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Abstract

Fairness in machine learning has become a critical concern, particularly
for decision making systems that rely on learned representations and are
trained on data containing historical and societal biases. In this work,
we study fairness in embedding-based models from two complementary
perspectives. First, we examine gender bias in text embeddings produced
by pretrained language models and propose a baseline method based on
sparse autoencoders to disentangle a gender-related feature and mitigate
bias at the embedding level. While effective for natural language data,
this approach relies on carefully constructed contrasting examples and is
difficult to extend to other data modalities.

To address this limitation, we propose IterativeSifting, a general frame-
work for improving fairness in embedding-based decision making models.
IterativeSifting iteratively identifies and removes latent features and proxy
information associated with one or more sensitive attributes, including
their intersections, while preserving task-relevant information for accu-
rate prediction. The method is model-agnostic and applicable to a wide
range of data types, including tabular and graph-structured data.

We evaluate IterativeSifting on standard fairness benchmarks, includ-
ing the Adult Census Income and ACSIncome datasets, using gender and
race as sensitive attributes. Experimental results show that IterativeSift-
ing substantially reduces sensitive attribute information in learned embed-
dings and significantly improves intersectional fairness, as measured by
mutual information and maximum equalized odds difference, while main-
taining competitive predictive performance. These results demonstrate
the effectiveness of IterativeSifting as a practical approach for mitigating
bias in embedding-based decision making systems.

1 Introduction

Machine learning models are increasingly used to support high-stakes decision
making tasks, such as hiring, admissions, and content moderation [1]. In these
settings, models are often trained on large datasets that reflect historical and
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societal biases, which may lead to unfair or discriminatory outcomes for in-
dividuals associated with sensitive attributes such as gender or race [2]. A
central challenge in addressing these issues is that modern models typically op-
erate on learned latent representations, or embeddings, in which task-relevant
information and sensitive attribute information are deeply entangled [12]. Un-
derstanding how bias manifests in embeddings, and how it can be measured and
mitigated without substantially degrading predictive performance, is therefore
a key problem in the study of fairness in machine learning.

Related challenges arise in settings where it is desirable to remove or suppress
specific information from a trained model without retraining it from scratch. In
prior work, I studied the removal of relational information, such as edges, from
graph neural network models, where structural dependencies in the data com-
plicate the isolation of individual relationships. Although the focus of that work
differs from fairness, a similar phenomenon appears in embedding-based mod-
els: information of interest is not explicitly stored, but is implicitly encoded
in learned representations. In the context of fairness, sensitive attribute infor-
mation may be diffusely embedded across latent features, making it difficult to
reduce bias without affecting task-relevant performance. This report builds on
these insights to study how bias manifests in embeddings and how it can be
measured and mitigated in both language models and decision making systems.

Pretrained language models are now widely used in modern machine learning
systems. We first investigate bias and fairness in the text embeddings produced
by these models. As a baseline, we propose a method based on sparse autoen-
coders (SAEs) [3] to disentangle a sensitive attribute, such as gender, and to
reveal systematic biases in word embeddings. We further introduce two strate-
gies for mitigating such biases at the embedding level. However, this approach
relies on carefully curated contrasting examples, which may be difficult or in-
feasible to obtain for many data modalities.

To address these limitations, we propose IterativeSifting, a general frame-
work for improving fairness in embedding-based decision making models. Iter-
ativeSifting operates directly on learned representations and does not require
carefully constructed contrasting examples. Instead, it iteratively identifies and
removes latent features and proxy information associated with one or more sen-
sitive attributes, such as gender and race, while preserving the information nec-
essary for accurate task prediction. The method is model-agnostic and can be
applied to a wide range of data modalities, including tabular data, graphs, and
text, making it suitable for real-world decision making scenarios where sensitive
attributes and their proxies are deeply entangled in the data.

We evaluate IterativeSifting on standard fairness benchmarks, including the
Adult Census Income dataset [22] and the ACSIncome dataset [23], consider-
ing both gender and race as sensitive attributes. Experimental results show
that IterativeSifting substantially reduces sensitive attribute information in the
learned embeddings, as measured by mutual information, and significantly im-
proves intersectional fairness at the decision level, as reflected by reduced max-
imum equalized odds differences [7] across demographic groups. Importantly,
these fairness gains are achieved while maintaining competitive predictive accu-
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racy on the target task, demonstrating that IterativeSifting effectively balances
fairness and utility in embedding-based decision making models.

