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Abstract. In 2021, Collins and Trenk introduced the distinguishing number and distin-
guishing chromatic number of posets as analogs for the distinguishing (chromatic) number of
graphs. A coloring c of a poset P is distinguishing if there are no nontrivial automorphisms of
P preserving c. The distinguishing number D(P ) is the minimum number of colors in a dis-
tinguishing coloring. The distinguishing chromatic number χD(P ) is the minimum number
of colors in a proper distinguishing coloring. We present the bound D(L) ≤ |QL|−h(L)+2,
where L is a lattice with join-irreducible set QL and height h(L). For distributive lattices,
Collins and Trenk showed that χD(L) ≤ |QL|+χD(QL)−1 when χD(QL) ≥ 3. We improve
the bound to |QL| + k, where k ≤ 3 is determined by QL. Our bound is sharp for boolean
lattices. We also establish bounds on the distinguishing number of graded lattices via the mo-
tion lemma, and we compute the distinguishing (chromatic) number of the Young-Fibonacci
lattice.

1. Introduction

Albertson and Collins [1] defined distinguishing colorings and the distinguishing number
of graphs. A vertex coloring of a graph G is distinguishing if the only automorphism of the
graph that preserves colors is the identity. The distinguishing number D(G) of a graph G
is the minimum number of colors in any distinguishing coloring of G. Collins and Trenk [9]
introduced the distinguishing chromatic number χD(G) of a graph G, which is the minimum
number of colors in any distinguishing and proper coloring of G, where a coloring is proper
if no two adjacent vertices are the same color.

The distinguishing (chromatic) number of graphs has been studied extensively. For exam-
ple, the distinguishing number of the hypercube [4], trees and forests [5], and the cartesian
product of graphs [12] have been calculated. Furthermore, Collins, Hovey, and Trenk [8]
bounded the distinguishing chromatic number of graph G by χ(G) and Aut(G), and Cavers
and Seyffarth [6] characterized graphs with large distinguishing chromatic numbers.

A natural extension then is to define the distinguishing (chromatic) number of a poset,
which was done by Collins and Trenk [10]. A coloring of a poset is distinguishing if the only
automorphism of the poset that preserves the coloring is the identity. The distinguishing
number D(P ) of a poset P is the minimum number of colors in any distinguishing coloring
of P . Furthermore, a coloring is proper if no two comparable elements are the same color.
The distinguishing chromatic number χD(P ) of a poset P is the minimum number of colors
in a proper distinguishing coloring of P .

The comparability graph GP of poset P has elements of P as vertices and edges between
two elements if and only if those elements are comparable. Comparing poset P to GP , we
have D(P ) ≤ D(GP ) and χD(P ) ≤ χD(GP ). However, Collins and Trenk [10, Proposition
22] demonstrated that D(GP )−D(P ) and χD(GP )−χD(P ) can be arbitrarily large. Hence,
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the ordering of posets alters the number of colors needed to break symmetries, and the
distinguishing (chromatic) number of posets merits independent study.

Posets are a subset of directed graphs, and many results for the distinguishing (chromatic)
number of graphs also hold for posets. For example, Choi [7] established analogues for posets
for the bounds presented by Albertson and Collins [1] and Collins and Trenk [9].

We extend the work of Collins and Trenk [10] and Choi [7]. In Section 2, we formally
define the distinguishing (chromatic) number and present elementary bounds. In Section 3,
we establish a bound for D(P ) based on Aut(P ), which is sharper than previous bounds by
up to a factor of h(P ). In Section 4, we improve the bounds for the distinguishing chromatic
number for distributive lattices. Our bound is sharp for boolean lattices. We also present
bounds on the distinguishing (chromatic) number for arbitrary lattices. In Section 5, we
establish a bound on the distinguishing number for graded lattices via the motion lemma.
In Section 6, we compute the distinguishing (chromatic) number of the Young-Fibonacci
lattice.

2. Preliminaries

2.1. Posets. A poset P = (S,⪯) is defined by a ground set of elements S and a reflexive,
antisymmetric, transitive order ⪯ between the elements. We assume S is finite. An auto-
morphism φ of P is a bijection on S preserving ⪯. For elements {s, t} ⊆ S, we write s ≺ t
if s ⪯ t and s ̸= t. If s ⪯ t or t ⪯ s, then s and t are comparable. Otherwise, s and t are
incomparable. If s ≺ t and there exists no element r ∈ S such that s ≺ r ≺ t, then t covers
s and we write s⋖ t. The comparability graph of poset P , denoted by GP , is the graph with
vertex set S and edges drawn between any two comparable elements. The Hasse diagram of
a poset P is a graph with vertex set S and edges drawn between {a, b} ⊆ S if a⋗ b or a⋖ b.
Furthermore, a is drawn with a higher y coordinate than b if a ⪰ b.

