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Abstract

We study the field of definition of abelian surfaces of maximal Picard rank and of
the closely related singular K3 surfaces.

Such abelian surfaces decompose as a product of two isogenous CM elliptic curves
and are determined (up to isomorphism) by an integer parameter measuring the relative
conductors of its elliptic curve factors and by a single CM elliptic curve. In the key
case where the first parameter is a power of a prime, we show that the smallest number
field over which the surface can be defined is related to the ring class field attached to
the larger conductor: it is either the full ring class field or its maximal real subfield,
with the two cases distinguished precisely by whether the elliptic curve parameter’s
j-invariant is real. Our approach uses explicit constructions from CM theory and class
field theory.

For the field of definition of K3 surfaces, we use the classification via quadratic forms
given by Shioda and Inose to show that for a K3 surface associated with a quadratic
form that has trivial square in the form class group, a smaller field of definition than
the appropriately chosen ring class field can be achieved.
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1 Introduction

A one-dimensional abelian variety (an elliptic curve) defined over a field F' can be described
by an equation of the form y? = 2® + ax + b with a,b € F. Throughout this paper, when we
speak about the field of definition of a complex elliptic curve F/C, we mean a number field
L C C such that there exists an elliptic curve Fp /L with £, @, C = E. The minimal field
of definition of F is the intersection of all such number fields I C C over which E descends;
we denote it by Lg. Remarkably, for elliptic curves one has Ly = Q(j(£)), meaning the
j-invariant encodes the minimal field of definition.

For higher-dimensional abelian varieties, the question of the minimal field of definition is
much more difficult to consider. The case of abelian surfaces (and the closely related question
of K3 surfaces) which have mazimal Picard rank has been considered in the past in [4, 6,
7] among others. Surfaces of maximal Picard rank are also an object of study in their own
right, such as in [1].

Such surfaces are more tractable than the case of a general abelian surface because a complex
abelian surface of maximal Picard rank is always isomorphic to a product F; x E, of two
isogenous CM elliptic curves [2, 5].

We might assume that for an abelian surface A = F; x Fy, the number field Q(j(F1), j(E2))
is “minimal” among number fields L C C for which there exists an abelian surface Ay /L
with o), x;, C = A (that is, fields of definition of «7). However, there are other choices of
decomposition &7 = E; x Ey = E3 x Ey such that Q(j(Es), j(E,)) is not the same field and
indeed may not have the same degree over Q as Q(j(F1),j(F2)). We can classify Picard-
maximal abelian surfaces up to isomorphism by two invariants d € Z~q and E a CM elliptic
curve [4, Theorem 4.2.4]. In this paper we consider which decompositions @7, p = Ey X Ej
have their fields of definition Q(j(E1),j(E2)) € Q(j(E),j(E1), j(E2)) of minimal degree.



The invariant d, which is the degree of primitivity of the binary quadratic form associ-
ated to the abelian surface o/ by [8], can also be thought of as measuring the difference
between the orders End(E;), End(E,) for a decomposition & = FE; x E,. Specifically,
d = lem(fy, fo)/ ged(f1, f2) for f; the conductor of the order End(FE;) C K where where
K is the common CM field (equivalently, the algebra of self-isogenies End(E;) ® Q). The
case d = 1 covers Picard-maximal abelian surfaces which have & = F; x Ej for E; as CM
elliptic curves with the same endomorphism ring; the field of definition of these primitive
abelian surfaces has been characterized in [4, Proposition 4.2.6].

In this paper, we generalize this result to the case d = p" for a prime p. Specifically, we
prove that if j(FE) is not real, then the minimal field of definition of the isomorphism class
g is the full ring class field of the order in K = Frac(End(E)) which has conductor equal
to p" - cond(End(£)) (Theorem 3.8). If j(E) € R, then the minimal field of definition of
I i is the real subfield of the same ring class field (Theorem 3.7). Similarly to [4], we use
CM theory and class field theory to obtain our results.

Abelian surfaces of maximal Picard rank in characteristic 0 are closely connected to singular
K3 surfaces: namely by [7] any singular (having Picard rank 20, which is maximal in char.
0) K3 surface over C is a double cover of the Kummer surface of a Picard-maximal complex
abelian surface. As with abelian surfaces, we can use methods of class field theory and CM
theory to prove results similar to [6] for the minimal field of definition of singular K3 surfaces.

Fields of definition: conventions

For general abelian varieties over Q, there need not exist a unique minimal field of definition:
an abelian variety can descend to two subfields K7, Ky C Q without descending to K7 N K.
In particular, one must specify what auxiliary structure is required to descend.

In this paper we work with Picard-maximal complex abelian surfaces that admit a product

decomposition
A = E1 X EQ,

where each F;/C has CM by an order in the same imaginary quadratic field K. Our results
concern the smallest number field over which some model of A together with some such CM
product decomposition exists.

More precisely, for an isomorphism class 27, g we consider the set of triples (Fy, Fs, t) where
E,, Ey are CM elliptic curves and ¢ : oy g — E; x Es is a complex isomorphism of abelian
surfaces. We define the decomposition field of definition of <7;  to be

LA (ot ) = (Emin )Q(j(E), j(Er), j(E»)) C C,

1,25t

where the minimum is taken with respect to inclusion among number fields.

This notion is intrinsic to the isomorphism class o7 i (because we minimize over all decom-
positions), but it is not the same as the smallest field over which all endomorphisms of A
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are defined: for example, for A = F x E the full endomorphism ring End(A) = M,(End(FE))
typically requires adjoining the CM field K even if j(F) € R. It is also distinct from the
minimal number field L over which there exists <7, /L with o7, x;, C = &7 (this L is generally
not unique) We comment on the relation between L°(47; ) and other standard fields of
definition in Remark 3.2.

