for posets.

Theorem 2.4 (Choi [7, Theorem 2.2]). If P is a poset with automorphism group Aut(P),
then D(P) <1+ [log, | Aut(P)|].

By coloring according to index, we can bound the distinguishing number by the width of
a poset.

Theorem 2.5. If P = (S, =) is a poset, then D(P) < w(P).

Proof. Assign indices to elements of S via Lemma [2.1] For each index, assign distinct colors
to elements with that index so that no automorphism preserving colors can map one element
of a given index to another element of that index. Automorphisms must preserve indices, so
the coloring is distinguishing. Since indices form antichains, the coloring uses at most w(P)
colors. Hence, D(P) < w(P). O

As we add more comparison relations to a poset, the distinguishing number tends to
decrease. For example, an antichain has large distinguishing number while a chain has dis-
tinguishing number one. Similar intuition does not hold for graphs as D(K,) = n. Define

p(P) = ‘E(‘S‘P )l as the comparison density of a poset P. The comparison density is the ana-

2
logue of edge density for graphs. The following bound quantifies the heuristic that adding
more comparisons decreases the distinguishing number of a poset.

Theorem 2.6. If P = (S, =) is a poset, then

< 1—p
|S|\/ |5|

Proof. Assign indices to elements of S via Lemma[2.1] Let wy, wo, ..., wy(p)+1 be the number
of elements of each index. Since [E(Gp)| < D1, jcn(pyr1 Witty, we have

h(P)+1 h(P)+1
D(P)* < (maxw;)? < w? = Z w; | —2 Z w;w,
‘ i=1 i=1 1<i<j<h(P)+1

Hence, D(P) is at most

E(Gp)
VISE = 2[E(Gr)] = |1, /1 - ‘Sf’ \S\\/l— |S|,

as desired. 0

Remark 2.7. Theorem does not have any nontrivial equality cases, and does not approx-
imate D(P) well. For example, our bound yields D(B3) < 5.1 when D(Bj3) = 2.
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2.4. The Distinguishing Chromatic Number of Posets. The distinguishing chromatic
number xp(P) of poset P is the least number of colors needed for a proper distinguishing
coloring of P. Choi |7, Proposition 2.3] observed that the ratio xp(Gp)/xp(P) can be arbi-
trarily large. However, Choi |7, Theorem 2.4] showed that xp(Gp) is bounded as a function

of xp(P).
Theorem 2.8 (Choi |7, Theorem 2.4]). If P = (S, =X) is a poset, xp(Gp) < xp(P)%.

Theorem [2.8 also establishes a lower bound on xp(P). On the other hand, Choi |7, Propo-
sition 2.5] shows that there are no meaningful upper bounds on xp(P) in terms of |S|.

Proposition 2.9 (Choi [7, Proposition 2.5]). Given any ground set S and constant c satis-
fying 2 < ¢ < |S|, there exists a poset P = (S, =) such that xp(P) = c.

3. FROM THE AUTOMORPHISM GROUP OF THE POSET

Albertson and Collins [1] established bounds on the distinguishing number of graphs based
on the automorphism group of graphs. In this section, we refine Theorem by proving
similar bounds for posets. Theorem does not consider the structure of posets beyond the
automorphism group. For example, the poset of n disjoint chains of the same length and the
poset of n points have the same automorphism group S,,. Yet the former poset has a smaller
distinguishing number than the latter poset.

The structure of posets allows us to strengthen Theorem [2.4, Partition P = (5, <) into
indices as in Lemma , which partitions S into indices P; for i satisfying 1 <1 < h(P)+ 1.
For 1 <i < h(P),let p;: Aut(P) — Aut(P;) map g € Aut(P) to g|p,. Note p; is well-defined
as gP; = P;. Let k(P) denote the number of values for which ¢; is faithful. The following
proof improves Theorem by extending the coloring argument of Albertson and Collins
[1, Theorem 1] and Collins, Hovey, and Trenk [8, Theorem 4.3].

Theorem 3.1. If P is a poset with k(P) > 1, then

log, | Aut(P)|—‘

D(P)§1+[ WP

Proof. Let G = Aut(P). Without loss of generality, suppose ; for ¢ satisfying 1 < i < k are
faithful. We write k(P) as k. Let t = (%W, where N is the sum of the exponents in the prime
factorization of |G|. We inductively define colorings ¢;; for 0 <i < k—1and 0 < j < .
Let G;; be the subgroup of G that preserves c; ;. If G, ; is trivial for any 7 and j, the result
follows. Henceforth, assume that G;; is nontrivial for all 4 and j. Let V; ; be the sum of the
exponents in the prime factorization of |G ;|.