For an element s of poset P , define deg↑(s) as the number of elements that cover s and
define deg↓(s) as the number of elements that s covers.
A chain of length h−1 of a poset is a set of h pairwise comparable elements. An antichain

of width w is a set of w pairwise incomparable elements. Let the height h(P ) be the length
of the longest chain in P and let the width w(P ) be the width of the longest antichain.

An element s ∈ S is maximal if there exists no element t ∈ S such that s ≺ t. An element
s ∈ S is minimal if there exists no element t ∈ S such that s ≻ t. Let max(P ) and min(P )
denote the set of maximal and minimal elements for P , respectively.

A poset P is graded if all maximal chains have the same length. Each graded poset has a
rank function ρ : S → {0, 1, . . . , h} which maps minimal elements to 0 and satisfies ρ(t) =
ρ(s) + 1 if t⋗ s. Even if a poset P is not graded, the order of P allows us to assign indices
to elements of P . Choi [7, Theorem 2.4] provides the following indexing.

Lemma 2.1 (Choi [7]). For each poset P = (S,⪯), there exists an index i(e) : S →
{1, 2, . . . , h(P ) + 1} which satisfies the following conditions.

(i) The index is preserved under automorphism.
(ii) Distinct elements of the same index are incomparable.
(iii) If {e1, e2} ⊆ S are two comparable elements satisfying i(e1) < i(e2), then e1 ⪰ e2.

2.2. Lattices. Let P = (S,⪯) be a poset. The meet of two elements {a, b} ⊆ S, denoted
by a ∧ b, is the unique maximal element among those less than or equal to both a and b, if
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such an element exists. The join of two elements {a, b} ⊆ S, denoted by a∨ b, is the unique
minimal element among those greater than or equal to both a and b.

Poset P = (S,⪯) is ameet semi-lattice if the meet exists for all pairs of elements {a, b} ⊆ S.
Similarly, poset P is a join semi-lattice if the join exists for all pairs of elements {a, b} ⊆ S.
Poset P is a lattice if it is both a meet and join semi-lattice. A lattice L = (S,⪯) is distributive
if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) and (a∨ b)∧ c = (a∧ c)∨ (b∧ c) for all triplets {a, b, c} ⊆ S.

An element of a lattice L with only one downward edge in the Hasse diagram of L is
join-irreducible. Let QL denote the set of join-irreducible elements of lattice L. The following
lemma shows that every element of L can be represented as the join of some subset of QL.

Lemma 2.2 (Davey and Priestley [11, Proposition 2.45]). If L is a finite lattice and a ∈ L,
then

a =
∨

{x ∈ QL | x ⪯ a}.

For a ∈ L define J(a) = {x ∈ QL | x ⪯ a} as the join-irreducible rank of a. For a poset
P = (S,⪯) and subset a T of S, let down(T ) = {s ∈ S | s ⪯ t for some t ∈ T}. Define
J(P ) as the lattice with ground set {down(T ) | T ⊆ S} and ordering relation ⊆. Birkhoff [3,
Theorem 3] showed that distributive lattices can be represented by downsets.

Theorem 2.3 (Birkhoff [3, Theorem 3]). If L is a distributive lattice, then L ∼= J(QL).

We define two well-studied lattices, Bn and Ln. The boolean lattice Bn has ground set
P({1, 2, . . . , n}) and is ordered by inclusion. The boolean lattice B3 is shown in Figure 1.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 1. The boolean lattice B3.

The divisibility lattice Ln has ground set as the divisors of n and is ordered by divisibility.
The divisibility lattice L12 is shown in Figure 2.

1

2 3

64

12

Figure 2. The divisibility lattice L12.

Boolean lattices are isomorphic to divisibility lattices of products of distinct primes.
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2.3. The Distinguishing Number of Posets. Collins and Trenk [10] label a coloring c
of a poset P = (S,⪯) as distinguishing if no nontrivial automorphism of P preserves c.
The distinguishing number of P , denoted by D(P ), is the smallest number of colors in any
distinguishing coloring of P . An element of P is pinned by a coloring if all automorphisms
preserving colors fix the element.

Collins and Trenk [10] noted that D(P ) ≤ D(GP ), but that D(GP )/D(P ) can be arbi-
trarily large. For example, D(P ) = 1 and D(GP ) = k for a chain of length k − 1.

Albertson and Collins [1, Corollary 1.1] established a bound for D(G) in terms of Aut(G)
for graphs G. Choi [7, Theorem 2.2] presented an analogous result for posets.

Theorem 2.4 (Choi [7, Theorem 2.2]). If P is a poset with automorphism group Aut(P ),
then D(P ) ≤ 1 + ⌊log2 |Aut(P )|⌋.