The structure of this paper is as follows: In Section 2, we state the necessary background
on CM elliptic curves, ideal and ring class fields, and restate key lemmas from [4]. Section 3
proves the key decomposition lemma for @7, g, proves the minimal field of definition lemmas,
and works through several examples. Section 4 includes our results on the minimal field of
definition of certain singular K3 surfaces. The Appendix gives the exact field of definition
and j-invariant computations we use in the examples.

Throughout this paper, by the minimal field of definition of the CM abelian surface 2, g we
mean the smallest number field F' over which there exists a model of @/, g together with a
CM product decomposition with specified CM orders on the two factors. In our context this
field coincides with the compositum F' = Q(j(E), j(E1), j(Es)), as described in Remark 3.2
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2 Background

2.1 CM theory of elliptic curves

This section follows the exposition of complex multiplication theory in [3, Chapter 14]. In
this section we discuss CM theory which is used in our paper, such as the correspondence
between elliptic curves and lattices

Theorem 2.1 ([3], Theorem 14.3). Every elliptic curve over C is analytically isomorphic to
a complex torus C/A, where A C C is a lattice. For every lattice A the complex torus C/A
can be given a unique structure of an elliptic curve. Moreover, every elliptic curve arises in
this way.

Definition 2.2. If two elliptic curves E; = C/A; are isogenous, there exists a complex
number « such that aA; C A,. In other words, isogeny is a homothety with a sublattice.
The endomorphism ring of an elliptic curve £ = C/A is the ring of its isogenies to itself. It
is a subring of the complex numbers

End(E£) ={a € C:aA CA}.
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Definition 2.3. An elliptic curve £ = C/A has CM if its endomorphism ring End(F) is
strictly larger than Z. For E with CM, the ring End(F) is an order in an imaginary quadratic
number field K [9, Theorem 10.2].

Definition 2.4. Any order & C K is equal to Z + fO for some integer f; this f is the
conductor of 0. For 0, 0" C K we have 0 C ¢" if and only if f' | f, where f’ denotes the
conductor of &".

2.2 Ring class fields and j-invariants

In this section we discuss some class field theory based on [3, Chapter 7], including the
definition of the ring class field attached to an order and its relation to j-invariants via the
First Main Theorem of CM.

Theorem 2.5 ([3, Theorem 7.7]). Let € be the order of discriminant D in an imaginary
quadratic field K.

(1) If f(x,y) = ax*+bry+cy? is a primitive positive definite quadratic form of discriminant
D, then la, #ﬁ] is a proper ideal of O.

(i) The map sending f(z,y) to [a, _bg‘/ﬁ] induces an isomorphism between the form class
group Cl(D) and the ideal class group Cl(&). Consequently, the order of C1(O) is the

class number h(D).

(11i) A positive integer m is represented by a form f(x,y) if and only if m = N(a) for some
ideal a in the corresponding ideal class in Cl(0).

Remark 2.6. The ideal class group Cl(&') parametrizes isomorphism classes of elliptic curves
with CM by &. This correspondence sends [A] € Cl(&) to the isomorphism class [C/A] for
an invertible ideal A C &. We often refer to [E] and [A] interchangeably for an elliptic curve
(and associated lattice) F = C/A.

We can determine some information about a CM elliptic curve E from the element [E] €
Cl(0).

Remark 2.7. The j-invariant of a CM elliptic curve j(E) is real exactly when [E] € Cl(©)
has order < 2.

Definition 2.8. Let K be a number field and & C Ok an order of conductor f. The ring
class field Ly of O is the unique abelian extension of K whose conductor divides f and for
which there is an isomorphism Gal(Lgs/K) = Cl(0).

Remark 2.9. There is a canonical choice of isomorphism Gal(Ls/K) = Cl(€) which is
discussed in [3].

The ring class field has a close relationship to j-invariants of elliptic curves with CM by &.

5



Theorem 2.10 (First Main Theorem of Complex Multiplication). Let & be an order in an
imaginary quadratic field K, and let I be a proper fractional O-ideal. Then the j-invariant
J(I) is an algebraic integer and K(j(I)) is the ring class field of the order O .

Definition 2.11. The Hilbert class polynomial H(x) of order &' in K, is the minimal
polynomial over K, for the j-invariant of a CM elliptic curves with endomorphism ring
End(E). In fact, Hy(x) is independent of E and lies in Z|x].

2.3 Previous work on fields of definition

In this subsection we recall certain useful lemmas from [4] relating the fields of definition for
CM elliptic curves.

We first characterize the field extension generated by two distinct CM elliptic curves with
the same CM order.

Lemma 2.12 ([{], Lemma 3.2.2). Let Ey, Ey be two nonisomorphic complex elliptic curves
with CM by O, an order in an imaginary quadratic field K. Let Ly be the ring class field of
O, which is a degree 2n extension of Q for n = |Cl(&)|. Then one of the following is true:

(Z) Q(j(El)vj<E2)) = Lo,

(i1) or Q(j(E1)) = Q(j(E2)) is a degree n extension of Q, and in Cl(O) the element
[E1][E2) Y has order 2.

We also must consider the case of elliptic curves E; which have different CM orders in
the same CM field K. For orders 0" C O, there is a natural map ¢ : Cl(0') — CIl(0)
o([']) = [0T]). In fact ¢ is the usual extension-of-scalars map on invertible &’-modules; see
[4, Lemma 3.1.5].)