We claim by induction that for 0 <7 <k —1 and 0 < j < ¢, there exists a coloring ¢; ;
such that NV;; < N — it — j. For the base case ¢ = 0 and 7 = 0, define ¢y as coloring all
vertices with color 0, which yields Gy = G.

We first define ¢; j; from ¢; ; for 0 <7 <k —1and 0 < j <t — 1. Since we assume G ; is
not trivial, there exists g € G ; that is not the identity. Since ¢; is faithful, the automorphism
©;(g) is not the identity. Therefore, there exists = € P, such that ¢;(g)z # x. Note that G, ;
preserves ¢; ; and that ¢; ; uses each color at most once for each F;. Thus, all points colored by
c; j are fixed, so x is not already colored. We define ¢; ;11 to be the coloring ¢; ; with o colored
with color j + 1. Then, G, j41 = {9 € G, | ¢i(g) € Stab(z)}. Notice G} j11 is a subgroup of
G, ;. Since g ¢ G, j41, we have G, j+1 < G, 4,80 N;jp1 < N;jj —1 < N —it — (5 +1).
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We now define ¢; 41 from ¢;; for 0 < i < k — 2. Since G, is a nontrivial subgroup of G
and ;41 is faithful, there must exist g € G;; such that ;. 1(g) is not the identity. Then, an
analogous argument to the previous paragraph yields Ny 0 < Ny —1 < N — (i + 1)t.

Our inductive step is complete, and we have N1 < N—(k—1)t—t <0, so Gj_1 is trivial.
Color all uncolored elements with a new color. We use colors 1, 2, .. ., ¢ for each index, and ¢ o

uses color 0. Hence, we have ¢t + 1 total colors, and D(P) < 1+ (%W <1+ {%ﬁﬂpﬂ. O

We return to the question that motivated our result. Let P; be the poset consisting of
n chains of length n — 1 and let P, be the poset consisting of an antichain of width n.
The bound given by Theorem yields the upper bound of 1 + log,(n!) € O(nlogn) for
both D(P;) = 2 and D(P,) = n. Although Theorem does not improve Theorem
for Aut(P;), our bound does give a better estimate for Aut(P;). For each index of P, the
automorphism subgroup induced by elements of Aut(P;) is S, = Aut(F;). Hence, every

index is faithful, so Theorem [3.1| gives D(P;) < 1+ {%W € O(logn).

Theorem also provides a better estimate for D(B,). Since Aut(B,) = S, the bound
from Theorem [2.4]is in O(nlogn). Index each element of B, with its cardinality and define
¢; as in Theorem [3.I] The automorphisms of B, can be represented as permutations of
{1,2,...,n}. Each permutation induces an automorphism on P(B,). Consider g € ker ;.
If 1 <i< %, consider {1,2,...,4} and {1,4+1,...,2i — 1}. Both must map to themselves
under ¢;(g), so g1 = 1. Similarly, g fixes all the elements of {1,2,...,n}, so g is the identity.
If § <i<n-—1,consider {2,3,...,i} and {n,n —1,...,n —i+ 1}, and the same argument
suffices. Hence, ¢; is faithful for all 1 < i < n —1, so k(P) = n — 1. Therefore, D(B,,) €
@) (%) = O(logn).

The bound is weaker than the true value of D(B,) = 2, but our bound illustrates how

considering the structure of a poset yields stronger bounds based on the automorphism group

than Theorem 2.4]

4. LATTICES

Collins and Trenk [10] characterize the distinguishing number of distributive lattices and
provide a bound on the distinguishing chromatic number of distributive lattices. In this
section, we establish a bound for the distinguishing (chromatic) number of general lattices
and strengthen the bound for the distinguishing chromatic number of distributive lattices.
Collins and Trenk |10, Theorem 14] showed that distributive lattices can be distinguished
with two colors.

Theorem 4.1 (Collins and Trenk [10, Theorem 14]). If L is a distributive lattice, D(L) < 2.

However, general lattices can have arbitrarily large distinguishing numbers. For example,
consider the lattice M,, (Figure , which consists of an antichain of size n bounded by 0 and
1. If n > 3, then D(M,) = n.
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/N

O

\/

FiGURE 3. The lattice M,,.

