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ABSTRACT. The frictional state of faults plays a fundamental role in earthquake nucle-
ation and recurrence. Laboratory earthquake (“labquake”) experiments provide con-
trolled conditions for investigating stick-slip dynamics, yielding high-resolution data
on shear stress, gouge evolution, and acoustic emissions (AEs). While prior work has
shown that AEs can be used to forecast failure times with machine learning, such
models provide limited physical interpretability and require large datasets. Moreover,
mechanistically discovering the governing equations of labquake systems remains diffi-
cult due to their nonlinear and stochastic nature. In contrast, data-driven inference of
governing equations offers a transparent and flexible pathway to uncover the physical
rules behind fault stress evolution. Here, we introduce a novel stochastic Bayesian
inference framework to systematically analyze labquake frictional dynamics. We infer
governing stochastic differential equations (SDEs) with inhomogeneous Poisson pro-
cesses, incorporating both microslip and major slip failures. Our results reveal that the
growth function for fault stress follows a nonlinear hyperbolic sine relation with respect
to the frictional state, inferred using the ADAM-SINDy framework, which combines
sparse nonlinear model discovery with Adam optimization. This approach provides
physically interpretable governing equations, bridging the gap between phenomeno-
logical labquake data and theoretical friction laws. More broadly, our methodology
demonstrates how stochastic inference can mechanistically uncover governing equa-
tions in complex natural systems such as landslides and fracture mechanics.
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1. INTRODUCTION

Earthquakes are the result of a sudden release of accumulated stress along a geological
fault. Friction generated by the interactions between rock granules in a fault dictate
the nucleation, propagation, and cessation of seismic events. Thus, understanding the
gradual build and release of frictional stress in faults is instrumental for earthquake
prediction. However, directly observing fault friction and its temporal evolution remains
challenging due to a lack of data. Although large-scale computer simulations based on
plate tectonics can provide estimates of fault stress and frictional state, these estimates
often fail to capture the nuances of tectonic phenomena [50, 54]. Until recently, even
state-of-the-art computer models were unable to accurately predict actual fault behavior
[34, 53].

Due to the difficulties associated with gathering data from real-world seismic events,
laboratory earthquake (“labquake”) experiments have been explored as a more feasible
alternative [19, 24, 28, 35, 36, 37, 47|, leading to significant progress in our under-
standing of frictional processes [3, 8, 26, 40, 45]. Labquake experiments have emerged
as powerful tools for investigating fault mechanics under controlled conditions. The
stick-slip behavior exhibited by geological faults can be reproduced in a laboratory set-
ting through an apparatus consisting of granular gouge layers, put under a constant
normal load and shear velocity, depicted in Figure 1 (A). These experiments produce
highly detailed time-series data on shear stress, normal stress, gouge layer thickness,
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and shear displacement, as well as acoustic emissions (AEs), which serve as proxies for
microseismic activity within the fault zone [35, 36, 37].

Recent studies have demonstrated the predictive power of AEs in estimating time-to-
failure (TTF) and frictional states of labquakes, achieving high accuracy using machine
learning (ML) models [36, 37]. However, while approaches based on ML models have
advanced predictive capabilities, they provide little insight into the underlying physi-
cal laws behind the evolution of frictional states, black-boxing labquakes. Thus, the
challenge of mathematically modeling fault stress and behavior over time remains open.

We propose the method of modeling labquake frictional states as a nonlinear dy-
namical system. We are motivated by previous literature’s exploration of this method,
applied to a diversity of natural systems, such as DNA sequence evolution [46], bacterial
population growth [1], and cell division [52]. Past algorithms, such as the pioneering
Sparse Identification of Nonlinear Dynamics (SINDy) [9], model dynamical systems with
ordinary differential equations (ODEs) and infer these equations through sparse regres-
sion with a sequential thresholded least-squares approach. Extensions of the SINDy
approach have explored the inference of governing partial differential equations (PDEs)
[38] and ODEs of certain nonlinear forms, such as rational fractions [22].