Lemma 2.13 ([1], Lemma 3.2.6). Let K be an imaginary quadratic number field with Ok =
Z|a), and let ¢ | a be positive integers. Then if E is a complex elliptic curve with CM by Z[aa],
any elliptic curve E' corresponding to the class ¢cq.0([E]) € Cl(Z[ca)) has j(E') € Q(j(E)).

In addition to the previous lemmas from [4], it is useful to consider the field of definition
Qj(E)) or Q(j(A)) as a subfield of the ring class field.

Lemma 2.14. If A and A’ have CM by the same order O, then the j-invariants j(A) and
J(A") are congugate algebraic integers lying in the ring class field of O, and in particular,
Qj(A)) and Q(j(A)) are Galois conjugate subfields of the ring class field of O

Proof. By the Main Theorem of Complex Multiplication, the ring class field Hy is an
abelian extension of K whose Galois group Gal(Hs/K) = Cl(0) acts transitively on the



set of j-invariants of O-lattices, and j(A) generates Hy over K. Thus, there is some

o€ Gal(Hy/K) with o(j(A)) = j(A).

Since j(A) is a root of the Hilbert class polynomial of & (which has integer coefficients), it
is an algebraic integer, and therefore so is its Galois conjugate j(A’). Also, o induces an

isomorphism of fields o : Q(j(A)) = Q(j(A’)) which shows that these two number fields are
conjugate subfields of Hy. O

2.4 Abelian surfaces of maximal Picard rank

In this subsection we produce a set of representatives for isomorphism classes of Picard-
maximal abelian surfaces.

A complex abelian surface o/ of maximal Picard rank [8] is isomorphic to a product of
isogenous CM elliptic curves [3]. However, this decomposition has some ambiguity:

Theorem 2.15 (Theorem 4.2.4,[1]). For E; = C/A;,;i = 1,...,4 pairwise isogenous CM
elliptic curves with CM by the imaginary quadratic field K, we have Fy X Fy ~ E3 x E, if
and only if End(E;) N End(E,) = End(F3) N End(Ey) and AyAy ~ AsAy.

It follows that Ey x Ey = C/0 x C/(A1A2) for € = End(FE;) N End(E,).

Definition 2.16. Let E be a CM elliptic curve with End(E) = Z[a] an order in an imaginary
quadratic number field. Then 7, g is the complex abelian surface C/& x E where & = Z[da/].

By Theorem 2.15 we see that every complex abelian surface of maximal Picard rank is
isomorphic to @ i for some d, E, and @ p = y g if and only if d=d', E = E'.

Example 2.17 (Decompositions for d = 2, E = C/(3,1 +14)). Let E = C/(3,1+ 1), so
End(E) = Z[3i] and d = 2. By definition,

ohp=ExC/Z6i) =C/(3,1+1i) x C/(1,67).
We note from Table 1 that any elliptic curve with CM by Z[6¢] is isomorphic to one of:
C/(1,6i), C/(3,2i), C/(3,1+ 2i), C/(3,1 — 2i).
By [4, Thm 4.2.4(ii)] we have isomorphisms
ehp=C/(3,1+14) xC/(3,2i) =C/(3,1+1i) x C/(3,1+2i) =C/(3,14+1) x C/(3,1 — 2i).
In fact, these are all possible unordered pairs of isomorphism classes of elliptic curves

([E4], [E2]) such that o4 p = Ey x E,. (There are of course infinitely many isomorphisms
oty g — FEy X E, obtained by composing with automorphisms of the product.)



3 Prime-power conductor parameter: decompositions
and fields of definition

In this section, we compute the minimal field of definition of the isomorphism class .27, g
where d = p™ is a power of a prime.

Lemma 3.1. Let o, be as in Definition 2.16, and suppose <yp = Ey X Ey with By, Ey
CM elliptic curves. Then the number field

Qj(E), j(Er), j(Ey))

is a field of definition for the triple (g g, E1, Es), i.e. there exists a model of <y p over this
field admitting a compatible product presentation by curves with those j-invariants. More-
over, the intrinsic decomposition field L (<, i) is the intersection (equivalently, the mini-
mum under inclusion) of these fields over all decompositions.

Remark 3.2. The field L9°°(e; ) is the smallest field over which the elliptic curve E can be
defined and over which @7, p admits a product model E; x E,. If instead one asks for a field
over which the full algebra of self-isogenies End(%7; ) ® Q is defined, one generally must
adjoin the CM field K. In particular, LY(«7; 5) can be totally real, while K is imaginary
quadratic. The field L9°¢(.e7; g) is also generally larger than the usual notion of the “minimal
field of definition” of &, which we might take to be one of the number fields Q(j(F1), j(Es))
which has minimal degree (among decompositions &/ = E; x Ej); the latter notion does not
give a unique field.

3.1 Describing the decompositions

In this section, we prove a key lemma (Lemma 3.3) that describes how @7,» i can split as a
product of two CM elliptic curves. That decomposition criterion is the foundation for our
main theorems on minimal fields of definition. In particular, it is not generally the case that

if oy p = E) x E, there is only one choice for End(E, ), End(Es).

Lemma 3.3. Let K be an imaginary quadratic field and let © C Oy be the order of conductor
f. Suppose E is an elliptic curve with End(E) = €. Let 0" C O be the order of conductor
p"f for a prime p, and let

¢ : Cl(0") — Cl(0O), I+~ [OT]
be the natural map.
Then iy g ~ Ey x Ey if and only if, after possibly swapping Ey and E,, we have

End(E) = 0, End(By) =6,  [El]-¢(E]) = [E] in CI(0).
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Proof. Set of = iy g =E x (C/0") by definition and O = Z|[f].