By coloring according to index, we can bound the distinguishing number by the width of
a poset.

Theorem 2.5. If P = (S,⪯) is a poset, then D(P ) ≤ w(P ).

Proof. Assign indices to elements of S via Lemma 2.1. For each index, assign distinct colors
to elements with that index so that no automorphism preserving colors can map one element
of a given index to another element of that index. Automorphisms must preserve indices, so
the coloring is distinguishing. Since indices form antichains, the coloring uses at most w(P )
colors. Hence, D(P ) ≤ w(P ). □

As we add more comparison relations to a poset, the distinguishing number tends to
decrease. For example, an antichain has large distinguishing number while a chain has dis-
tinguishing number one. Similar intuition does not hold for graphs as D(Kn) = n. Define

ρ(P ) = |E(GP )|
(|S|

2 )
as the comparison density of a poset P . The comparison density is the ana-

logue of edge density for graphs. The following bound quantifies the heuristic that adding
more comparisons decreases the distinguishing number of a poset.

Theorem 2.6. If P = (S,⪯) is a poset, then

D(P ) ≤ |S|

√
1− ρ · |S| − 1

|S|
.

Proof. Assign indices to elements of S via Lemma 2.1. Let w1, w2, . . . , wh(P )+1 be the number
of elements of each index. Since |E(GP )| ≤

∑
1≤i<j≤h(P )+1 wiwj, we have

D(P )2 ≤ (max
i

wi)
2 ≤

h(P )+1∑
i=1

w2
i =

h(P )+1∑
i=1

wi

2

− 2

 ∑
1≤i<j≤h(P )+1

wiwj

.

Hence, D(P ) is at most√
|S|2 − 2|E(GP )| = |S|

√
1− |E(GP )|

|S|2
2

= |S|

√
1− ρ · |S| − 1

|S|
,

as desired. □

Remark 2.7. Theorem 2.6 does not have any nontrivial equality cases, and does not approx-
imate D(P ) well. For example, our bound yields D(B3) ≤ 5.1 when D(B3) = 2.
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2.4. The Distinguishing Chromatic Number of Posets. The distinguishing chromatic
number χD(P ) of poset P is the least number of colors needed for a proper distinguishing
coloring of P . Choi [7, Proposition 2.3] observed that the ratio χD(GP )/χD(P ) can be arbi-
trarily large. However, Choi [7, Theorem 2.4] showed that χD(GP ) is bounded as a function
of χD(P ).

Theorem 2.8 (Choi [7, Theorem 2.4]). If P = (S,⪯) is a poset, χD(GP ) ≤ χD(P )2.

Theorem 2.8 also establishes a lower bound on χD(P ). On the other hand, Choi [7, Propo-
sition 2.5] shows that there are no meaningful upper bounds on χD(P ) in terms of |S|.

Proposition 2.9 (Choi [7, Proposition 2.5]). Given any ground set S and constant c satis-
fying 2 ≤ c ≤ |S|, there exists a poset P = (S,⪯) such that χD(P ) = c.

3. From the Automorphism Group of the Poset

Albertson and Collins [1] established bounds on the distinguishing number of graphs based
on the automorphism group of graphs. In this section, we refine Theorem 2.4 by proving
similar bounds for posets. Theorem 2.4 does not consider the structure of posets beyond the
automorphism group. For example, the poset of n disjoint chains of the same length and the
poset of n points have the same automorphism group Sn. Yet the former poset has a smaller
distinguishing number than the latter poset.

The structure of posets allows us to strengthen Theorem 2.4. Partition P = (S,⪯) into
indices as in Lemma 2.1, which partitions S into indices Pi for i satisfying 1 ≤ i ≤ h(P )+ 1.
For 1 ≤ i ≤ h(P ), let φi : Aut(P ) → Aut(Pi) map g ∈ Aut(P ) to g|Pi

. Note φi is well-defined
as gPi = Pi. Let k(P ) denote the number of values for which φi is faithful. The following
proof improves Theorem 2.4 by extending the coloring argument of Albertson and Collins
[1, Theorem 1] and Collins, Hovey, and Trenk [8, Theorem 4.3].

Theorem 3.1. If P is a poset with k(P ) ≥ 1, then

D(P ) ≤ 1 +

⌈
log2 |Aut(P )|

k(P )

⌉
.

Proof. Let G = Aut(P ). Without loss of generality, suppose φi for i satisfying 1 ≤ i ≤ k are
faithful. We write k(P ) as k. Let t =

⌈
N
k

⌉
, where N is the sum of the exponents in the prime

factorization of |G|. We inductively define colorings ci,j for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ t.
Let Gi,j be the subgroup of G that preserves ci,j. If Gi,j is trivial for any i and j, the result
follows. Henceforth, assume that Gi,j is nontrivial for all i and j. Let Ni,j be the sum of the
exponents in the prime factorization of |Gi,j|.