However, the stochasticity of labquakes, seen in time evolution dynamics’ qualitative
resemblance to a Poisson process [17], means that past SINDy algorithms are unable to
address the intricacies of frictional state evolution. Instead, recent advances in stochas-
tic modeling have introduced inference techniques that enable the direct identification
of governing stochastic differential equations (SDEs) from time-series data [52, 9]. Here,
we propose an approach for labquake analysis using SDEs to describe fault stress evolu-
tion. We employ a novel Bayesian inference-derived probabilistic model based on SDEs;,
combined with an ADAM-SINDy framework to interpret frictional growth, in order to
gain insights on labquake frictional states’ evolution.

2. METHODS

2.1. Labquake Friction Physics. The study of friction laws in rock mechanics and
fault dynamics has a precedent from as far back as the second half of the 20th cen-
tury, with early laboratory experiments providing foundational insights into fault slip
behavior [5, 6, 7, 11, 10, 13, 15, 18, 20, 24, 25, 29, 44, 42, 43, 48, 49].

A major advancement in frictional theory came with the development of rate-and-
state-dependent friction laws, which account for the dependence of frictional strength
on both slip velocity and the evolving state of contact asperities [14, 31, 33, 32, 39, 41].
These laws introduced a state variable, 8, which describes the time-dependent evolution
of friction due to contact aging effects. The general form of the rate-and-state friction
equation is given by the following:

B %4 Voo
(2.1) =+ aln <70)+bln(Dc)’
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where g is the reference friction coefficient, V' is the slip velocity, V; is a reference
velocity, a and b are empirical constants, D, is the characteristic slip distance over which
friction evolves, and # is a governing state variable that grows over time, dictating the
time-evolution behavior of u.

2.2. Stochastic Differential Equations Inference. Of particular interest to us is
the fact that labquakes are characterized by stochasticity [17], which motivates our
modeling of fault behavior with SDEs. We apply a data-driven approach [52] to inferring
SDEs.

A classic SDE with a discrete Poisson process is of the following form:
(22) dSt = g(St)dt — h(St_)de/%<)\t),

where at some time ¢, the state variable has value s;. The deterministic drift function
g(s;), while the jump during Poisson event is modeled by function A(s;_). The Poisson
process 4; is dependent on the Poisson intensity A;, which may vary over time and
can also depend on the state variable s;. More generally speaking, the intensity \;
may differ across scenarios, reflecting different system dynamics. Here, we consider the
intensity to depend on the current state and the state before: Ay = A(sy, s7), where s}
refers to the previous state. In the Poisson process, we consider d.4; = 1 when an event
occurs; otherwise, d.4; = 0.

For the simplest example, we consider the deterministic drift function g(s;) and the
jump function h(s;_) to be linear. Then, the coefficients g; and h; may be found through
a linear regression.

To ensure that Ay = A(s¢, s7) is always positive, we represent In A as the following:

(2.3) In A(sy, s7) = Zwijei(st)ej(s:).

Here, 6; and 60; are orthogonal polynomials constructed using the Gram-Schmidt pro-
cedure [4] and weighted by w;;. We then proceed with maximum likelihood estimation
on w to find the most probable values. In particular, we aim to find P(w|s;), which by
Bayes’ theorem is
P(si|w)P(w)

P(s)
We may use properties of the inhomogeneous Poisson process .4 to find P(s;|w) and
sparse Bayesian inference to estimate P(w). (Details in Appendix, Section 7.1). Ulti-
mately, we may obtain A(s, s;) from Equation 2.3, which informs us of how the Poisson
intensity depends on both the current state and the state before.

Similar to the sequential thresholding least squares method introduced by the original
SINDy paper [9], we sequentially threshold coefficients w to create a set of candidate
models for the original SDE (2.2). After doing so, we may use the Bayesian Information
Criterion (BIC) to select the most parsimonious one. (Details in Appendix, Section 7.1).