If o = E, x Ey: write

By Theorem 2.15 above, we have
lem(cond(0), cond(05)) = p"f, ged(cond(0)), cond(0s)) = f,
so writing each 0; = Z[f; 5] forces { f1, fo} = {f,p"f}. Without loss of generality, let
Bnd(Ey) = 0 = Z[f8),  Fnd(Ey) = 6' = Zp" 5]

Again by Theorem 2.15, the lattice product AjAs; C C is homothetic to the lattice of E. By
the definition of ¢ we have ¢([As]) = [O'A3]. Furthermore

[AL(O )] = [A][OA]
by [4, Lemma 3.1.4]. It follow that in the class group of & we have
[A1 o] = [Ad]o([Az]).

Since [A1As] = [E], we have
[EAlo([E2]) = [E] € CI(O).

This proves that if @» p = E; x Ej then the E; satisfy the desired conditions.
Conversely, if Ey, By satisfty End(F,) = 0, End(FEs) = 0’ and
[Er]o([E.]) = [E],
then A;A; is homothetic to the lattice of E, and by [4, Thm.4.2.4(ii)] again we get
E1 x By ~C/(AMAy) xC/0"=C/0' x E~ 4.
This completes the proof. n

The above lemma gives exactly the class-group criteria for when the conductor is a prime
power. This is an extension of [4, Proposition 4.2.6].

Example 3.4. Consider the abelian surface A, p for E = C/Z[2i]. By Lemma 3.3, if
Ay p >~ Fy X By then the Ej; satisfy

End(Ey) = Z[2i],  End(Ep) = Z[8i],  [Er¢([Es]) = [E] = [C/Z[2i]] € CL(Z[2d]),

where

¢ : CI(Z[8i]) — ClZ[2i])
is the natural map induced by the inclusion Z[8i] C Z[21].
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Example 3.5. If d is composite then there are multiple choices for End(F;), End(FE>) (as-
suming o p = Ey x E,). For example,

sz = Li] x Z[6i] = Z[2i] x Z[3i].

We now produce a lower bound on the degree of the minimal field of definition.

Proposition 3.6. Let E.p", 0, 0" be as in Lemma 3.53. For a decomposition iy p = Ey X
E,, the degree of the extension Q(j(E), j(E1),j(E2)) over Q is at least |Cl1(0")|.

Proof. Follows from Lemma 3.3 and the fact that the minimal polynomial of the j-invariant
of E with CM by 0" is Hg(X) € Z[X]|, the Hilbert class polynomial, which has degree
|IC1(0")]. O

3.2 Main results

We now can characterize the minimal field of definition of @ p for CM E with real
j-invariant. In fact the lower bound on the degree of the minimal field of definition given in
Proposition 3.6 is achieved in this case.

Theorem 3.7. Let E be a CM elliptic curve with End(E) = € and let 0’ be the order of
conductor p" - cond(0) in the same imaginary quadratic field K. Let Lg: be the ring class
field of 0.

If j(E) € R, so [E] € CI(O) has order < 2, then there exist CM elliptic curves Ey, Ey with
End(E;) = O such that @y p ~ Ey X Ey and

[QUi(E), 5(Er), j(Ea)) : Q] = [Cl(@")| = L[Lo - Q).

Proof. We assume [E]| € Cl(0) has order < 2. Let
Ei=E,  E=C/0
By definition, we have @ p ~ F; x E,. Hence
QU(E), j(Er), j(E2)) = QU(E), §(C/")).

We have that ¢([Es]) = [C/0]. Therefore, by [4, Lemma 3.2.6], we have Q(j(F)) =
Q@(C/0") 2 Q(j(C/0)). Furthermore, since the identity element of Cl(€) is [C/0], w
see that [E][C/O)~! = [E] € C1(0) has order < 2. Therefore, by [4, Lemma 3.2.2] we have
QU(E)) =Q(j(C/0)). Therefore:

Q(j(E),j(C/0") =Q(j(C/0")) (since j(E) € Q(j(C/0)) C Q(j(C/0"))).
We have

[
2

QU(T/6) : Q) = [CI(6")] = 5[Lor Q)
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since j(C/&") has minimal polynomial equal to the Hilbert class polynomial Hp/(X) €
Z[X] which has degree |Cl(0")|. Furthermore, [C/0”] is the identity element of Cl(&”), so
J(C/0") € R. Then by Lemma 2.14 we see that Q(j(C/0")) is the real subfield of L,.¢. O

If E does not have real j-invariant, so [E] € C1(€) has order greater than 2, then our lower
bound on the degree of the minimal field of definition is not achieved; the minimal field of
definition is the ring class field of &”.

Theorem 3.8. Let E,0,p", 0" be as in Theorem 3.7. If [E] € CI(O) has order > 2, then
for any decomposition
JZ{n B El X E2

one has Q(j(E), j(Er), j(E2)) = Lo, so
[QG(E), j(Er), j(E2)): Q] = 2|CHE")| = [Lor: Q).
Proof. Assume [E] € Cl(€) has order > 2. By Lemma 3.3, if @ p >~ E; X E, we must

have End(E)) = ¢ and End(E,) = 0, and [Ey|¢([E,y]) = [E] € CI(€) for the natural map
¢: Cl(0") — Cl(O).

