
Delete and Retain: Efficient Unlearning for

Document Classification

Aadya Goel1 Mayuri Sridhar2

1Acton-Boxborough Regional High School 2MIT

Abstract

Machine unlearning aims to efficiently remove the influence of specific
training data from a model without full retraining. While much progress
has been made in unlearning for LLMs, document classification models
remain relatively understudied. In this paper, we study class-level un-
learning for document classifiers and present Hessian Reassignment, a
two-step, model-agnostic solution. First, we perform a single influence-
style update that subtracts the contribution of all training points from
the target class by solving a Hessian–vector system with conjugate gra-
dients, requiring only gradient and Hessian-vector products. Second, in
contrast to common unlearning baselines that randomly reclassify deleted-
class samples, we enforce a decision-space guarantee via Top-1 classifica-
tion. On standard text benchmarks, Hessian Reassignment achieves
retained-class accuracy close to full retrain-without-class while running or-
ders of magnitude faster. Additionally, it consistently lowers membership-
inference advantage on the removed class, measured with pooled multi-
shadow attacks. These results demonstrate a practical, principled path to
efficient class unlearning in document classification.

Keywords: Machine Unlearning · Document Classification · Hessian ·
Data Privacy · Forgetting

1 Introduction

Modern machine learning systems increasingly operate under legal and user-
driven deletion requests, including right-to-be-forgotten [1] provisions in regu-
lations such as CCPA [2] and GDPR [3]. Exact unlearning by retraining from
scratch is conceptually simple but often impractical for production models due
to compute budgets and continual data churn. This tension has motivated ma-
chine unlearning [4], algorithms that remove the influence of specified training
data from a deployed model without full retraining [5, 6, 7]. While prior work
has largely considered removing individual points or small subsets via influence
approximations [8], gradient-based adjustments [7], or partitioned training [5],
these designs do not directly exploit additional structure in the deletion request.

1



Delete and Retain: Efficient Unlearning for Document Classification 2

We study the setting where an entire class must be forgotten in a trained
document classifier. This situation arises when a label is deemed sensitive, a
cohort associated with a category requests erasure, or other related events. After
unlearning, the model must still produce predictions over the remaining labels
for all inputs, including documents that originally belonged to the deleted class.

While existing methods remove the influence of the target class, they ignore
the score ordering learned by the original model, degrading model utility [9].
Instead, we propose unlearning through top-1 reclassification.

Our key observation is that a trained document classifier already encodes a
coherent ranking over these non-target labels for each input. We design a two-
step, model-agnostic procedure that preserves this structure while removing the
influence of the target class. We apply a single second-order “downweight” cor-
rection step and then do deterministic reassignment.

This paper makes the following contributions:

• We formalize class-level unlearning for document classifiers and identify
the decision-space ambiguity it introduces.

• It introduces Hessian Reassignment, a simple two-step unlearning pro-
cedure that combines a single class-level Hessian downweight update with
a deterministic next-top-1 decision rule over non-target labels.

• It shows empirically, on standard text benchmarks, that this procedure
matches complete retraining on retained-class accuracy while substantially
improving privacy and utility over Random Relabeling..

2 Related Work

2.1 Machine Unlearning Frameworks

Machine unlearning methods aim to remove the influence of specific training
data without retraining from scratch. Several lines of work study scalable exact
procedures for deep models [10], feature- and label-level removal [11], and the
utility–complexity trade-offs of unlearning under distribution shift [12]. Other
work emphasizes practical challenges around data quality, storage, and access,
treating unlearning as a systems and data-management problem as much as an
algorithmic one [13].

In language models, unlearning has been used for privacy-preserving fine-
tuning [14], probing what information remains after deletion [15], analyzing the
impact of pretraining data via removal [16], and efficiently forgetting specific
content or behaviors in large pretrained models [27, 28]. Overall, these frame-
works primarily address point-level or subset-level deletion in deep architectures.
In contrast, this paper considers removing an entire class from a document clas-
sifier while preserving the structure of predictions over the remaining labels.
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2.2 Training Data Influence and Second-Order Methods

Training-data influence methods use information about the local curvature of
the loss landscape, captured by the Hessian, to approximate how adding or
removing examples would shift model parameters. One line of work estimates
influence by tracing gradient descent trajectories [17], while another develops
second-order group influence functions that analyze how sets of examples affect
predictions via Hessian-based approximations [18]. Subsequent studies show
that such estimates can be fragile in deep models and survey techniques for
more robust influence analysis across architectures [19, 20].