2 Related Work

Fairness in machine learning has been widely studied in the context of algo-
rithmic decision making systems that affect individuals, such as hiring, lending,
and criminal justice. A foundational line of work formalizes different notions
of fairness at the level of model outputs, including demographic parity, equal
opportunity, and equalized odds [7, 8]. Among these, equalized odds is par-
ticularly popular because it controls disparities in both true positive and false
positive rates across sensitive groups. Recent work has further emphasized the
importance of evaluating fairness over intersectional groups formed by multiple
sensitive attributes, as fairness guarantees with respect to individual attributes
may fail for their intersections [9, 10].

Fair representation learning. A major line of research focuses on learn-
ing fair or invariant representations that remove sensitive attribute information
while preserving task-relevant features. One influential approach is adversarial
debiasing, where an encoder is trained to be predictive of the target task while
simultaneously preventing an adversarial discriminator from predicting sensitive
attributes [11, 12, 13]. Such adversarial methods have been applied across vari-
ous data modalities, including tabular data, images, and graphs [14]. However,
adversarial training can be unstable and often requires careful tuning to balance
fairness and utility.

Other representation-level approaches explicitly regularize the dependence
between learned representations and sensitive attributes, for example by mini-
mizing mutual information or enforcing independence constraints [15, 16]. These
methods are closely related to information bottleneck principles and offer a more
direct way to quantify sensitive attribute leakage. Nevertheless, many existing
approaches focus on a single sensitive attribute and do not naturally extend to
intersectional fairness involving multiple attributes and their proxies.

Intersectional fairness. Intersectional fairness has received increasing at-
tention as researchers recognize that optimizing average fairness metrics can
mask severe disparities for minority subgroups. Several works propose worst-
group or max-gap objectives that explicitly optimize for the most disadvantaged
group [9]. While these approaches improve fairness at the outcome level, they
often do not directly address sensitive attribute information encoded in inter-
mediate representations, which can still propagate bias to downstream tasks.

Bias in text embeddings and language models. Bias in pretrained lan-
guage models and their embeddings has been extensively documented. Early
studies demonstrated that word embeddings encode strong gender and racial
stereotypes, even for words intended to be neutral [17, 6]. Subsequent work
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proposed post-processing and fine-tuning methods to mitigate such biases, of-
ten relying on carefully constructed pairs of gendered words or projection-based
techniques [17, 18]. While effective for textual data, these methods typically
rely on domain-specific assumptions and do not readily generalize to other data
modalities or to embedding-based decision making pipelines.

Limitations of prior work and our contribution. Most existing debias-
ing methods either rely on explicit sensitive attributes, adversarial objectives,
or carefully constructed contrasting examples, or focus primarily on fairness at
the output level. In contrast, our work addresses fairness in general embedding-
based decision making models by proposing IterativeSifting, an iterative repre-
sentation learning framework that progressively identifies and removes sensitive
attribute information and proxy features. Unlike prior approaches, IterativeSift-
ing naturally supports multiple sensitive attributes and intersectional groups,
and does not require paired examples or modality-specific assumptions.

3 Gender Bias in Text Embeddings and a Base-
line Mitigation Method

Pretrained language models are widely used in natural language processing due
to their ability to map text into dense vector representations, or embeddings,
that support a variety of downstream tasks [4, 5]. These embeddings are often
reused as fixed representations rather than trained end-to-end, making their
properties particularly important. However, because they are learned from
large-scale text corpora, such representations may encode societal and histori-
cal biases present in the data [6, 17]. This section examines how gender bias
manifests in text embeddings and motivates the need for methods to identify
and mitigate its effects.

3.1 Gender Bias in Pretrained Language Models

Pretrained language models and their associated embeddings are widely used
as foundational components in modern natural language processing systems.
Word- and sentence-level embeddings produced by these models capture rich
semantic and syntactic information and are commonly reused across a variety
of downstream tasks, including sentiment analysis, text classification, informa-
tion retrieval, and as inputs to generative models. Because these embeddings
are often treated as generic representations of meaning, it is typically assumed
that words or phrases that are semantically gender-neutral—such as “manager”,
“nurse”, “babysitter”, “champion”, or “engineer”—should not encode strong
gender-related information.