P(wls;) =
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2.3. Application of SDE Inference to Labquakes. We adopt the above SDE in-
ference framework and apply it to inferring labquake frictional dynamics. As noted
in prior literature, the frictional state p follows a characteristic stick-slip cycle, where
shear stress accumulates gradually before experiencing abrupt stress releases due to
slip events [36, 37]. In addition, shear microfailures, which we refer to as “microslips,”
often precede major slip events, particularly in experiments with low normal stresses
[19]. Thus, drops in the friction state parameter p exhibit a strong dichotomy between
major (Ap > 0.04) and micro (Ap < 0.04) slip events, as seen in Figure 6 of Appendix,
Section 7.2.

As a result, the basic SDE inference technique, which incorporates only one Poisson
drop process, cannot be generalized to model all laboratory earthquake frictional tra-
jectories. Small precursor slips occur at varying intervals leading up to a major slip
event, implying a structured relationship between minor and major stress drops, which
are evident in Figure 1 (B).

Thus, we introduce a modeling approach that incorporates two separate Poisson
processes with nonlinear memory of past states. Recall that the standard SDE inference
framework aims to infer an equation of the form

dpy = g(p)dt — h(pe—)dA(Ar),
where the frictional coefficient p; evolves under a deterministic function g(u;) and ex-
periences discontinuous stress drops governed by a stochastic Poisson process 4;(\;)
[52]. To extend this method to encompass the effects of small and large faulting, we in-
troduce two distinct rate functions, A™ and A\, corresponding to microslips and major
slip events, respectively. We assume that the governing equation takes the form

dpte = g(pe)dt — K™ (g )d AN — B (e )dA (AT,

where g(j1;) describes the deterministic accumulation of friction while the Poisson-driven
terms represent discrete stress drops due to microslip and major slip events. The event
rates \™ and A\M are history-dependent functions of the past fault state.

We use the experimental trajectories of y; as input data and apply the SDE inference
framework of Section 2.2 to infer the functions g(u), h™ (), KM (pe—), and X™ (puy, 1),
AM (g, pit), where, u; refers to the previous frictional state. These ideas are visually
summarized in Figure 1 (C) and (D). The ADAM-SINDy approach, which we explain
further in Section 3.4, is used to infer g(u;), while the slip functions h™ and h* are
extracted from the empirical distribution of stress drops, categorized into microslip and
major slip events.

For our preliminary analysis, we confine our attention to the case where both A\™
and AM only depend on one-generational predecessor state memory; i.e., the current
frictional state depends only on the frictional state immediately prior to the last major
slip event.

To infer these slip rates, we construct a basis representation using Chebyshev polyno-
mials and apply Gram-Schmidt orthogonalization to generate a reduced basis set. The
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basis representation allows us to express the slip rate functions \™ and A in terms of
an optimal sparse combination of basis functions. The inferred functions are obtained
through a sparse Bayesian optimization (maximum likelihood estimation) procedure,
where an iterative algorithm prunes irrelevant terms to enforce parsimony. This proce-
dure is applied separately for small and large slip events, leading to distinct functional
forms for the two regimes. Once the functions are inferred, the model with the highest
BIC score is chosen as the final inferred equation.

3. RESULTS

We now proceed to outline the results obtained from our attempts to infer the govern-
ing equations that describe the evolution of the frictional state u, as discussed in Section
2.3 and Appendix, Section 7.1. This inference relies on the analysis of shear stress time-
series data collected from controlled laboratory experiments simulating earthquake-like
stick-slip behavior. Specifically, we used data from a set of experiments conducted
under varying normal stress conditions.