Influence-style ideas have also been applied directly to unlearning, for exam-
ple by tracing influential training data in language models [21] or using differen-
tial gradient approximations to scale influence estimation to larger systems [22].
The approach in this paper is conceptually related in that it uses second-order
information, but rather than estimating pointwise influence or tracing train-
ing trajectories, it applies a single class-level Hessian downweight update that
removes the aggregate contribution of all deleted-class examples in one step.

2.3 Unlearning in NLP and Document Models

Beyond generic unlearning frameworks, there is a growing body of work focused
on natural language processing and large language models. Several methods
use machine unlearning to remove memorized content, sensitive information, or
undesired behaviors from pretrained language models [14, 16, 27, 28]. These
approaches often operate at the level of model parameters, adapters, or task-
specific heads for sequence models, and are typically designed for transformer-
based architectures.

The setting studied in this paper is different: classical document classifi-
cation with TF–IDF features and a linear-softmax head. While the techniques
developed for language models could in principle be adapted to simpler pipelines,
existing methods do not exploit the specific structure of class-level deletions in
multi-class document classifiers. Here, the goal is to remove a full label and all
of its training examples while preserving the model’s learned ordering over the
remaining labels. Unlike point deletions, class-level unlearning simultaneously
alters the empirical label distribution and the geometry of multiple decision
boundaries.

A central design choice here is how the model should behave on deleted-
class documents. A simple and commonly referenced approach in document
classification is to randomly reassign removed samples across the remaining
classes (“Random Relabeling”) [9]. Although easy to implement, this destroys
the score ordering learned by the original model, often degrading utility and
inducing unstable decision regions. Our proposed method addresses this by
combining a deterministic next-top-1 decision rule with a single Hessian-based
update.
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2.4 Membership Inference Attack

Membership inference attacks (MIAs) evaluate whether a model reveals if a
particular data point was part of its training dataset. A central framework is
the shadow-model approach, in which an adversary trains auxiliary models to
mimic a held-out target model and then uses confidence scores to distinguish
members from non-members [23]. Follow-up work generalizes these ideas to a
broader range of models and data regimes and shows that overfitting strongly
correlates with privacy risk, and that membership inference remains a concern
even for synthetic or heavily processed data [24, 25, 26].

These results motivate our privacy metrics. By measuring membership-
inference ROC–AUC on both retained-class and deleted-class examples, we can
quantify how much the proposed unlearning procedure reduces membership
leakage, especially for the class that is supposed to be “forgotten.”

3 Problem Formulation

Setting and notation. Let D = {(xi, yi)}ni=1 be a training corpus with docu-
ments xi ∈ X and labels yi ∈ Y = {1, . . . ,K}. A classifier with parameters W
produces class probabilities

pW (y | x) = softmax
(
sW (x)

)
y
,

where sW (x) ∈ RK are model scores (architecture-agnostic). The empirical
objective is

ℓ(W ;D) =
1

n

n∑
i=1

L
(
sW (xi), yi

)
+Ω(W ),

with a standard loss L (e.g., cross-entropy) and regularizer Ω. Let the following
denote the trained model

W ⋆ = argmin
W

ℓ(W ;D).

Class-level deletion. Given a target class c ∈ Y, the request is to forget all
its training examples Dc = {(xi, yi) : yi = c}.

The retained dataset and label set are D−c = D \ Dc and Y−c = Y \ {c},
respectively.

Unlearning objective. An unlearning operator Uc maps (D,W ⋆) to unlearned

model W̃ such that:

1. Deletion consistency. On any evaluation set supported on Y−c, the

performance of W̃ matches that of the complete retraining solution

W ⋆
−c = argmin

W
ℓ(W ;D−c).
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2. Viable predictions for removed examples. For all x originally labeled
c, W̃ produces a distribution over Y−c (i.e., does not route probability
mass to the removed class).