However, prior work has shown that pretrained language models can reflect
historical and cultural biases present in their training corpora, and similar ef-
fects can be observed in their learned embedding spaces [6, 17]. In particular,
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when gender-related features are extracted from embeddings, many words that
are intended to be neutral exhibit a significant association with either male or
female attributes. These biases are not inherent to the meanings of the words
themselves, but rather reflect patterns of representation and usage in large-scale
text data. As a result, gender bias can be implicitly encoded in the geometry
of the embedding space, influencing similarity relationships and downstream
model behavior.

Such biases may lead to unintended or harmful consequences when embed-
dings are used in practice. For example, biased representations can affect the
outputs of generative models, reinforce stereotypes in language generation, or
influence predictions in downstream decision making tasks such as sentiment
analysis, recommendation, or content moderation [24, 25]. These concerns mo-
tivate a careful examination of how gender bias manifests in embedding-based
representations and how it can be identified and mitigated.

To study this phenomenon empirically, I experimented with sentence trans-
formers [26], a popular class of pretrained language models designed to produce
high-quality word and sentence embeddings. My analysis reveals that many
words and phrases that are expected to be gender-neutral nonetheless exhibit
substantial gender bias in their embedding representations. In the following
subsection, I introduce a method based on sparse autoencoders (SAEs) [3]
to identify gender-related features in sentence transformer embeddings, quantify
the associated bias, and explore baseline approaches for mitigating its effects.

3.2 Disentangling Gender Features and Mitigating Bias:
A Baseline Method

In this subsection, we first describe how SAEs can be used to separate out the
gender feature and to mitigate the gender bias. Then we will present some
experimental results on sentence transformers.

3.2.1 Applying Sparse Autoencoders (SAEs) to Identify the Gender
Feature and to Mitigate Bias

Sparse autoencoders (SAEs) are a class of neural networks designed to learn
interpretable and structured representations of high-dimensional data. As illus-
trated in Figure 1, an SAE consists of an encoder that maps an input vector to
a latent representation and a decoder that reconstructs the original input from
this representation. Unlike standard autoencoders, SAEs impose a sparsity
constraint on the latent layer, encouraging only a small subset of latent units
to be active for any given input. This constraint promotes the learning of local-
ized and semantically meaningful features, as each latent unit is encouraged to
respond to a specific pattern in the data rather than distributing information
across many dimensions.

Because of this sparsity property, SAEs have been used as a tool for feature
discovery and disentanglement in learned representations. When applied
to embeddings produced by a pretrained encoder, an SAE can be viewed as a
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Figure 1: Illustrating the SAE model.

secondary model that re-expresses the original embedding space in terms of a
set of sparse, potentially interpretable latent features. In this setting, individual
latent units may correspond to distinct semantic or syntactic attributes encoded
in the original embeddings.

In this work, SAEs are used to analyze embeddings generated by sentence
transformer models. By training an SAE on these embeddings, we aim to iden-
tify latent units that capture gender-related information and to study how such
information is distributed across the embedding space. This provides a mecha-
nism for isolating gender features and serves as a foundation for measuring and
mitigating gender bias in pretrained language model embeddings.

Disentangling the Gender Feature
To disentangle the gender feature using an SAE, we perform the following

steps:

1. Construct a dataset of paired gendered word variants representing the
same underlying role or concept, differing primarily in gender (e.g., (actor,
actress)).

2. Feed each word in the pair to a target pretrained language model to obtain
its embedding representation.

3. Feed the resulting word embeddings to a sparse autoencoder (SAE), one
embedding at a time, and denote the latent representation at the output
of the SAE encoder by Z ∈ Rd.

4. For each dimension j ∈ {1, . . . , d}, compute the average absolute differ-
ence between the corresponding latent values of the male and female word
embeddings across all pairs.



Fairness in Embedding-Based Machine Learning Models 7

5. Identify the dimension in Z with the largest average absolute difference
and treat it as the gender-related feature.

Intuitively, this procedure identifies the latent dimension that most consis-
tently distinguishes gendered word pairs while controlling for semantic content.

Removing Bias from a Given Set of Words
For a word that is intended to be gender-neutral, such as engineer, historical

biases present in the training data of pretrained language models may cause
its embedding to exhibit a non-neutral activation along the gender-related di-
mension identified above. In practice, we observe that this dimension often
associates such words with a particular gender (e.g., a male association for the
word engineer). We consider two approaches for mitigating this bias in a given
word embedding:

• Fine-tuning the embedding model. If the pretrained language model al-
lows fine-tuning, we define an auxiliary loss on the SAE encoder output
that penalizes deviations of the gender-related latent dimension from a
target neutral value. In this work, the neutral value is defined as the
midpoint between the average activations of male- and female-associated
word embeddings along this dimension.