For the normal stresses of 4 MPa, 5 MPa, 6 MPa, 7 MPa, and 8 MPa, the shear
stress data were extracted from a single labquake experiment, labeled p2394 from data
repository [23]. These runs simulate fault gouge behavior under relatively low confining
pressures and offer well-resolved stick-slip cycles that include both major and minor
stress drops. The time-series data for these experiments were sampled at intervals of
dt = 0.1s, which provides a relatively coarse but still sufficiently informative view of
the stress evolution, especially at slower slip rates.

For higher normal stresses, specifically 9 MPa, 10 MPa, 11 MPa, and 13 MPa, we
relied on a different set of labquake experiments: p4346, p4347, p4348, and p4350,
respectively. These experiments were conducted under stronger confining loads and, as
expected, exhibited qualitatively different stress-time behavior, including more abrupt
and isolated slip events. The data for these experiments were recorded with a much
finer temporal resolution of dt = 0.001 s, enabling detailed observation of high-frequency
stress fluctuations. This high-resolution sampling is crucial for capturing the sharp
transitions that characterize rapid failure events at high normal stress.

3.1. Data Processing. As established in prior labquake literature, the frictional state
1 tends to follow a distinctive stick-slip trajectory: shear stress accumulates gradually
over time, forming a rising slope, until a sudden release occurs in the form of a stress drop
corresponding to a slip event [36, 37]. These stress drops may be large, corresponding
to full-scale slip events (akin to small earthquakes), or relatively minor, corresponding
to microslip events. Accordingly, the goal of our data processing pipeline was to clean
the raw time-series data and accurately identify the locations of these slip events.

Our first step was denoising the data. We applied a total variation (TV) denoising
algorithm to the full dataset across all normal stress levels. This method is well-suited
to preserving discontinuities (such as those from sudden stress drops) while filtering out
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Figure 1. (A) Visualization of the apparatus used to generate labquakes and collect acoustic emis-
sion (AE) data. The apparatus is comprised of metal sheets and layers of glass beads that generate
friction due to a shear stress and a normal stress. (B) Shear stress trajectory, created with experi-
mental data from Chris Marone’s experiment p2394 [23] at 5 MPa. At low normal stresses (2-8 MPa),
both major slips, denoted in blue, and microslips, in red, are exhibited. At high normal stresses (9-13
MPa), only major slips are exhibited. (C) Dual-process model for labquake friction at low normal
stresses, based on a stochastic differential equation (SDE). Major and microslips arrive according to
two Poisson processes at different rates h™ and h™, respectively. The growth function g is empiri-
cally and theoretically determined to follow a sinh relation, whose coefficients are calculated through
an ADAM-SINDy inference. The Poisson rates AM and A™ are determined through a Bayesian in-
ference. (D) Experimental results from the model for experiment p2394 at 11 MPa, including the
inference for g and A\ and the simulated trajectory of the shear stress.

high-frequency noise. For the low- to moderate-stress experiments (2-8 MPa), which
were drawn from experiment p2394. After denoising, we identified every local maximum
in the shear stress trajectory as the beginning of a slip, with the slip ending at the next
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local minimum. This approach allowed us to capture not only the major drops in pu,
but also the smaller precursory drops that characterize microslip behavior. These small
stress reductions are of particular interest, as prior studies have shown that they may
precede larger events and serve as early indicators of impending failure [19].

In contrast, the data from the high-stress experiments (9-13 MPa) required a different
strategy. The much finer time resolution (dt = 0.001s) in these datasets meant that
standard peak-detection methods could erroneously identify noise or small fluctuations
as slip events. Furthermore, upon visual inspection, we observed that these experiments
did not exhibit microslips; instead, the stress trajectories featured isolated, abrupt, and
distinctly large drops in p corresponding to major failures. Therefore, we modified
our approach for these cases: we first removed all intermediate data points that lay
within a large slip event (i.e., between the onset and termination of a steep drop),
thereby simplifying the stress profile. We then applied an amplitude-based threshold
to eliminate any remaining small drops that might still be detected as peaks due to
numerical fluctuations or rounding artifacts. This ensured that only significantly large,
physically meaningful slips were marked and retained in the dataset.