We establish a bound for D(L) that holds for arbitrary lattices L.
Theorem 4.2. If L is a lattice, then D(L) < |Qr| — h(L) + 2.

Proof. Let a; < az < -++ < ap(r)+1 be a maximal chain of L. Pin all elements of the chain
by coloring the chain with color 1. Notice J(a;) maps to itself under any automorphism. We
pin all elements of J(a;) for i > 1 via induction. The base case is clear as J(a;) is empty. For
the inductive step, we know J(a;) is pinned, and using colors 2 through |J(a;51) \ J(a;)| + 1
can pin the rest of J(a;;1). Hence, the induction is complete and J(anr)4+1) = @ is pinned.
Pinning @, suffices to break all nontrivial automorphisms by Lemma[2.2] Color the remaining
elements with color 2. We know
h(L)

Z |[J(@ir2) \ J(ai)| = |@cl,

and |J(a;+1) \ J(a;)| > 1 for all i satisfying 1 <i < h(L), so
max [ J(a;1) \ J(a))| < Q] = (A(L) = 1).

1<i<h(L)
Hence, the coloring uses at most |Q| — h(L) + 2 total colors. O
Remark 4.3. Theorem [4.2]is sharp for M,,.

Since |Qr| = h(L) for distributive lattices by Birkhoft’s Theorem [3, Theorem 3], Theo-
rem [4.1] follows from Theorem We also establish an upper bound on yp(L) for lattices
L. Our proof is similar to the argument given by Collins and Trenk [10, Lemma 25].

Theorem 4.4. If L is a join semi-lattice with least element 0, then xp(L) < h(L)+xp(QL).

Proof. Index L by Lemma 2.1] For 1 < i < h(L) + 1, color the elements with index 7 with
color 7, which is a proper coloring. Assign a distinguishing chromatic coloring to @ by
recoloring (), with colors h(L) 4+ 1 to h(L) + xp(QL)-

Since L has a least element 0, there is only one element with index k(L) + 1. We proceed
by induction to show that elements of index j for 1 < j < h(L) are pinned. For the base
case, let e be an element of L with index h(L). If e covers at least two elements, it must cover
an element d # 0. Then, i(0) > i(d) > h(L), so i(0) > h(L) + 2, a contradiction. Hence, the
elements of index h(L) are a subset of ()7, and are hence pinned. For the inductive step, let a
be an element of index j. If a € @), then a is pinned, so assume there exist distinct elements
b and ¢ such that @ > b and a > ¢ and a = bV ¢. Then, min{i(b),i(c)} > i(a) = j, so b and
c are pinned. Since a is the unique join of b and ¢, it is also pinned. Hence, the induction is
complete, and there exists a proper distinguishing coloring using h(L) + xp(Qr) colors. O
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Since a lattice is also a join semi-lattice, we can establish an upper bound for the distin-
guishing chromatic number of lattices.

Corollary 4.5. If L is a lattice, then xp(L) < h(L) + xp(QL).

We discuss the optimality of Corollary [£.5 Let f(z,y) be a polynomial such that xp(L) <
f(h(L),xp(Qr)). The lattice M, in Figure[3|has h(L) = 2, xp(Qr) =n, and xp(L) = n+2.
Therefore, deg, (f) > 1. Consider the distributive lattice L = J(Q), where @, consists of
the disjoint union of k! chains of length k& — 1 as shown in Figure [4]

FI1GURE 4. Join-irreducible elements () consisting of k! chains of length k — 1.

Note that xp(Qr) = k as there are k! colorings of a chain of length k£ — 1 with k colors.
Since L = J(Qp) is the divisibility lattice of n = Hf’zlpf, we have h(L) = k - k! and
Xp(L) = k-k!'+2 for k > 2, as calculated by Choi |7, Theorem 6.5]. Therefore, deg,(f) > 1.
Hence, for polynomial bounds on h(L) and xp(Q1), Corollary [4.5|is optimal up to constants.

Distributive lattices have more structure than arbitrary lattices, so we can establish
sharper bounds for the distinguishing (chromatic) number of distributive lattices.

Lemma 4.6 (Collins and Trenk [10, Lemma 25]). If L is a distributive lattice, then xp(L) <
QL] + xp(QL)-

Theorem 4.7 (Collins and Trenk |10, Theorem 26)). If L is a distributive lattice such that
xp(Qr) > 3, then xp(L) < |Qr| + xp(Qr) — 1.