3. Privacy after deletion. Membership information about Dc is obscured
under standard attacks (e.g., MIA), ideally approaching the attack per-
formance against W ⋆

−c.

We measure (1) via accuracy on Y−c, (2) via probability diagnostics over Y−c

(margins, KL), and (3) via removed-class MIA AUC.

Structure-Preserving Reassignment via Next Top-1 For each deleted-
class document x ∈ Dc, define the next top-1 label under the pre-unlearning
model W ⋆:

ϕ−c(x) = arg max
y∈Y−c

pW⋆(y | x).

This answers the counterfactual: If class c had never existed, which class would
the deleted-class document be classified to? We refer to x 7→ ϕ−c(x) as a
structure-preserving reassignment, since it preserves the learned score order-
ing among non-removed classes.

Golden Standard We treat W ⋆
−c as the “Golden Standard” reference. The

ideal unlearned model W−c is defined as the classifier retrained from scratch on
D−c.

For a test distribution T over X × Y−c, a utility metric U (e.g., accuracy)
and a privacy metric P (e.g., MIA AUC on Dc), we desire

U(W̃ ; T ) ≈ U(W ⋆
−c; T ) and P (W̃ ) ≈ P (W ⋆

−c).

State-of-the-Art Baseline: Random Relabeling The current state-of-the-
art class-level baseline in document classification unlearning is random relabel-
ing [9], where each deleted-class document x ∈ Dc is reassigned a label sampled
uniformly from the remaining set Y−c and the model is fine-tuned or retrained
on the modified dataset.

By construction, this scheme treats all non-c labels as equally plausible for
deleted examples, ignoring the model’s pre-existing ranking over Y−c and re-
placing it with independent random targets. In other words, it injects heavy
label noise concentrated on the forget set.

Prior work has noted that such relabeling-based unlearning can impair gen-
eralization or cause over-forgetting in deep models [9, 29, 30], and in our ex-
periments (Section 6) we likewise observe that random relabeling often trades
away retained-class utility to achieve privacy on the deleted class.

Requirements Specific to Class-Level Deletions

1. Order preservation. For x /∈ Dc, the ranking over Y−c under W̃ remains
close to that under W ⋆.
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2. Privacy focus. Post-deletion attack advantage on Dc should approach
chance (AUC ≈ 0.5), while retaining utility on D−c.

These properties define the target behavior independently of architecture and
guide both our method and evaluation.

4 Methodology

Let D = {(xi, yi)}ni=1 be a labeled corpus with yi ∈ Y and model parameters θ
trained to minimize a regularized empirical loss

L(θ) =
n∑

i=1

ℓ(xi, yi; θ) + Ω(θ).

A deletion request specifies a target class c ∈ Y. After unlearning, the model
should (i) forget membership information tied to class c and (ii) preserve pre-
dictions among the remaining labels Y−c. We report utility as test accuracy
excluding class c, and privacy via retained-class membership-inference AUC.

4.1 Top-1 classification reassignment

For each training point with yi = c, define its next top-1 label under the pre-
unlearning model:

ri = argmax
k ̸=c

sk(xi; θ),

where sk are the model scores (e.g., logits). This deterministic rule preserves the
model’s score ordering among non-c classes and provides a stable target after
deletion. We use this rule to define target reassignment behavior for deleted-
class points.

4.2 Hessian downweight update

Recall the regularized empirical loss ∇L(θ). Deleting class c replaces L by

L(−c)(θ) =
∑
i/∈Ic

ℓ(xi, yi; θ) + Ω(θ), Ic{ i : yi = c }.

The new optimizer θ⋆ satisfies

∇L(−c)(θ⋆) = 0.

A second-order Taylor expansion of ∇L(−c) around θ gives

∇L(−c)(θ⋆) ≈ ∇L(−c)(θ) +H(θ) (θ⋆ − θ) = − gc(θ) +H(θ)∆θ,
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where H(θ) := ∇2L(θ)1 and

gc(θ) :=
∑
i∈Ic

∇ℓ(xi, yi; θ)

is exactly the gradient contribution of the deleted class. Setting the linearized
gradient to zero yields the inexact Newton step

∆θ = H(θ)−1gc(θ), θ′ = θ − ∆θ. (1)

We call Eq. (1) a Hessian downweight. It subtracts (downweights) the first-
and second-order influence of the deleted terms from the optimality conditions
without performing complete retraining.