By tailoring our data processing methods to the properties of each experimental
regime, we were able to cleanly separate buildup phases from slip phases and prepare
the data for stochastic inference using the models described in later sections.

3.2. Results from Inference. Using the stochastic modeling framework outlined in
Section 2.3, we inferred governing equations for labquake friction under a range of
normal stresses. For low to moderate normal stresses (2-8 MPa), we observed a rich
stick-slip behavior with both microslip and major slip events. Thus, we employed a dual-
Poisson stochastic model, with separate intensity functions A™ and A to represent the
occurrence of microslips and major slips, respectively. For higher normal stresses (9-13
MPa), however, microslips were effectively absent, and we used a simplified single-
Poisson model with only AM governing major slip events.

Across all conditions, the growth function g(u,) exhibited a consistent hyperbolic sine
structure, as discussed in Appendix, Section 7.1. The inferred g captured the nonlinear
build-up of friction over time, with growth rates increasing rapidly at higher u, values.

A key challenge arose when inferring the major slip intensity function AM (yu;, u}), par-
ticularly for the 10 MPa case. Using sparse Bayesian inference, we consistently observed
that the inferred A showed no dependency on memory u}, effectively collapsing to a
one-variable function AM (y;). This result was surprising, as physical intuition and prior
studies suggest that the history of fault friction plays a critical role in slip nucleation.

To investigate further, we applied ridge regression to the same Chebyshev-polynomial
basis representation. Unlike the sparsity-driven Bayesian approach, ridge regression
penalizes all coefficients uniformly, allowing for weaker but still significant dependencies
to be preserved. This adjustment revealed a clear two-variable structure in A (g, ),
demonstrating that memory effects, though subtle, do exist and can be recovered with
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Figure 2. Comparison of inferred major slip rate In A (s, py) for the 10 MPa case. The z-axis of
each graph represents p; and the y-axis of each graph represents pj. Bluer points represent lower
values of AM (uy, py). Left: Bayesian sparse inference shows that there is no memory effect. Right:
Ridge regression reveals clear dependence on both current and past frictional states.

appropriate regularization, as shown in Figure 2. We therefore proceed with ridge
regression to preserve these subtleties.

3.3. Varying Normal Stresses. To assess the generalizability and robustness of our
stochastic modeling framework, we analyzed labquake experiments conducted at a wide
range of normal stress values, from 2 MPa to 13 MPa. The behavior of shear stress over
time and the statistical distribution of slip sizes varied substantially across this range,
revealing key differences in failure dynamics that our model aims to capture.

At lower normal stresses (2-8 MPa), the system exhibited a rich spectrum of behav-
ior characterized by numerous small stress drops interspersed with larger ones. These
experiments, drawn from dataset p2394, featured the hallmark of stick-slip friction:
gradual accumulation of shear stress followed by intermittent releases, often with pre-
cursory microslip events. Consequently, we employed a dual-Poisson stochastic model
to capture this dynamic, with one Poisson process governing small drops and another
governing large ones.

At higher normal stresses (9-13 MPa), the behavior changes significantly. Experi-
ments in this regime—such as p4346 for 9 MPa—display infrequent but abrupt and
large shear failures, with microslips effectively absent. As a result, we modeled these
cases using a single-Poisson process focused exclusively on major slips. Despite this
simplification, the model was still able to accurately replicate the core dynamics of
failure.

To evaluate the validity of our inferred models across these regimes, we compared
the original experimental shear stress trajectories and slip size histograms with their
simulated and resimulated counterparts. Figure 3 presents a unified visual summary
for two representative cases: 5 MPa (low stress) and 9 MPa (high stress). The top two
panels correspond to the 5 MPa condition, showing both the shear stress trajectory and
slip size histogram. The bottom two panels show the same for the 9 MPa condition.
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Figure 3. Combined comparison of experimental and simulated results. (a—d): Shear stress trajec-
tories for 5 MPa and 9 MPa, modeled with dual- and single-Poisson processes, respectively. (e—h):
Slip size histograms for 5 MPa and 9 MPa. The modeling framework accurately captures both the
timing of stress drops and the statistical distribution of slip magnitudes across stress regimes.