We claim by induction that for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ t, there exists a coloring ci,j
such that Ni,j ≤ N − it − j. For the base case i = 0 and j = 0, define c0,0 as coloring all
vertices with color 0, which yields G0,0 = G.

We first define ci,j+1 from ci,j for 0 ≤ i ≤ k− 1 and 0 ≤ j ≤ t− 1. Since we assume Gi,j is
not trivial, there exists g ∈ Gi,j that is not the identity. Since φi is faithful, the automorphism
φi(g) is not the identity. Therefore, there exists x ∈ Pi such that φi(g)x ̸= x. Note that Gi,j

preserves ci,j and that ci,j uses each color at most once for each Pi. Thus, all points colored by
ci,j are fixed, so x is not already colored. We define ci,j+1 to be the coloring ci,j with x colored
with color j + 1. Then, Gi,j+1 = {g ∈ Gi,j | φi(g) ∈ Stab(x)}. Notice Gi,j+1 is a subgroup of
Gi,j. Since g /∈ Gi,j+1, we have Gi,j+1 < Gi,j, so Ni,j+1 ≤ Ni,j − 1 ≤ N − it− (j + 1).
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We now define ci+1,0 from ci,t for 0 ≤ i ≤ k − 2. Since Gi,t is a nontrivial subgroup of G
and φi+1 is faithful, there must exist g ∈ Gi,t such that φi+1(g) is not the identity. Then, an
analogous argument to the previous paragraph yields Ni+1,0 ≤ Ni,t − 1 ≤ N − (i+ 1)t.

Our inductive step is complete, and we haveNk−1,t ≤ N−(k−1)t−t ≤ 0, soGk−1,t is trivial.
Color all uncolored elements with a new color. We use colors 1, 2, . . . , t for each index, and c0,0

uses color 0. Hence, we have t+1 total colors, and D(P ) ≤ 1+
⌈
N
k

⌉
≤ 1+

⌈
log2 |Aut(P )|

k

⌉
. □

We return to the question that motivated our result. Let P1 be the poset consisting of
n chains of length n − 1 and let P2 be the poset consisting of an antichain of width n.
The bound given by Theorem 2.4 yields the upper bound of 1 + log2(n!) ∈ O(n log n) for
both D(P1) = 2 and D(P2) = n. Although Theorem 3.1 does not improve Theorem 2.4
for Aut(P2), our bound does give a better estimate for Aut(P1). For each index of P1, the
automorphism subgroup induced by elements of Aut(P1) is Sn

∼= Aut(P1). Hence, every

index is faithful, so Theorem 3.1 gives D(P1) ≤ 1 +
⌈
log2(n!)

n

⌉
∈ O(log n).

Theorem 3.1 also provides a better estimate for D(Bn). Since Aut(Bn) ∼= Sn, the bound
from Theorem 2.4 is in O(n log n). Index each element of Bn with its cardinality and define
φi as in Theorem 3.1. The automorphisms of Bn can be represented as permutations of
{1, 2, . . . , n}. Each permutation induces an automorphism on P(Bn). Consider g ∈ kerφi.
If 1 ≤ i ≤ n

2
, consider {1, 2, . . . , i} and {1, i + 1, . . . , 2i − 1}. Both must map to themselves

under φi(g), so g1 = 1. Similarly, g fixes all the elements of {1, 2, . . . , n}, so g is the identity.
If n

2
< i ≤ n− 1, consider {2, 3, . . . , i} and {n, n− 1, . . . , n− i+ 1}, and the same argument

suffices. Hence, φi is faithful for all 1 ≤ i ≤ n − 1, so k(P ) = n − 1. Therefore, D(Bn) ∈
O
(

log2(n!)
n−1

)
= O(log n).

The bound is weaker than the true value of D(Bn) = 2, but our bound illustrates how
considering the structure of a poset yields stronger bounds based on the automorphism group
than Theorem 2.4.

4. Lattices

Collins and Trenk [10] characterize the distinguishing number of distributive lattices and
provide a bound on the distinguishing chromatic number of distributive lattices. In this
section, we establish a bound for the distinguishing (chromatic) number of general lattices
and strengthen the bound for the distinguishing chromatic number of distributive lattices.
Collins and Trenk [10, Theorem 14] showed that distributive lattices can be distinguished
with two colors.

Theorem 4.1 (Collins and Trenk [10, Theorem 14]). If L is a distributive lattice, D(L) ≤ 2.

However, general lattices can have arbitrarily large distinguishing numbers. For example,
consider the lattice Mn (Figure 3), which consists of an antichain of size n bounded by 0̂ and
1̂. If n ≥ 3, then D(Mn) = n.
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1̂

• • . . . • •

0̂

Figure 3. The lattice Mn.