We consider now the field Q(j(E), j(E1), j(Es2)).

By [4, Lemma 3.2.2], either

(a) [E][E1]™" has order > 2 and Q(j(F),j(F1)) = Lg, the ring class field of O,
(b) or [E][E;]™! has order < 2 and Q(j(E)) = Q(j(E1)).

We will handle these cases separately. Note that [E][FE;]™! = ¢([Fs)).

(a) Assume [E][E{]™! = @([Es]) has order > 2 and Q(j(E),j(FE1)) = L, the ring class
field of 0.

By the first main theorem of complex multiplication, Ly = K(j(£)) = K(j(E;)) and
Ly = K(j(E2)) since E, E; have CM by ¢ and Ey has CM by &".

Since
K(j(Ey)) = Lo € Q(J(E), j(E1), j(Er)) € K(j(E»)) = Lo,
Galois theory forces Q(j(E), j(E1),j(Es)) = Le.
(b) Assume [E][E1]™' = ¢([F,]) has order < 2 and Q(j(E)) = Q(j(F})). Fix some elliptic

curve Ey 4 with [Es 4] = ¢([Es]) € CI(O). We now Compare Qj(Es, )) and Q(j(F)).
To do so we will consider the group element [E][Ey4]~" = [Elo([E2]) ™

If [E][Ea4] " has order < 2, then so does
(][ B2~ 6([E2]) = [E][Eag) ™ [Engl = [E],
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giving a contradiction. Hence [E][E24)~" has order > 2 and by [4, Lemma 3.2.2] we
obtain

Q(E),j(E2s)) = Lo
the ring class field of &'.
By [4, Lemma 3.2.6] we have Q(j(E24)) € Q(j(E2)). Therefore

QU(E). j(E2p)) = Lo € Q(i(E), j(Er)).
Hence Ly = K(j(E)) C Q(j(E), j(E)). It follows that
K(j(E2)) CQU(E), j(E2)) € Qi(E),j(E1), j(E2)) € Lo

Thus Q(j(E), j(E1), j(E2)) = Le.

Thus in both subcases a) and b),

QU(E), j(Er), j(E2)) : Q = 2|CU&")| = [Lo : Q)

Example 3.9. Let
E =C/(3,2i), End(F) = Z[6i],

so [E] has order 2 in CI(Z[67]). We also note from Table 1 that j(F) € R.
In the first row of Table 3 we can find a decomposition

dhp~E x By with E, =C/(1,6i), Ey = C/(3,1+ 2i),
and indeed End(E;) = Z[6i] for i = 1,2. Then

QU(E), j(En), j(E2)) = Q(V2,V3), [Q(V2,V3):Q]=8=|CLZ[12i])|

as we would expect given Theorem 3.7.

The full ring class field Lz12; satisfies
[Lzpag : Q] = 2 - |Cl(Z[124])| = 16
which is strictly larger than the degree of Q(v/2, v/3) over Q.

Example 3.10. Let K = Q(i) and & = Z[6i] C Ok, so that Cl(€) = Z/4Z, and choose
E = C/A, A = (3,1 — 2i), whose class has order 4 in CI(Z[6i]) (Table 1). Then one
computes

cond(0) = 6, 0" = order of conductor 12 = Z[12i],
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and

Ly =K(V2,V3), [Le:Ql =16, |Cl(O)|=38.
For any decomposition (these are in the second half of Table 3)
%,E ~ El X E2 (End(El) = Z[6Z]),

one then checks

QU(E), j(E1), j(E2)) = Lo, [Lor : Q] = 16 = 2|CL(")].

This illustrates Theorem 3.8 since E has order > 2 in Cl(&), every splitting yields the full
ring class field Lg.

Theorem 3.11. Let E, 0, p", 0" be as in Theorem 3.7. Let G = Cl(0). Assume that
[E] € G*- G]2]
that is, there exist elliptic curves E', E"” with End(E’") = End(E") = 0 and
[E] = [E')-[E", [E"]? =1 in CI(O).
Then there exists a decomposition
Gy~ Ey X By

such that
[Q(i(Er), j(E2)) - Q] = |CL(&)].

Remark 3.12. Compared with Theorems 3.7 and 3.8, Theorem 3.11 differs in both hypothesis
and target field. First, instead of splitting by whether [E] € Cl(&) has order < 2 (equiva-
lently j(E) € R) or > 2, it assumes the square condition [E] = [E’']?, which is independent
of whether j(E) is real (e.g. elements of order 4 can be squares). Second, while Theo-
rems 3.7-3.8 determine when Q(j(E), j(E1),j(E>)) is minimized, Theorem 3.11 etermines
when the smaller field Q(j(E1), j(E>)) has minimal degree [C1(0”)|.

Proof. Let End(E) = 0 = Z[fa] C K = Q[o] and* let &' = Z[p"f ] be the order of
conductor p" f. The natural map
¢:Cl(0") — Cl(0), [['] — [OT],

is surjective: under the CM isomorphisms Cl(&) = Gal(Ls/K) and Cl(0") = Gal(Ly /K)
(with Ly C Lg the corresponding ring class fields), this map is the restriction morphism
Gal(Lg /K) — Gal(Lg/K), hence surjective (see |1, Prop. 3.2.5]).

Assume now that [E] is a square in Cl(&), say [E] = [E']* for some elliptic curve E’ with
End(E’) = €. By surjectivity of ¢, choose [Ey] € Cl(0") with ¢([E]) = [E'], and let Ey
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be a CM elliptic curve representing this class. Then [E'] - ¢([Es]) = [E'] - [E'] = [E], and
Lemma 3.3 gives an isomorphism #n p = E' X Ej.