We know that xp(L) —|Qr| = xp(L) — h(L) > 0. Both of the results presented by Collins
and Trenk |10, Lemma 25, Theorem 26] bound xp (L) —|QL| from above in terms of xp(QL).
We bound xp(L) — |Q| from above by a constant. The coloring for m > 6 in the following
proof is the same coloring Choi 7, Theorem 6.2] defined to calculate xp(B,,).

Theorem 4.8. If L is a distributive lattice, then xp(L) < |Qr| + k, where

1 if jmax(Qr)| =1,
k=142 if|max(Qr)| # 1,4,
3 if |lmax(Qp)| = 4.

Proof. By Lemmal2.2] it suffices to pin the elements of @ 1,.. Furthermore, elements of @1, cover
at most one element, so pinning the elements of max(Q) pins all of Q1. Write max(Q) =
{1,2,...,m}. By Birkhoft’s Theorem, we work with J(Q). Color elements of J(Qr) by rank
using colors 1 through |Qr| + 1. Let @} = Qr \ max(Qr) and J' = {S € J(Qr) | Q; C S}.
Label each element S of J' with S" = S Nmax(Q). Each subset of {1,2,...,m} is assigned
to exactly one set as S = 5"LQ; C J.

For m = 1, there is one possible lattice L with xp(L) =2 < |Qr| + 1.
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For m = 2, recolor one of the elements of max (@) with color |Q|+2, which fixes max(Q;)
and therefore Qp with |Qr| + 2 colors.

Form = 3, we have xp(Qr) < |max(Qr)| = 3. If xp(Qr) < 3, we have xp(L) < xp(Qr)+
Q1| < 24|Qp| by Lemmal[l.6] If xp(Q1) = 3, we have xp(L) < |Qr|+xp(Qr)—1 < |Qr|+2

by Theorem [4.7]

Similarly, for m = 4, we have xp(Qr) < |max(Qr)| = 4. If xp(Qr) < 3, we have xp(L) <
xp(Qr) +1Qr| < 2+]Qr| by Lemma 4.6 Otherwise, xp(L) < Q| +xp(Qr) =1 < |Qr|+3
by Theorem

For m = 5, recolor elements of J' labeled with {1,2}, {1,4}, {2,4}, {3,4}, and {1, 3,5}
with color |@Qr| + 2. The integer 1 is the only one in precisely three colored sets, of sizes 2,
2, and 3. The integer 2 is the only one in precisely two colored sets, of sizes 2 and 2. The
integer 3 is the only one in precisely two colored sets, of sizes 2 and 3. The integer 4 is the
only one in precisely three colored sets, of sizes 2, 2, and 2. The integer 5 is the only one in
precisely one colored set, of size 3. The coloring for m = 5 is shown in Figure [f

{1,2,3,4,5}

A

{1727374} {172737 5} {1727475} {1737475} {2737475}

e e e

{1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,5} {1,3,5} {2,3,5} {1,4,5} {2,4,5} {3,4,5}
N> SN TN

e e

{1,2} {1,3} {2,3} {1,4} {2,4} {3,4} {1,5} 12,5} 13,5} {4,5}

FIGURE 5. Coloring of labels of J' for m = 5.

For m = 6, the same coloring suffices as fixing 1, 2, 3, 4, and 5 also fixes 6.
For m > 7, recolor elements of .J with color |Q| + 2 as follows.

e Color the set labeled with all odd integers.
e Fori=1,2,..., LmT_lJ, color the set labeled with the ¢th odd integer and the first @
even integers.

No colored set includes another one. If m > 7, then 1 is the unique integer in precisely two
colored label sets of sizes 2 and LmT“J Hence, 1 is pinned. Then, the odd integers are the
ones in a label set with size LmT“j containing 1, so the odd integers are distinguished from
the even ones. The odd integers can be distinguished from each other by the size of the set
they are in, and the even integers can be distinguished from each other by how many sets
they are in. Hence, all elements of max(Q;) are pinned with |Q| 4+ 2 colors. O

We discuss the sharpness of Theorem [£.8] Choi 7, Theorem 6.2, Theorem 6.5] calculated
Xp(Bn) and xp(Ly).
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Theorem 4.9 (Choi 7, Theorem 6.2]). We have that

n+1 ifn=1,
Xp(Bn) =n+2 ifn#14,
n+3 ifn=4.