We establish a bound for D(L) that holds for arbitrary lattices L.

Theorem 4.2. If L is a lattice, then D(L) ≤ |QL| − h(L) + 2.

Proof. Let a1 ≺ a2 ≺ · · · ≺ ah(L)+1 be a maximal chain of L. Pin all elements of the chain
by coloring the chain with color 1. Notice J(ai) maps to itself under any automorphism. We
pin all elements of J(ai) for i ≥ 1 via induction. The base case is clear as J(a1) is empty. For
the inductive step, we know J(ai) is pinned, and using colors 2 through |J(ai+1) \ J(ai)|+ 1
can pin the rest of J(ai+1). Hence, the induction is complete and J(ah(L)+1) = QL is pinned.
PinningQL suffices to break all nontrivial automorphisms by Lemma 2.2. Color the remaining
elements with color 2. We know

h(L)∑
i=1

|J(ai+1) \ J(ai)| = |QL|,

and |J(ai+1) \ J(ai)| ≥ 1 for all i satisfying 1 ≤ i ≤ h(L), so

max
1≤i≤h(L)

|J(ai+1) \ J(ai)| ≤ |QL| − (h(L)− 1).

Hence, the coloring uses at most |QL| − h(L) + 2 total colors. □

Remark 4.3. Theorem 4.2 is sharp for Mn.

Since |QL| = h(L) for distributive lattices by Birkhoff’s Theorem [3, Theorem 3], Theo-
rem 4.1 follows from Theorem 4.2. We also establish an upper bound on χD(L) for lattices
L. Our proof is similar to the argument given by Collins and Trenk [10, Lemma 25].

Theorem 4.4. If L is a join semi-lattice with least element 0̂, then χD(L) ≤ h(L)+χD(QL).

Proof. Index L by Lemma 2.1. For 1 ≤ i ≤ h(L) + 1, color the elements with index i with
color i, which is a proper coloring. Assign a distinguishing chromatic coloring to QL by
recoloring QL with colors h(L) + 1 to h(L) + χD(QL).
Since L has a least element 0̂, there is only one element with index h(L) + 1. We proceed

by induction to show that elements of index j for 1 ≤ j ≤ h(L) are pinned. For the base
case, let e be an element of L with index h(L). If e covers at least two elements, it must cover
an element d ̸= 0̂. Then, i(0̂) > i(d) > h(L), so i(0̂) ≥ h(L) + 2, a contradiction. Hence, the
elements of index h(L) are a subset of QL and are hence pinned. For the inductive step, let a
be an element of index j. If a ∈ QL, then a is pinned, so assume there exist distinct elements
b and c such that a ⋗ b and a ⋗ c and a = b ∨ c. Then, min{i(b), i(c)} > i(a) = j, so b and
c are pinned. Since a is the unique join of b and c, it is also pinned. Hence, the induction is
complete, and there exists a proper distinguishing coloring using h(L) + χD(QL) colors. □
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Since a lattice is also a join semi-lattice, we can establish an upper bound for the distin-
guishing chromatic number of lattices.

Corollary 4.5. If L is a lattice, then χD(L) ≤ h(L) + χD(QL).

We discuss the optimality of Corollary 4.5. Let f(x, y) be a polynomial such that χD(L) ≤
f(h(L), χD(QL)). The lattice Mn in Figure 3 has h(L) = 2, χD(QL) = n, and χD(L) = n+2.
Therefore, degy(f) ≥ 1. Consider the distributive lattice L ∼= J(QL), where QL consists of
the disjoint union of k! chains of length k − 1 as shown in Figure 4.

•
•

...

•

•
•

...

•

. . .

•
•

...

•

Figure 4. Join-irreducible elements QL consisting of k! chains of length k − 1.

Note that χD(QL) = k as there are k! colorings of a chain of length k − 1 with k colors.

Since L ∼= J(QL) is the divisibility lattice of n =
∏k!

i=1 p
k
i , we have h(L) = k · k! and

χD(L) = k · k!+ 2 for k ≥ 2, as calculated by Choi [7, Theorem 6.5]. Therefore, degx(f) ≥ 1.
Hence, for polynomial bounds on h(L) and χD(QL), Corollary 4.5 is optimal up to constants.
Distributive lattices have more structure than arbitrary lattices, so we can establish

sharper bounds for the distinguishing (chromatic) number of distributive lattices.

Lemma 4.6 (Collins and Trenk [10, Lemma 25]). If L is a distributive lattice, then χD(L) ≤
|QL|+ χD(QL).