In Newton methods, H(θ)−1 maps a desired change in the gradient (here, re-
moving gc) to a parameter move that cancels it to first order. Intuitively, H−1

rescales each parameter direction by the local curvature: flat directions (small
eigenvalues) require larger moves; stiff directions require smaller ones. Under a
second-order optimization, θ′ is the first order approximation to the optimizer
obtained by retraining on D−c.

4.3 Instantiation for multinomial logistic regression

For a linear-softmax classifier with weights W ∈ RK×d (no intercept), let P =
softmax(XW⊤). The gradient contribution of one sample (xi, yi) is

∇W ℓi = (pi − eyi)x
⊤
i ,

and the Hessian-vector product with V ∈ RK×d is

H[V ] =
((

P ⊙ U
)
−
(
P ⊙ (s1⊤

K)
))⊤

X + λV,

where
U = XV ⊤ ∈ Rn×K

and s ∈ Rn has entries

si =

K∑
k=1

Pik Uik

(i.e., the per-row sum over classes). Here λ comes from the ℓ2 regularizer.
We compute ∆ = H−1Gc via conjugate gradients using only HVPs, and set
W ′ = W −∆.

1Using H(θ) rather than ∇2L(−c)(θ) yields the same first-order correction at θ and is more
stable in practice.
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4.4 Zeroing the removed output at release

At deployment we make the removed class inert by nulling its output channel
(e.g., zeroing the corresponding logit row in a linear-softmax head) and re-
normalizing probabilities over Y−c. This prevents any downstream consumer
from selecting class c.

5 Baselines & Evaluations

5.1 Baselines

Hessian Reassignment We will refer to our algorithm as Hessian Reassign-
ment throughout the rest of this paper. This represents the Hessian downweight
update (Sec. 4) with top-1 classification reassignment and a zeroed output for
the removed class at release.

Random Relabeling (state-of-the-art baseline). All training points with
yi = c are reassigned uniformly at random to labels in Y−c, after which the
model is fine-tuned/updated on the modified corpus. This baseline ignores the
original score ordering and serves as the method we aim to outperform. Note
that random relabeling keeps all datapoints with yi = c and serves as an ap-
proximate unlearning mechanism rather than a deletion-based ground truth.

Complete retraining (Golden Standard). We remove all training examples
with label c and retrain the classifier from scratch on D−c. This produces the
ideal counterfactual model W−c which represents the exact behavior the system
would exhibit had class c never been part of the training set.

5.2 Metrics

5.2.1 Model Utility

We report two accuracy-style utilities:

Accuracy excluding the removed class. Let ŷ(x) be the post-unlearning
prediction over labels Y−c (the removed output is made inert and probabilities
re-normalized). We compute

Acc\c =
1

|{i : yi ̸= c}|
∑

i: yi ̸=c

1{ŷ(xi) = yi}.

Agreement on the removed class w.r.t. the golden standard. Let Ic =
{i : yi = c} be the indices of the deleted class. Let ŷ ours(x) denote our model’s
prediction after unlearning and ŷGS(x) denote the prediction from complete
retraining model W−c (Golden Standard). We measure how well our method
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reproduces the golden standard on the removed-class documents:

Agreec =
1

|Ic|
∑
i∈Ic

1
{
ŷ ours(xi) = ŷGS(xi)

}
.

5.2.2 Privacy (Membership Inference).

We evaluate membership–inference risk with a fixed attacker trained on shadow
models. For a target model after removing class c, let p(x) ∈ ∆K−1 denote
the prediction vector over the remaining classes (i.e., we drop class c and re-
normalize). The attacker uses a feature vector ϕ(x) that concatenates several
statistics derived from the model’s prediction on input x. Let ∥ denote vector
concatenation. Then

ϕ(x) =
[
p(x) ∥ H

(
p(x)

)
∥ − log pỹ(x) ∥ gap

(
p(x)

) ]
,

where entropy is

H(p) = −
∑
j

pj log pj ,

ỹ is the model’s top-1 predicted label among the retained classes, and the top-2
probability gap is

gap(p) = p(1) − p(2)

(p(1) ≥ p(2) are the largest two entries of p).