To compute the field of definition, apply [4, Lemma 3.2.6] since ¢([E2]) = [E'] it follows that
J(E') € Q(j(Er)). Thus Q(j(E"), j(E2)) = Q(j(E2)).

Since Es has CM by &”, the minimal polynomial of its j-invariant is the Hilbert class poly-
nomial Hg (X) € Z[X], which is irreducible of degree |C1(€”)|. Therefore

Q(i(E1),J(Er)) - Q] = [Q(j(E)) : Q] = |CL(&")].
O

Example 3.13. Let G = Z/67Z. By the Chinese Remainder Theorem, Z/6Z = 7Z/27 x
Z/3Z. We compute
G*={0,2,4},  G[2]={0,3}.

G?-G[2] ={0,2,4} +{0,3} = {0,1,2,3,4,5} = G,

while G? # G. In particular, elements such as 3 € G are not squares but lie in G* - G[2].
This shows that the hypothesis

[E] € Cl(0)* - Cl(0)[2]
in Theorem 3.11 is strictly weaker than requiring [E] to be a square.
Example 3.14 (CM realization). Let & = Z|[9i]. One computes (see Appendix 4)
Cl(0)=7Z/6Z.

Let A = (9, 1+ 1), whose class corresponds to 3 € Z/6Z. Then [A] is not a square in Cl(0),
but lies in C1(0)? - C1(0)[2].

Let E = C/A. For any prime power p", Theorem 3.11 applies and yields a decomposition
A g~ C/Z[p" -9i] x C/A.

Moreover, the field of definition of this decomposition is the real subfield of the ring class
field of conductor p™ - 9.

3.3 Abelian surfaces with more kinds of decompositions

Remark 3.15. In the prime-power case d = p”, Theorems 3.7 and 3.8 show that the minimal
field of definition of .47,  is either the real subfield of the ring class field or the full ring class
field of conductor p™ - cond(End(£)). When d is not a prime power, however (for example,
d =6 =2-3), the two prime factors interact to produce minimal fields of definition outside
that pattern (see also Example 3.5).
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If Eis a CM elliptic curve with End(E) = &, then splitting % g into curves of conductors
2 and 3 can give

QUj(E), j(E2)) = Q(V2,V3),

the compositum of two prime-power subfields. Other decompositions give fourth-root fields
such as Q(+v/12) or Q(iv/12), showing that the primes 2 and 3 interact in an essential way.
These mixed and hybrid-root extensions cannot occur when d is a prime power.

Example 3.16. Let
E=C/(3,1— 2i), End(F) = Z[61].

We can find the decomposition
ots g ~ C/Z[i]| x C/(3,2i),

and check that its minimal field of definition is @Q(+v/12). Neither the real subfield nor the
full ring class field of conductor 6 contains this extension, so it lies outside the prime-power
framework.

4 Field of definition of a singular K3 surface

In this section we discuss the classification of Picard-maximal abelian surfaces and singular
K3 surfaces via quadratic forms given by [7] and [8].

4.1 From intersection forms to </, p and back

We record a concrete dictionary between the intersection—form description of singular abelian
surfaces and our conductor-product description 47, .

Definition 4.1 (Intersection form and CM parameters). Let

Q- (2; ch), AQ) =V —dac<0, K =Q(/dQ).

Define

T1

_ b+ vd@) b+ vd@)
2a '

) Ty =
2
We write E, = C/(Z+71Z) where a,b, c € Z with a > 0 and ) positive definite (so d(Q) < 0).

Remark 4.2. Note that 7, = —a77. In fact 7; (and 77) have minimal polynomial ax? + bz + c.
Thus we compute

73 — by + ac = a®7% + ab7 + ac = a(aT? + b7 +¢) = 0.

We then see that 73 is a root of the polynomial 22 —bz-+ac, and so is an algebraic integer. More
specifically, this means 75(Z+7Z7;) C Z+7Z1, because 73 € Z+7Z7y; hence Z+7Z1, = End(FE,,)
is an order in K. We can find its conductor by comparing d(¢) and the discriminant of 0.
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Proposition 4.3 (Shioda-Mitani / Schiitt [8, Thm. 4.1], [6, Prop. 10, Cor. 12]). With @
and T; as above, the product
A=F, x E,

is a complexr abelian surface of maximal Picard rank whose transcendental lattice T(A) has
intersection form Q. The associated Kummer surface Kum(A) is a singular K3 surface
whose transcendental lattice T(Kum(A)) has intersection form 2Q).

Remark 4.4. If an abelian surface A is defined over a field F', then the associated Kummer
surface Kum(A) is also defined over F. Indeed, the blow-up of A along the finite flat group
scheme A[2] and the quotient by the involution z — —z are constructions over F.

In particular, if A = E,, x E,, is defined over Q(j(1),(72)), then Kum(A) admits a model
over the same field. The explicit CM expressions for j(7;) and j(72) will be used later to
determine minimal fields of definition.

Remark 4.5. Note d(2Q) = (2b)? —4(2a)(2c) = 4d(Q), so 1/d(2Q) = 24/d(Q); this gives the

identities for p; above.

Proposition 4.6 (Translation to @, g). Fiz a CM elliptic curve E with End(E) = 0 =
Z|fa] C K (conductor f). For m € Z~q let 0" = Z[mf «|. Then if E' = C/0" we have

dpp = ExE  |E] = [E]-6([E)) in CUO),

where ¢ = CI(0") — Cl(O) is the natural map [I'] — [OT]. The intersection form Q of
S g (see Proposition 4.3) is equal to mQg for Qg the quadratic form associated to the
isomorphism class [E] € C1(O) (see Theorem 2.5).