Theorem 4.7 (Collins and Trenk [10, Theorem 26]). If L is a distributive lattice such that
χD(QL) ≥ 3, then χD(L) ≤ |QL|+ χD(QL)− 1.

We know that χD(L)−|QL| = χD(L)−h(L) ≥ 0. Both of the results presented by Collins
and Trenk [10, Lemma 25, Theorem 26] bound χD(L)−|QL| from above in terms of χD(QL).
We bound χD(L)− |QL| from above by a constant. The coloring for m ≥ 6 in the following
proof is the same coloring Choi [7, Theorem 6.2] defined to calculate χD(Bn).

Theorem 4.8. If L is a distributive lattice, then χD(L) ≤ |QL|+ k, where

k =


1 if |max(QL)| = 1,

2 if |max(QL)| ̸= 1, 4,

3 if |max(QL)| = 4.

Proof. By Lemma 2.2, it suffices to pin the elements ofQL. Furthermore, elements ofQL cover
at most one element, so pinning the elements of max(QL) pins all of QL. Write max(QL) =
{1, 2, . . . ,m}. By Birkhoff’s Theorem, we work with J(QL). Color elements of J(QL) by rank
using colors 1 through |QL|+ 1. Let Q′

L = QL \max(QL) and J ′ = {S ∈ J(QL) | Q′
L ⊆ S}.

Label each element S of J ′ with S ′ = S ∩max(QL). Each subset of {1, 2, . . . ,m} is assigned
to exactly one set as S = S ′ ⊔Q′

L ⊆ J ′.
For m = 1, there is one possible lattice L with χD(L) = 2 ≤ |QL|+ 1.
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Form = 2, recolor one of the elements of max(QL) with color |QL|+2, which fixes max(QL)
and therefore QL with |QL|+ 2 colors.
Form = 3, we have χD(QL) ≤ |max(QL)| = 3. If χD(QL) < 3, we have χD(L) ≤ χD(QL)+

|QL| ≤ 2+|QL| by Lemma 4.6. If χD(QL) = 3, we have χD(L) ≤ |QL|+χD(QL)−1 ≤ |QL|+2
by Theorem 4.7.

Similarly, for m = 4, we have χD(QL) ≤ |max(QL)| = 4. If χD(QL) < 3, we have χD(L) ≤
χD(QL)+ |QL| ≤ 2+ |QL| by Lemma 4.6. Otherwise, χD(L) ≤ |QL|+χD(QL)−1 ≤ |QL|+3
by Theorem 4.7.

For m = 5, recolor elements of J ′ labeled with {1, 2}, {1, 4}, {2, 4}, {3, 4}, and {1, 3, 5}
with color |QL| + 2. The integer 1 is the only one in precisely three colored sets, of sizes 2,
2, and 3. The integer 2 is the only one in precisely two colored sets, of sizes 2 and 2. The
integer 3 is the only one in precisely two colored sets, of sizes 2 and 3. The integer 4 is the
only one in precisely three colored sets, of sizes 2, 2, and 2. The integer 5 is the only one in
precisely one colored set, of size 3. The coloring for m = 5 is shown in Figure 5.

∅

{1} {2} {3} {4} {5}

{1,2} {1, 3} {2, 3} {1,4} {2,4} {3,4} {1, 5} {2, 5} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 5} {1,3,5} {2, 3, 5} {1, 4, 5} {2, 4, 5} {3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3, 4, 5}

Figure 5. Coloring of labels of J ′ for m = 5.

For m = 6, the same coloring suffices as fixing 1, 2, 3, 4, and 5 also fixes 6.
For m ≥ 7, recolor elements of J ′ with color |QL|+ 2 as follows.

• Color the set labeled with all odd integers.
• For i = 1, 2, . . . , ⌊m−1

2
⌋, color the set labeled with the ith odd integer and the first i

even integers.

No colored set includes another one. If m ≥ 7, then 1 is the unique integer in precisely two
colored label sets of sizes 2 and ⌊m+1

2
⌋. Hence, 1 is pinned. Then, the odd integers are the

ones in a label set with size ⌊m+1
2

⌋ containing 1, so the odd integers are distinguished from
the even ones. The odd integers can be distinguished from each other by the size of the set
they are in, and the even integers can be distinguished from each other by how many sets
they are in. Hence, all elements of max(QL) are pinned with |QL|+ 2 colors. □

We discuss the sharpness of Theorem 4.8. Choi [7, Theorem 6.2, Theorem 6.5] calculated
χD(Bn) and χD(Ln).
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Theorem 4.9 (Choi [7, Theorem 6.2]). We have that

χD(Bn) =


n+ 1 if n = 1,

n+ 2 if n ̸= 1, 4,

n+ 3 if n = 4.