We instantiate a membership attacker as a scoring function

f(x;ϕ) ∈ [0, 1],

which takes the feature vector ϕ(x) as input and outputs a membership score
(higher values indicating that x is more likely to be a training example). Con-
cretely, f(x;ϕ) is implemented as a logistic-regression classifier trained on shadow
data to distinguish member (train) vs. non-member (test) examples using ϕ(x)
as features.

We then report ROC–AUC on the target model under two filters:

AUCret = ROC-AUC
(
{i : yi ̸= c}

)
, AUCc = ROC-AUC

(
{i : yi = c}

)
.

Lower ROC-AUC scores indicate a stronger privacy guarantee. In particular we
desire AUCc ≈ 0.5.

5.3 Datasets and Experimental Setup

Datasets. We evaluate on three widely used multi-class document classification
benchmarks: 20 Newsgroups, AG News, and DBPedia-14. These datasets
are standard in text classification research and offer complementary levels of
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difficulty and class granularity, making them well-suited for studying class-level
unlearning.

Specifically, 20 Newsgroups contains documents from 20 balanced topics
spanning technology, politics, recreation, and science. Its relatively high number
of classes and moderate document length make it a challenging test of whether
unlearning preserves fine-grained decision boundaries.

AG News includes news articles labeled into 4 broad categories. Its lower
intrinsic dimensionality allows us to test whether our method remains stable
when classes are coarse-grained and semantically distinct, a setting where ran-
dom relabeling tends to be particularly harmful.

DBPedia is a 14-class ontology-based dataset derived from Wikipedia, with
short, well-structured descriptions. It provides a clean, high-accuracy baseline
to assess whether unlearning introduces noise.

Together, these datasets cover a spectrum of class counts, label semantics,
document lengths, and difficulty levels. They form a natural testbed for class-
level unlearning as one class changes the structure of the remaining label space
in different ways across each dataset.

Model. Our backbone classifier is a multinomial logistic regression model with
ℓ2 regularization, trained on TF–IDF features (Fig 1). For each dataset, we
tokenize, lowercase, remove stopwords, and construct TF–IDF representations
using sublinear term frequency, min df=2, and a maximum vocabulary size of
50K. The classifier is trained with L-BFGS until convergence with a gradient
tolerance of 10−5 and regularization strength C = 10.0 unless otherwise noted.
A validation split comprising 10% of the training data is used for early stopping.
This simple linear-softmax pipeline achieves strong baseline accuracy while ex-
posing the influence of curvature (Section 4) in a transparent manner.

Figure 1: Architecture of the backbone document classifier.

Unlearning Procedure. For each class c, we compute the class-level gradient
term for Dc, solve the Hessian–vector system with conjugate gradients (toler-
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ance 10−4, maximum 200 iterations), apply the downweight update, and zero
the deleted channel at inference. All experiments are repeated over 5 random
seeds.

Attack Model. We adopt the shadow-model membership-inference setup
used in prior work. We construct a pooled shadow dataset by repeatedly sub-
sampling the original training corpus into disjoint shadow train/shadow holdout
splits and training S = 10 shadow models, each replicating the full training
pipeline. For post-unlearning evaluation, each shadow applies the same un-
learning procedure (remove class c, apply the Hessian downweight, and zero the
removed logit) before emitting prediction vectors.

For each example, we compute the attacker feature vector ϕ(x) defined in
Section 5.2.2, and train a logistic-regression attacker on the pooled shadow
features with balanced classes. The attacker is then evaluated on the target
model to obtain AUCret and AUCc.

6 Results

6.1 Model Utility

We measure utility on the following conditions in Table 1:

(a) Overall accuracy on the pre-unlearning model

(b) Post-unlearning accuracy on the retain classes with Golden Standard

(c) Post-unlearning accuracy on the retain classes with Random Relabel-
ing

(d) Post-unlearning accuracy on the retain classes with Hessian Reassign-
ment

(e) The agreement rate on test items with y=c between the Golden Stan-
dard and Hessian Reassignment, i.e., the fraction of deleted-class test
documents for which both methods predict the same label among the re-
tained classes.