Theorem 4.10 (Choi |7, Theorem 6.5]). For n = p{'p% ...pl, we have that

h(L,)+1 ifq,qo,...,q mutually distinct,

Xp(Ln) =  M(Ln) + 3 if n = pipapsps, and
h(L,)+2 otherwise

Hence, Theorem [4.§] is sharp for B,, and Theorem [4.§] is sharp for L, when k& > 4 and ¢
are not all distinct. We have bounded xp(L) — |@r| by a constant. On the other hand, the
example in Figure {4 shows that we cannot bound xp(L) — xp(Qr) or xp(L)/xp(Qr) by a
constant.

5. THE MoOTION LEMMA

Collins and Trenk [10, Question 6.2] asked whether their bound for the distinguishing
number of distributive lattices could be shown using the motion lemma [15, Theorem 2]. We
prove a bound for the distinguishing number of graded lattices via the motion lemma.

The motion m(yp) of an automorphism ¢ of a graph G is the number of vertices of G which
are not fixed by . Then, the motion lemma yields the following bound on D(G).

Lemma 5.1 (Russell and Sundaram [15, Theorem 2]). If (Ind)mingecaw(e)n iay m(e) >
In| Aut(G)|, then D(G) < d.

The motion lemma also holds for posets P if we define the motion m(p) of an automor-
phism ¢ € Aut(P) as the number of elements of P which are not fixed by .

Lemma 5.2. If (Ind) mingeaue(p) iay m(w) > In| Aut(P)|, then D(P) < d.
We establish a bound on graded lattices via the motion lemma for posets.

Theorem 5.3. Let L be a graded lattice of height h. Suppose that for every element e with
1 < p(e) <h—2, we have degy(e) > 2, and for every element e with 2 < p(e) < h — 1, we
have deg(e) > 2. Then, if | Aut(L)| < d*"~V, we have D(L) < d.

Proof. Consider a nontrivial automorphism ¢ of L. Suppose there exist distinct elements a
and b of rank r such that p(a) = b. If r < h — 2, there exist distinct elements a; and as that
cover a. Both ¢p(ay) and ¢p(ay) cover b. If both a; and ay are fixed under ¢, then a; and ay
cover both a and b. Then, a V b would not exist, a contradiction. Hence, there are elements
of rank r + 1 that are not fixed. Therefore, if ¢ does not fix elements of rank r < h — 2, it
also does not fix elements of rank r + 1. Similarly, if ¢ does not fix elements of rank r > 2,
it also does not fix elements of rank r — 1.

Notice there must be an element of rank 1 < s < h — 1 which is not fixed by ¢. Then, by
induction, every rank 1 <¢ < h — 1 must have an element which is not fixed by (. Thus, we
have m(¢) > 2(h — 1) as each element which is not fixed has a distinct image which is also
not fixed. Our result follows from the motion lemma for posets. 0
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Remark 5.4. If n > 4, then B, satisfies the preconditions of Theorem [5.3, Our bound yields
D(B,) < 2181(7_“1)) € O(Inn). Hence, Theorem |5.3| has the same complexity as Theorem [3.1| for
B,.

6. SPECIAL NON-DISTRIBUTIVE LATTICES

Collins and Trenk [10] established bounds for the distinguishing number and distinguish-
ing chromatic number of distributive lattices. In Section [ we computed bounds for the
distinguishing (chromatic) number of general lattices. In this section, we compute the dis-
tinguishing (chromatic) number of special non-distributive lattices.

The Tamari Lattice T, of order n consists of ways to parenthesize n + 1 factors, with
ordering given by the right associativity rule. Bennett and Birkhoff [2, Corollary 2] establishes
that 7}, has no nontrivial automorphisms, so D(7T},) = 1.

The Young-Fibonacci lattice YF consists of finite words with alphabet {1,2}. An element
a of YT is covered by an element b if b is obtained from a by inserting a 1 to the left of the
leftmost 1 in @ or changing the leftmost 1 of a into a 2. Let YF<, be the poset consisting of
the elements of YF with rank at most . We compute the distinguishing number of YF,.

Proposition 6.1. Ifr > 2, then D(YF<,) = 2.

Proof. We claim that the join-irreducibles of YF<, are 2 and the strings of the form 1s. The
only string that a string of the form 1s can cover is s. If a string is of the form 21s (where
s may be the empty string), then the string covers 11s and 2s. If a string is of the form
22s (where s may be the empty string), then the string covers 12s and 21s. Hence, strings
starting with 2 that have length at least two cannot be join-irreducibles.