Theorem 4.10 (Choi [7, Theorem 6.5]). For n = pq11 p
q2
2 . . . pqkk , we have that

χD(Ln) =


h(Ln) + 1 if q1, q2, . . . , qk mutually distinct,

h(Ln) + 3 if n = p1p2p3p4, and

h(Ln) + 2 otherwise

Hence, Theorem 4.8 is sharp for Bn and Theorem 4.8 is sharp for Ln when k > 4 and qi
are not all distinct. We have bounded χD(L)− |QL| by a constant. On the other hand, the
example in Figure 4 shows that we cannot bound χD(L) − χD(QL) or χD(L)/χD(QL) by a
constant.

5. The Motion Lemma

Collins and Trenk [10, Question 6.2] asked whether their bound for the distinguishing
number of distributive lattices could be shown using the motion lemma [15, Theorem 2]. We
prove a bound for the distinguishing number of graded lattices via the motion lemma.

The motion m(φ) of an automorphism φ of a graph G is the number of vertices of G which
are not fixed by φ. Then, the motion lemma yields the following bound on D(G).

Lemma 5.1 (Russell and Sundaram [15, Theorem 2]). If (ln d)minφ∈Aut(G)\{id}m(φ) >
ln |Aut(G)|, then D(G) ≤ d.

The motion lemma also holds for posets P if we define the motion m(φ) of an automor-
phism φ ∈ Aut(P ) as the number of elements of P which are not fixed by φ.

Lemma 5.2. If (ln d)minφ∈Aut(P )\{id}m(φ) > ln |Aut(P )|, then D(P ) ≤ d.

We establish a bound on graded lattices via the motion lemma for posets.

Theorem 5.3. Let L be a graded lattice of height h. Suppose that for every element e with
1 ≤ ρ(e) ≤ h − 2, we have deg↑(e) ≥ 2, and for every element e with 2 ≤ ρ(e) ≤ h − 1, we

have deg↓(e) ≥ 2. Then, if |Aut(L)| < d2(h−1), we have D(L) ≤ d.

Proof. Consider a nontrivial automorphism φ of L. Suppose there exist distinct elements a
and b of rank r such that φ(a) = b. If r ≤ h− 2, there exist distinct elements a1 and a2 that
cover a. Both φ(a1) and φ(a2) cover b. If both a1 and a2 are fixed under φ, then a1 and a2
cover both a and b. Then, a ∨ b would not exist, a contradiction. Hence, there are elements
of rank r + 1 that are not fixed. Therefore, if φ does not fix elements of rank r ≤ h − 2, it
also does not fix elements of rank r + 1. Similarly, if φ does not fix elements of rank r ≥ 2,
it also does not fix elements of rank r − 1.

Notice there must be an element of rank 1 ≤ s ≤ h− 1 which is not fixed by φ. Then, by
induction, every rank 1 ≤ t ≤ h− 1 must have an element which is not fixed by φ. Thus, we
have m(φ) ≥ 2(h− 1) as each element which is not fixed has a distinct image which is also
not fixed. Our result follows from the motion lemma for posets. □
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Remark 5.4. If n ≥ 4, then Bn satisfies the preconditions of Theorem 5.3. Our bound yields

D(Bn) ≤ ln(n!)
2(n−1)

∈ O(lnn). Hence, Theorem 5.3 has the same complexity as Theorem 3.1 for

Bn.

6. Special Non-Distributive Lattices

Collins and Trenk [10] established bounds for the distinguishing number and distinguish-
ing chromatic number of distributive lattices. In Section 4, we computed bounds for the
distinguishing (chromatic) number of general lattices. In this section, we compute the dis-
tinguishing (chromatic) number of special non-distributive lattices.

The Tamari Lattice Tn of order n consists of ways to parenthesize n + 1 factors, with
ordering given by the right associativity rule. Bennett and Birkhoff [2, Corollary 2] establishes
that Tn has no nontrivial automorphisms, so D(Tn) = 1.

The Young-Fibonacci lattice YF consists of finite words with alphabet {1, 2}. An element
a of YF is covered by an element b if b is obtained from a by inserting a 1 to the left of the
leftmost 1 in a or changing the leftmost 1 of a into a 2. Let YF≤r be the poset consisting of
the elements of YF with rank at most r. We compute the distinguishing number of YF≤r.

Proposition 6.1. If r ≥ 2, then D(YF≤r) = 2.

Proof. We claim that the join-irreducibles of YF≤r are 2 and the strings of the form 1s. The
only string that a string of the form 1s can cover is s. If a string is of the form 21s (where
s may be the empty string), then the string covers 11s and 2s. If a string is of the form
22s (where s may be the empty string), then the string covers 12s and 21s. Hence, strings
starting with 2 that have length at least two cannot be join-irreducibles.