Table 1: Utility comparison and agreement on deleted class.

Method 20 Newsgroup AG News DBPedia-14

Pre-Unlearning 93.58% 92.14% 98.33%
Golden Standard 93.73% 95.65% 98.43%
Random Relabel 83.45% 84.58% 88.46%
Hessian Reassignment 93.15% 95.04% 97.55%
Unlearned Class Agreement 87.77% 88.16% 90.46%
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Across all three datasets, Hessian Reassignment matches the Golden Stan-
dard on retained-class accuracy while substantially outperforming Random
Relabeling. The agreement on the deleted class is high (≈88%), indicating
that the top-1 reassignment used in Hessian Reassignment is closely mir-
rored by the Golden Standard.

6.2 Confidence Distribution

To understand how unlearning affects the model’s behavior, we study changes
in confidence. For a classifier with output probabilities p(x), the confidence that
the model assigns to a label y is captured by the top-1 probability margin

m(x; y) = py(x) − max
j ̸=y

pj(x).

A positive margin means the model prefers y over all alternatives (confident
correct prediction); a negative margin means some other label has higher
probability (confident misprediction). Values near 1 correspond to near-total
confidence, values near 0 to uncertainty, and values near −1 to high confidence
in a wrong label.

Target-class documents. We first examine test examples whose original la-
bel is the deleted class c. Before unlearning (Fig. 2a), these examples have
margins m(x; c) that are mostly large and positive, indicating that the model
strongly prefers class c on inputs it has been trained to recognize. After un-
learning (Fig. 2b), we treat the Golden Standard reassignment ỹ(x) (obtained
from retraining on D−c) as the reference label and plot m(x; ỹ(x)). The post-
unlearning distribution again shows large positive margins: the model now
assigns high confidence to the next-top-1 labels in Y−c rather than to
the removed class.

(a) Before Unlearning (b) After Unlearning

Figure 2: Confidence Distribution on Target Class

Retained-class documents We next consider test examples with labels in
the retained set Y−c. For these, we use the true label as reference and plot
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m(x; y) before and after unlearning (Fig. 3). In both cases, margins are sharply
concentrated near 1.0. The model remains highly confident and correct
on retained classes. Visually, the two curves are almost indistinguishable.
Quantitatively, a Kolmogorov–Smirnov test on the before/after distributions
yields D = 0.0056, p = 1.00, indicating no measurable statistical distributional
shift after unlearning. The update therefore targets the removed class without
disturbing how confident the model is on the remaining labels.

(a) Before Unlearning (b) After Unlearning

Figure 3: Confidence Distribution on Retain Classes

6.3 Model Privacy

We evaluate membership-inference (MIA) risk with the fixed shadow-model at-
tacker as described in Section 5.2.1. For each method, we report ROC–AUC on
(i) documents whose labels are in the retained set (AUCret) and (ii) documents
whose true label equals the removed class (AUCc). Table 2 summarizes results
across datasets.

Table 2: Membership-inference ROC–AUC.

Method Group 20Newsgroups AG News DBPedia

Pre-
Unlearning

Retain 0.6635 0.5569 0.6832
Target 0.6946 0.5510 0.6794

Random
Relabeling

Retain 0.6346 0.5163 0.6147
Target 0.5530 0.5181 0.5228

Hessian
Reassignment

Retain 0.6219 0.5235 0.6234
Target 0.5109 0.5161 0.5094

In this setting, an ROC–AUC of 1.0 corresponds to a perfect attacker that can
always distinguish training examples from non-members, and an ROC–AUC of
0.5 corresponds to a random-guess attacker that does no better than flipping a
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fair coin. Values closer to 0.5 therefore indicate stronger privacy, while values
well above 0.5 indicate leakage.

Across all three datasets, Hessian Reassignment consistently drives the
Target AUC (deleted class) toward the random-guess regime of 0.5. AUCc

drops from roughly 0.69 (pre-unlearning) and 0.65 (Random Relabeling) on 20
Newsgroups to 0.51 with our method, and shows similar behavior on AG News
and DBPedia–14. At the same time, the Retain AUC (non-deleted classes)
remains in the same range as the baselines. This pattern means that the Hessian
downweight step is particularly effective at erasing membership information tied
to the deleted class, without materially harming the privacy of the retained
classes.