Conversely, given an intersection form @), one recovers m = ged(a,b,c) and E = C/(1, 1)
up to isomorphism, and thus <, g. (Compare [0, §6] and [], Thm. 4.2.4].)

Proof of Proposition /.6. Let Qg be the primitive positive—definite binary quadratic form
attached to [E] € Cl(0) via Cox’s form/ideal dictionary [3, Thm. 7.7].

Consider the product Ex E’, where E' = C/0". Then E = E,, and E' = E,, (see Remark 4.2
for the second isomorphism), where 71, 75 are as in the Shioda—Mitani classification of singular
abelian surfaces [8, Thm. 4.1] (cf. [6, §6]). Under this correspondence, the transcendental
lattice of £ x E’ has intersection form mQg.

Hence the intersection form of 7, g is Q(, ) = MQE.
Conversely, let A be a singular abelian surface with intersection form
2a b
@= ( b 20) '
Set m = ged(a,b,c) and Qp = %Q, which is primitive. With 7 = =tV —dac V;f"l“c one has
E = C/(1, 7). By the Shioda-Mitani classification [8, Thm. 4.1], the surface A is isomorphic

to
E, xE,,
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for a suitable 79, and hence A = E' x E’ with End(E’) = 0" = Z[mf a]. Thus A = o7, 5. O

Proposition 4.7. [6] For a singular K3 surface X with intersection form Q) having degree
of primitivity m, X has a model over the field Q(j(E), j(Z +m0O)) for E = C/A an elliptic
curve attached to the primitive form %Q via Cox’s form/ideal dictionary [3, Thm. 7.7] and
O =End(E), so 0" =7+ m0 is the order with discriminant disc(Q).

If 2| m, then X has a model over the field Q(j(E),j(Z + 50)).

Proof. This is [6, Prop. 10], restated in terms of E, & via Proposition 4.6. If 2 | m, then by
[7, Theorem 4] X = Kum(</) for the abelian surface &/ associated to 1Q by [8, Theorem
6]. Then Kum(./) has a model over Q(j(E),j(Z + 5 0)) by [6, Cor. 12]. O

Theorem 4.8. Let X be a singular K3 surface with intersection form @ having degree of
primitivity m, and let E = C/A an elliptic curve attached to the primitive form %Q via
Coz’s form/ideal dictionary [3, Thm. 7.7], with € = End(E). If [E]* = 1 € Cl(End(E)),
then X has a model over a field L with degree |Cl(Z + mO)| over Q.

If 2 | m, then if [E]* = 1 € Cl(End(FE)), then X has a model over a field L with degree
|ICUZ + 5 O)| over Q.

Proof. Let ¢ = End(F), and set &' = Z +m&'. By Proposition 4.7 (Schutt), the K3 surface
X admits a model over F := Q(j(E), j(Z+m0O)) = Q(j(E), j(C/0")).

Assume now that [E]? = 1 € CI(0). Then [E] has order < 2 in CI(&). Let Ey = C/0
(the identity class in Cl(€)). Since [E][Fy]™' = [E] has order < 2, Lemma 3.2.2 of [4]
(equivalently, the argument used in the proof of Theorem 3.7) implies

Q(i(B)) = Q(j(Ev)) = Q(i(C/O)).
Next, we apply Lemma 3.2.6 of [4] to the inclusion & C & and the curve C/&": since the
natural map ¢ : C1(¢") — C1(€) sends [C/0"] to [C/O], we obtain j(C/0) € Q(j(C/0")).
Therefore j(E) € Q(j(C/0)) C Q(j(C/¢")), and hence F = Q(j(C/0")).

Since C/0" has CM by ", the minimal polynomial of the j-invariant j(C/&”) is the Hilbert
class polynomial Hy (X) € Z[X], which has degree |Cl(0”)|. Consequently, [F' : Q] =
[Q(j(C/0") : Q] = |CY&")| = |CUZ + mO)|. This proves the first claim.

If 2 | m, set 0" = Z+20. By Proposition 4.7, X admits a model over F' = Q(j(E), j(Z +
20)) = Q(i(E), j(C/0")).

The same argument (using again [E]*> = 1) shows that j(E) € Q(j(C/0")), so F' =
Q(j(C/0")) and therefore [F': Q] = [CL(0")| = |CHZ + FO)|. O

Remark 4.9 (Relation to Schiitt’s results). Schiitt’s Lemma 20 in [0] identifies, for certain
singular K3 surfaces, when the degree of the field of definition attains a minimal value
determined by the associated class group, and in that setting the result is essentially optimal.
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By contrast, Theorem 4.8 should be viewed as an existence statement rather than a classifica-
tion. Our results do not assert that the K3 surfaces constructed here are the only ones whose
fields of definition have degree |Cl(Z +m End(£))| (or |CH(Z + % End(E))| when 2 | m). In-
stead, we show that there exist K3 surfaces such that their minimal field of definition having
this optimal degree, without restrictions on the discriminant of () or of m.

5 Appendix: Computations

In this appendix we describe various computations of j-invariants which we use in this paper.