We claim that no element except 1 is covered by at least two join-irreducibles. Consider
a join-irreducible 1s which covers only s. If s is of the form 1a, then s is covered by only
11a = 1s and 2s, the latter of which is not a join-irreducible. If s is of the form 2a, then
s is covered by 12a = 1s and elements that start with 2. Hence, s is never covered by
join-irreducibles other than 1s, as desired.

Now, we can show D(YF≤r) ≤ 2 for r ≥ 2. Consider the coloring in Figure 6, which colors
2 with color 1 and the rest of the elements with color 2.

ε

1

2 11

12 21 111

112 22 121 211 1111

Figure 6. A distinguishing coloring of YF≤4.

We proceed by induction to show that our coloring is distinguishing for r ≥ 2. The base
case is clear. For the inductive step, all elements of rank at most r − 1 are pinned by the
inductive hypothesis. All elements of rank r which are not join-irreducibles are pinned by



12 AIDEN JEONG

Lemma 2.2. Furthermore, join-irreducibles of rank r are pinned as we showed that no two
join-irreducibles can cover the same element. Hence, our induction is complete.

Let φ map strings of the form s11 to s2, strings of the form s2 to s11, and strings of the
form s21 to themselves. We claim that φ is a nontrivial automorphism of YF≤r. Suppose
that a and b are elements of YF≤r such that a⋗ b. We have three cases.

If b is of the form s2, then s is a string of twos and a = s21 (we insert a 1 at the end,
which requires all previous digits to be 2) or a is a string of the form t2, where t⋗ s. In the
former subcase, φ(a) = s21⋗ s11 = φ(b). In the latter subcase, φ(a) = t11⋗ s11 = φ(b).

If b is of the form s11, then s is a string of twos and a = s21 or a = t11, where t ⋗ s. In
the former subcase, φ(a) = s21⋗ s2 = φ(b). In the latter subcase, φ(a) = t2⋗ s2 = φ(b).

If b is of the form s21, then s is a string of twos and a = s22 or s is a string of twos and
a = s211 or a = t21, where t ⋗ s. In the first subcase, we have φ(a) = s211 ⋗ s21 = φ(b).
In the second subcase, we have φ(a) = s22 ⋗ s21 = φ(b). In the third subcase, we have
φ(a) = t21⋗ s21 = φ(b).

Hence, we always have φ(a) ⋗ φ(b). Also, D(YF≤r) > 1 as φ is nontrivial for r ≥ 2.
Therefore, D(YF≤r) = 2. □

We compute the distinguishing chromatic number of YF≤r as well.

Proposition 6.2. If r ≥ 2, then χD(YF≤r) = r + 2.

Proof. Color YF≤r by rank and color the string 2 with color r + 1. By the argument in
Proposition 6.1, the coloring is distinguishing and proper. Therefore, χD(YF≤r) ≤ r + 2.

Since h(YF≤r) = r, we have χD(YF≤r) ≥ r+1. Suppose for the sake of contradiction that
χD(YF≤r) = r + 1. We claim that any two elements of the same rank must be the same
color. Call two elements a and b of rank s equivalent if there exists a chain c0, c1, . . . , cs−1

such that a⋗ cs−1 and b⋗ cs−1. Notice it suffices to show the existence of an element cs−1 of
rank s− 1 that is covered by both a and b.

We claim by induction on s that equivalent elements a and b of rank s are colored the same.
Our base case is s = r. Note a and b cannot have the same colors as any of c0, c1, . . . , cs−1, so
there is only one color left for both a and b. Hence, they are the same color. For the inductive
step, ranks s+ 1, . . . , r eliminate r− s colors for a and b. On the other hand, c0, c1, . . . , cs−1

eliminate s colors for a and b so there is only one color for both a and b.
Consider a string a with at least two ones. Remove the leftmost 1 of a to form string s.

Then, turn the leftmost 1 of s into a 2, forming string b. We know a⋗ s and b⋗ s so a and
b are equivalent. Call the operation merging.

Next, consider a string a with at least one 1. Remove the leftmost 1 from a to form string
s. Then, let b = 1s. Notice a and b are equivalent. Call the operation from a to b shifting.

Consider rank s. If s is even, there is always an even number of ones. Hence, repeated
merging allows us to turn any string of rank s into a string of twos of length s

2
. All strings of

rank s are equivalent to this string, so all strings of rank s have the same color. If s is odd,
repeated merging allows us to turn any string of rank s into a string of twos with a 1 inserted
into it. Then, shifting allows us to move the 1 to the left of the string. We have formed a
string starting with 1 and followed by a string of length s−1

2
consisting of twos. Hence, all

strings of rank s have the same color. Thus, the only coloring with r + 1 colors is a coloring
by rank. Then, the automorphism from Proposition 6.1 preserves colors, a contradiction. □
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