The dual-Poisson model effectively captures the complex behavior at low stresses, while
the single-Poisson model accurately reflects the more discrete failure behavior at higher
stresses.

In summary, the transition from dual- to single-Poisson dynamics across increas-
ing normal stress is reflected not only in the inferred model structure but also in the
empirical and simulated characteristics of fault behavior. At low normal stresses, fre-
quent small slips and complex stress buildup patterns necessitate richer modeling. In
contrast, at high normal stresses, failure becomes more discrete and catastrophic, and
our simplified model still achieves strong agreement with data. These results reinforce
the flexibility and physical interpretability of our stochastic inference framework across
diverse experimental conditions.

3.4. Growth Function Inference with ADAM-SINDy. In order to experimentally
infer the growth function g, we assume the model derived in the Appendix, Section 7.3:

du bV . = Mo 1 AN
3.1 U A N i Y e
(3:1) a o.M\ T g <v0)

Although previous SDE inference models posited that g may be assumed to be linear [52]
for certain physical systems such as cell size and division, we found that modeling g with
a hyperbolic sine model was more appropriate for labquakes, apparent in Figure 5 and
Figure 7 in Appendix, Section 7.3. Our approach helps us to gain insights on labquakes’

characteristics: by inferring the coefficients «, 3, and v in %’f = asinh(Sp + ) (a form
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suggested by Equation 3.1), we may learn about the values of slip velocity V' and slip
distance D..

Although previous literature has attempted the topic of inferring differential equa-
tions with certain nonlinear forms such as rational fractions [22], the inference of dif-
ferential equations following sinh relations is not well-explored. SINDy [9] is a general
method to infer ODE dynamical systems, involving the construction of a library © of
potential forms for the model and running a sparse regression to determine the coeffi-
cients B, using a sequential thresholded least-squares algorithm for minimal intractabil-
ity. However, the pre-construction of ® is of limited efficacy for complex dynamical
systems such as labquake friction.

Therefore, we infer the growth function g through harnessing the ADAM-SINDy
approach. ADAM-SINDy [51] is a hybrid approach combining the traditional SINDy
inference methodology with Adam optimization [21] in order to redress certain short-
comings. While standard SINDy assumes knowledge of a library of underlying forms
for the differential equation being inferred, ADAM-SINDy can more flexibly adjust the
inferred parameters, allowing it to dynamically infer many different nonlinear differen-
tial equations. For example, our growth function model for labquake friction is in the
form of asinh(Bu + ), for some «, f, and v. The standard SINDy approach would
require prior knowledge of 8 and ~ for sinh(Bu + 7) to be part of the library of candi-
date models. Because this is unrealistic for complex experimental systems such as ours,
ADAM-SINDy, which sets «, 3, and 7 as dynamic parameters, obviates this issue.

We applied the ADAM-SINDy approach to infer g on experimental data, again using
the 11 MPa data from Marone’s experiment p4348 [23]. The approach yielded minimal
loss (6.680 - 107 after 49,999 epochs), as seen in Figure 4.

100_

0 10000 20000 30000 40000 50000
Epoch

Figure 4. Plot of the loss to illustrate the efficacy of ADAM-SINDy with the 11 MPa data from
experiment p4348.
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After inferring «, 3, and v from the experimental data, we may use these values to
gain insights on the constants in the frictional state growth through Equation 3.1. In
particular, because we have

bV - 1 (V\'E
~D. sinh (H b,uo +1In (5 : <70) )) = asinh(Bu + ),

1
. 1 Vo(2eYtH0B)T—aB
we may derive constant b = %, V =V, (2e7t#08) =97 and D, = —%. Thus,

the ADAM-SINDy framework applied to growth function inference is a novel method
for understanding labquake friction through the slip velocity V' and the characteristic
slip distance D..