To determine the homothety classes of lattices with complex multiplication by the order of
discriminant D and to compute their exact j-invariants, we proceed as follows. First, we
invoke Sage’s quadratic-form routines to list all primitive, positive-definite binary forms of
discriminant D. By the classical bijection between form classes and proper ideal classes in
Op ([3, Thm. 7.7]), each form f(z,y) = az?® 4+ bry + cy?® yields an explicit proper &p-ideal
and hence a CM-lattice up to homothety.

Next, we retrieve the Hilbert class polynomial Hp(X) from Sage’s database ([3, Prop.13.2]),
adjoin one of its roots to Q to realize the ring class field Lp, and factor Hp(X) over Lp to
obtain algebraic expressions for all CM-j-invariants.

Finally, to match each algebraic j-value with its corresponding lattice A = (1, 7), we compute
high-precision truncations of the classical g-expansion of j(7) ( [9, Prop. 9.12]) and compare
numerically. This workflow yields a complete and exact description of the homothety classes
and their j-invariants.

Consider the order & = Z[v/—36] C C, whose discriminant is A(¢) = —144 and whose class
number can be shown to be |Cl(A)| = 4. One convenient choice of representatives in terms
of primitive, positive-definite binary quadratic forms is

Qi(z,y) = 2°+36y%,  Qa(w,y) = da’*—day+8y°,  Qs(w,y) = 42°+9y%,  Qu(,y) = br’+4xy+8y>.
Equivalently, the corresponding lattices in C may be taken as

A =(1,60), Ay=(3,1—2i), A3=(3,2i), Ay = (3,14 2i),
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so that their period ratios are

, 1—2 21 1+2
T =060, To= T ngg, T4 = T

By the standard formula for the j-function one obtains Table 1.

We can go through a very similar process for the order Z[12i] to compute j-invariants and
find the fields of definition given in Table 2.

Using Tables 1 and 2 we are able to compute all possible decompositions @; g = Ey X E,
for d = 2 and the elliptic curves C/(3,2i),C/(3,1 — 2i). We can then compute the fields of
definition, which are given in Table 3.

k | Lattice A, and j(Ag)

0 | Ao = (1, 6i) = Z6i,

J(Ao) = 5894625992142600 +  34032639033336192v/3  +
3167093925247392+/12 + 914261265145368(v/12)°.

1| Ay = (3,1—2i),

7(Ay) = 5894625992142600 —  34032639033336192/3 —
(3167093925247392+/12 — 914261265145368(/12)3)i.

2 [ Ay = (3,24,
7(As) = 5894625992142600 -+  34032639033336192v/3  —

3167093925247392/12 — 914261265145368(v/12)3.

3 A = (3,1 +2i),

3(As) = 5894625992142600 —  34032639033336192v/3  +
(3167093925247392+/12 — 914261265145368(/12)?)i.

Table 1: The four j-invariants for lattices with CM by Z|[61].

[A] € CI(0) A Q(j(A))
(0,0 Z[124]) = (1,12i) | Q(v/2, V/3)

)
(0,1) Bi+4) | QW2iv3)
(0,2) (3,44) Q(v2,v3)
<O7 3) <37 1 - 4i> Q(\/ﬁa Z%)
(1,0) (2,1+6i) | Q(v2,V3)
(1’ 1) <6’ 1 - 2i> Q(\/i’ Z%)
(1,2) 6,3+2) | QW2 3)
(1,3) 6,1+2) | QW2,iV3)

Table 2: The fields of definition for the elliptic curves/lattices with CM by Z[12i]
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E=C/A | d| dop~C/A xC/Ay | Q((A1),j(A2)) | [QUL, j2) : Q)
(3,20 |2 ((1, 67), (3, 47)) Q(v2,V/3) 8
((1,61), (6,3 + 2i)) Q(v2,V/3) 8
((3,142i),(3,1 —4i)) | Q(v2,iv3) 8
((3,1+2i),(6,1+2i)) | Q(v2,iv/3) 8
((3,21), (1,124)) Q(v2,V/3) 8
((3,24), (2,1 4 64)) Q(v2,V/3) 8
((3,1—2i),(3,1+4i)) | Q(2,V3) 8
(<37 1— 2i>7 <67 1 - 22>) Q(\/i \75) 8
(3,1 —2:) | 2| (Z[64], (3,1 + 41)) Q(v2,v/3,1) 16
(Z[6i], (6,1 — 2i)) Q(v2,v/3,1) 16
((3,1 — 24), Z[121]) Q(v2,V/3,1) 16
((3,1—2i),(2,1+66)) | Q(v2,V3,1) 16
((3,2d), (3,1 — 44)) Q(V2,v/3,1) 16
((3,2i), (6,1 + 2i)) Q(v2,v/3,1) 16
((3,1 4 21), (3, 4i)) Q(v2,v/3,1) 16
((3,1423),(6,3+2i)) | Q(V2,V3,i) 16

Table 3: Decompositions as a product for the abelian surfaces % ¢ /(32 and 2% c/(3,1-2)

Table 4 lists representatives for C1(Z[9:¢]) ~ Z/6Z and records whether each class is a square,
together with the corresponding field generated by its j-invariant. In particular, the class 3
is not a square but lies in C1(Z[9:])% - C1(Z[9:])[2].

Class in CI(Z[9i]) | Representative lattice A | Square? Q((A))
0 (1, 94) = Z[91] yes real subfield of Ly,
1 (9, 1+ 3i) no Lajgi
2 (3, 1+ 34) yes real subfield of Ly
3 9, 1+1) no real subfield of Ly
4 (3, 1—30) yes real subfield of Ly
5 (9, 1—3i) no Lzjo

Table 4: Representatives for CI(Z[9i]) = Z/6Z.
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