We claim that no element except 1 is covered by at least two join-irreducibles. Consider
a join-irreducible 1s which covers only s. If s is of the form la, then s is covered by only
11la = 1s and 2s, the latter of which is not a join-irreducible. If s is of the form 2a, then
s is covered by 12a = 1s and elements that start with 2. Hence, s is never covered by
join-irreducibles other than 1s, as desired.

Now, we can show D(YF<,) < 2 for r > 2. Consider the coloring in Figure |§|, which colors
2 with color 1 and the rest of the elements with color 2.

112 22 121 211 1111

SO T

1221 111

N/ N/
2 11

\/
1
|

€

FIGURE 6. A distinguishing coloring of YF,.

We proceed by induction to show that our coloring is distinguishing for » > 2. The base
case is clear. For the inductive step, all elements of rank at most r — 1 are pinned by the
inductive hypothesis. All elements of rank r which are not join-irreducibles are pinned by
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Lemma [2.2] Furthermore, join-irreducibles of rank r are pinned as we showed that no two
join-irreducibles can cover the same element. Hence, our induction is complete.

Let ¢ map strings of the form s11 to s2, strings of the form s2 to s11, and strings of the
form s21 to themselves. We claim that ¢ is a nontrivial automorphism of YF,. Suppose
that a and b are elements of YF<, such that a > 0. We have three cases.

If b is of the form s2, then s is a string of twos and a = s21 (we insert a 1 at the end,
which requires all previous digits to be 2) or a is a string of the form ¢2, where ¢ > s. In the
former subcase, p(a) = s21 > s11 = (b). In the latter subcase, p(a) = t11 > s11 = p(b).

If b is of the form s11, then s is a string of twos and a = s21 or a = t11, where t > s. In
the former subcase, ¢(a) = s21 > s2 = ¢(b). In the latter subcase, ¢(a) =12 > s2 = p(b).

If b is of the form s21, then s is a string of twos and a = s22 or s is a string of twos and
a = s211 or a = t21, where ¢ > s. In the first subcase, we have ¢(a) = 5211 > s21 = p(b).
In the second subcase, we have p(a) = $22 > s21 = ¢(b). In the third subcase, we have
p(a) =121 > s21 = ¢(b).

Hence, we always have p(a) > ¢(b). Also, D(YF<,) > 1 as ¢ is nontrivial for r > 2.
Therefore, D(YF<,) = 2. O

We compute the distinguishing chromatic number of YF., as well.
Proposition 6.2. Ifr > 2, then xp(YF<,) =71+ 2.

Proof. Color YF<, by rank and color the string 2 with color r + 1. By the argument in
Proposition , the coloring is distinguishing and proper. Therefore, xp(YF<,) < r + 2.

Since h(YF<,) = r, we have xp(YF<,) > r+ 1. Suppose for the sake of contradiction that
xp(YF<,) = r + 1. We claim that any two elements of the same rank must be the same
color. Call two elements a and b of rank s equivalent if there exists a chain cg,cy,...,cs_1
such that a > c¢,_1 and b > c¢,_1. Notice it suffices to show the existence of an element c,_; of
rank s — 1 that is covered by both a and b.

We claim by induction on s that equivalent elements a and b of rank s are colored the same.

Our base case is s = r. Note a and b cannot have the same colors as any of ¢y, c1,...,cs_1, SO
there is only one color left for both a and b. Hence, they are the same color. For the inductive
step, ranks s+ 1,...,r eliminate r — s colors for a and b. On the other hand, cg, ¢y, ..., cs_1

eliminate s colors for a and b so there is only one color for both a and b.

Consider a string a with at least two ones. Remove the leftmost 1 of a to form string s.
Then, turn the leftmost 1 of s into a 2, forming string b. We know a > s and b > s so a and
b are equivalent. Call the operation merging.

Next, consider a string a with at least one 1. Remove the leftmost 1 from a to form string
s. Then, let b = 1s. Notice a and b are equivalent. Call the operation from a to b shifting.

Consider rank s. If s is even, there is always an even number of ones. Hence, repeated
merging allows us to turn any string of rank s into a string of twos of length 5. All strings of
rank s are equivalent to this string, so all strings of rank s have the same color. If s is odd,
repeated merging allows us to turn any string of rank s into a string of twos with a 1 inserted
into it. Then, shifting allows us to move the 1 to the left of the string. We have formed a
string starting with 1 and followed by a string of length 5;21 consisting of twos. Hence, all
strings of rank s have the same color. Thus, the only coloring with r 4+ 1 colors is a coloring
by rank. Then, the automorphism from Proposition [6.1| preserves colors, a contradiction. [
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