Moreover, understanding the form of the growth function allows us to update our
SDE model, as detailed in Section 2.3, and obtain more informed results for \ and the
overall frictional trajectory, reflected in Figure 1 (D) and Figure 5.
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Figure 5. Plot of shear stress trajectories from data associated with p4348 at 11 MPa (gray) and
our simulations using the inferred linear (orange) and sinh (green) functions for fine-tuning.

4. Di1scussioN & CONCLUSIONS

We have introduced a novel data-driven inference framework for analyzing laboratory
earthquake dynamics, demonstrating that stochastic differential equation (SDE) infer-
ence can reconstruct both the continuous accumulation and the discontinuous release
of shear stress. Unlike black-box machine learning approaches, our method provides
interpretable governing equations that directly reflect the physical processes of stress
growth and slip. A central novelty of this work is the discovery that the growth func-
tion g(p) follows a hyperbolic sine relation. This sinh structure is important because
it links laboratory observations to the Perrin-Rice-Zheng (PRZ) rate-and-state fric-
tion equation, which has been theoretically proposed but rarely validated directly from
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data. By identifying this nonlinear behavior empirically, our inference framework offers
a mechanistic explanation of labquake friction that bridges experiment and theory.

A second major innovation lies in extending standard SDE inference to incorporate
two distinct Poisson processes, representing microslips and major slips. Previous SDE-
based inference frameworks typically account for only a single Poisson-driven jump
process. By introducing a dual-process formulation, our model captures the bimodal
distribution of stress drops observed in labquake data, representing small precursory
failures and large catastrophic slips as interdependent but distinct processes. This
extension demonstrates how inference methods can be systematically generalized to
handle increasingly complex stochastic jump systems, with labquakes providing a test
case of direct geophysical importance.

Nevertheless, several limitations remain. While our results span a range of normal
stresses, validation under different slip velocities and loading conditions is essential to
fully assess generalizability.

In summary, our study demonstrates that stochastic inference offers a powerful and
interpretable alternative to machine learning in analyzing labquake dynamics. By com-
bining Bayesian inference, dual-Poisson process modeling, and sparse nonlinear dis-
covery, we provide new insights into the governing laws of fault stress evolution. We
anticipate that this framework can be generalized to a broad class of stochastic jump
processes in geophysics and beyond.
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7. APPENDIX

7.1. Bayesian Inference. In order to find P(w|s;) and ultimately A(s;, s7), of interest
to us is how P(wls;) is proportional to the product of P(s;/w) and P(w). We work
with an inhomogeneous Poisson process, namely .4}, so we have

P(si|w) = e 0o DU TTA (s, 87,) -

Then, we use sparse Bayesian inference [2, 12, 30] to estimate P(w):

2
wij

P(w) H e >,
.3

where o;; control sparsity. Namely, the smaller o; is, the closer w;; becomes to zero,
which promotes sparsity in w. Note that o;; are estimated through the Expectation-
Maximation algorithm [16, 27]. From these o; values, we may calculate w and then
obtain A(s, s7) from Equation (2.3).

We consider that BIC = In P(s;[w) — 1 1n |H|, where H is the Hessian of In P(s,|W).
The term including In |H| penalizes candidate models with a large number of param-
eters, encouraging sparsity. Therefore, the candidate model with the largest BIC is
considered the most parsimonious.

7.2. Bimodality of Slip Sizes in Frictional States. We motivate our splitting of
the Poisson processes in modeling the frictional states of experiments with low normal
stress because of the slip sizes’ bimodality, as evident in Figure 6. Across experimental

# of occurrences

Slip size (AM)

Figure 6. Labquake data shows a characteristic bimodal distribution of friction state slip sizes,
indicating that two separate yet mutually influencing processes are responsible for stress evolution
over time.
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data, this bimodality may be split between microslips (Aup < 0.4) and major slips
(Ap > 0.4).