6.4 Noise Trade-Offs

We study the privacy-utility trade-off by injecting Gaussian logit noise at release
after our Hessian downweight. For each regularization C and privacy target τ
(desired AUCret), we search the smallest σ such that AUCret≤τ , and we report
(i) retained-class accuracy at σ and (ii) log10 σ .

Figure 4: Privacy-utility heatmaps. Top: retained-class accuracy attained by
the minimum noise σ that achieves the retain-class AUCret≤τ . Bottom: log10 σ
(purple ≈ 0 noise).

Figure 4 illustrates our results. For moderate τ (e.g., 0.6), σ ≈ 0 across most
C and utility remains maximal. Pushing τ toward 0.5 requires nonzero noise
chiefly at larger C, with a measured but localized utility drop. In all other
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settings, utility is essentially unchanged, indicating that our method already
yields strong privacy on the deleted class without sacrificing performance on
retained classes.

6.5 Model Efficiency

We measured end-to-end time to produce the released model after a deletion re-
quest for both full retraining (Gold Standard) and Hessian Reassignment.

Figure 5: Runtime efficiency

Figure 5 compares the time to produce the released model on DPBedia-14.
Complete Retraining takes roughly ∼602 seconds (around 10 minutes), whereas
Hessian Reassignment finishes in about ∼53 seconds. The gain comes from
replacing full optimization over the corpus with a single conjugate–gradient
solve using Hessian–vector products. Importantly, this acceleration does not
sacrifice quality. Sections 6.1 and 6.3 show retained–class accuracy and target
class privacy remaining high.

7 Discussion

This work shows that deterministic next–top-1 reassignment through a single
Hessian downweight step provides a practical route to class-level unlearning for
document classifiers. Empirically, Hessian Reassignment matches Golden
Standard (complete retraining) on retained-class utility and consistently sur-
passes Random Relabeling. The retained-class confidence distribution re-
mains effectively unchanged (e.g., KS p=1.0 on 20 Newsgroups), while the
model is confident in its next top-1 prediction for the target class. Privacy fol-
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lows suit: membership-inference ROC–AUC on the target class moves toward
chance (AUCc≈0.5) without sacrificing retained-class accuracy.

The top–1 reassignment preserves the model’s relative score ordering among
non-target labels, avoiding contradictory supervision that random relabeling
introduces. The Hessian downweight then acts as an inexact Newton correc-
tion, canceling the deleted class’s first-order influence using the local curvature,
yielding a parameter move that respects the existing geometry of the decision
boundaries. As a result, no iterative retraining is required.

For multi-class text settings with moderate regularization, the method is a
strong default: it achieves near–retraining utility on retained classes and drives
the target-class MIA toward 0.5 without extra noise. When AUCret remains
above a policy threshold, our heatmaps indicate that only small logit noise is
needed to close the gap.

8 Future Work

Looking ahead, several directions appear promising. First, the Hessian down-
weight step could be adapted to richer text pipelines, including neural networks
and transformer models. Additionally, developing lightweight certificates that
quantify how much influence remains after the downweight update would move
the approach closer to provable guarantees. Together, these directions would
help translate the simplicity of our framework to a wider range of modern NLP
systems.

9 Conclusion

We presented a simple, efficient algorithm for class-level unlearning in document
classification: deterministically reassign deleted-class examples to their next
top–1 label and apply a single Hessian downweight to remove the deleted class’s
first-order influence. Across standard text benchmarks, Hessian Reassign-
ment matches the Golden Standard (complete retraining) on retained-class
accuracy, substantially outperforms Random Relabeling, and drives target-
class membership–inference AUC toward chance, all while leaving retained-class
confidence distributions effectively unchanged.

Conceptually, next–top-1 reassignment preserves the model’s learned order-
ing among the remaining labels, and the downweight step uses local curvature
to make the smallest corrective move consistent with that structure. Practi-
cally, this yields a training-free alternative to complete retraining with strong
utility–privacy balance.
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