7.3. Growth Function Derivation. The rate-and-state friction equation 2.1 refer-
enced in Section 2.1 evaluates the friction constant p at a given state. However, we
wish to glean insights into its instantaneous growth in order to understand the time
evolution of the labquake system.

The rate-and-state friction equation may be rewritten as follows:
Ve. Vob . (gb )

— e =1
w = Ho H( VO“-Dg

Ve. %b_a
D?

eH—Ho —

. gb

D, B=pg
b .

a ' €

= e V01— 2
Additionally, we can find from the rate-and-state friction equation that

b
i = ~de.
H=%

The exact mechanics and dynamics of the evolution of the state variable 8 over time
is the subject of contentious debate [24]. There are three primary theories for the
time-evolution dynamics of 6, leading to three versions of the rate-and-state law.

First, the Dieterich (aging) law [14] describes the evolution of € as:
g _q_ Ve
dt D,
Thus, in the Dieterich theory, friction continuously increases due to time-dependent
strengthening of asperity contacts, even when the faults remain stationary (V' = 0).

7

In contrast, the Ruina (slip) law [39] is given by the following:

do Ve | Ve
— = — n .
dt D, D,
In the Ruina theory, the friction variable 6 only grows when fault slip occurs (V' # 0).
Finally, the third theory by Perrin, Rice, and Zheng (PRZ) [31],

o _ (VO

dt 2D.)
incorporates both aging and slip-dependent behaviors, leading to a more symmetrical
response to velocity perturbations.
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Figure 7. Heatmap of frictional state p versus growth rate g from the 11 MPa data in Marone’s
experiment p4348. In the experimental data, g follows a sinh p relation.

Using the Dieterich, Ruina, and PRZ theories, we predict the dynamics of u as
d
Dieterich: 2 _

follows:
bbb Ve
d 0 dt 0 D, )
Cody b A9 b VO, (VO
Rulna. %—éa—é (—Eln (E)) .
b _bf (VoY
0 dt 0 2D, )

Combining our expression for # from the rate-and-state friction equation with the Di-
eterich, Ruina, and PRZ laws, we may derive the following equations for p’s dynamics:

: . dp bV Vo i —ptug
1eteric 7t D. (( % > e b )
o odp bV - o V'
L — = —— 1 p— .
Ruina o D. < 2 + In (%)

cdp bV I — fo 1 (V'

dp
PRZ: — =
R dt
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As explained in Section 2.3, we may think of the growth function g as being ‘;—Q‘.
Thus, Dieterich predicts that g will follow a e™* relation, and Ruina predicts a relation
linear in pu. We note that PRZ predicts that g will follow a sinh u relation, which
we corroborate with our experimental data. For example, we used the 11 MPa data
from Marone’s experiment p4348 [23] to infer growth function g and see how it changes
depending on the frictional state p, as seen in Figure 7. As evident from the figure, the
growth function g follows a sinh p relation.

THE HARKER SCHOOL, SAN Josg, CA 95129, USA
Email address: jessicashanahu@gmail.com

CHANTILLY HIGH ScHOOL, CHANTILLY, VA 20151, USA
Email address: me@aryanraj.xyz

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139, USA
Email address: shjzhang@mit.edu



	1. Introduction
	2. Methods
	2.1. Labquake Friction Physics
	2.2. Stochastic Differential Equations Inference
	2.3. Application of SDE Inference to Labquakes

	3. Results
	3.1. Data Processing
	3.2. Results from Inference
	3.3. Varying Normal Stresses
	3.4. Growth Function Inference with ADAM-SINDy

	4. Discussion & Conclusions
	5. Acknowledgments
	6. Bibliography
	7. Appendix
	7.1. Bayesian Inference
	7.2. Bimodality of Slip Sizes in Frictional States
	7.3. Growth Function Derivation