• Manipulating SAE activations. Alternatively, we directly modify the ac-
tivation value of the gender-related latent dimension at the SAE encoder
output for the given word embedding, setting it to the neutral value, and
then pass the modified latent representation through the SAE decoder to
obtain a neutralized embedding.

3.2.2 Experimental Results for SAE Baseline

To disentangle the gender feature using an SAE, we first construct a dataset of
paired gendered word variants representing the same underlying role or concept,
differing primarily in gender. This dataset is derived from two publicly available
resources: the ecmonsen gendered words dataset [19] and the Wiktionary English
words by genders [20]. As the target pretrained language model, we use a widely
adopted sentence-transformer encoder [21]. In particular, the results presented
below are based on the multi-qa-mpnet-base-cos-v1 model.

Figure 2 shows the activation values of the gender-related latent feature, cor-
responding to the 218th dimension of the SAE encoder output. We observe that
the distribution of activations for male words (shown in cyan blue) occupies a
higher value range than that of female words (shown in orange). The figure also
includes activation values for several example words, indicated by vertical lines.
Some of these words are inherently gendered, such as grandpa (male), grandma
(female), and actress (female), and their activations align with this expectation.
In contrast, words that are intended to be gender-neutral nonetheless exhibit bi-
ased activations along this dimension. For example, the embeddings of manager
and engineer are biased toward the male side, while babysitter and stay-at-home
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Figure 2: SAE shows the neuron activations of the gender feature.

parent are biased toward the female side, reflecting historical biases present in
the training data of the pretrained language model.

We apply the fine-tuning approach described in Section 3.2.1 to mitigate the
gender bias of a selected set of words. After fine-tuning, we obtain updated em-
beddings for these words and analyze them using the same SAE to examine the
activation of the gender-related latent dimension. The results are shown in Fig-
ure 3. We observe that words whose gender bias was explicitly mitigated, such
as engineer, champion, stay-at-home parent, and nurse, exhibit substantially
neutralized activations along the gender dimension, while inherently gendered
words such as actress, grandpa, and grandma remain largely unchanged. We
emphasize that the SAE-based approach is primarily used as a baseline, serv-
ing as a point of comparison for the main method introduced in the following
section.

4 Sensitive Attribute Information and Fairness
in Embedding-Based Decision Models

The baseline SAE-based method presented in the previous section provides a
useful starting point for identifying sensitive attribute information in embed-
dings. However, it relies on the availability of carefully constructed contrasting
examples that represent the same underlying role or concept while differing
primarily in a single sensitive attribute, as well as on the ability to isolate a
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Figure 3: SAE shows the neuron activations of the gender feature after debiasing
some words.

corresponding sensitive dimension in the SAE latent space. Although such as-
sumptions may be reasonable in certain natural language settings, they are often
violated in other data modalities, including tabular records or graph-structured
data, where multiple sensitive attributes may be present and proxy variables can
make sensitive information difficult to disentangle. In this section, we introduce
our main method, termed IterativeSifting, which addresses fairness in general
embedding-based decision making models and naturally extends to settings in-
volving one or more sensitive attributes (e.g., gender, race, and age). Unlike the
baseline approach, IterativeSifting does not require explicitly paired contrasting
examples and operates directly on the learned embedding representations used
by downstream decision models.

4.1 IterativeSifting: AMethod for Fairness in Embedding-
Based Decision Models

A typical machine learning pipeline for decision making consists of two main
components. An encoder F , such as a multilayer perceptron (MLP) [27] or a
graph neural network (GNN) [28], maps the input data to a latent representation
Z, also referred to as an embedding. The specific architecture of F depends on
the data modality and task. A prediction head H then takes Z as input and
produces the model output Ŷ .

The goal is to learn a representation that does not encode information re-
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lated to one or more sensitive attributes (e.g., gender or race), including indirect
proxy attributes that may serve as substitutes for sensitive information [29]. For
example, geographic features such as zip code can act as proxies for race in cer-
tain decision making contexts [2]. At the same time, the learned representation
should preserve task-relevant information necessary for accurate prediction of
the target outcome, such as loan approval, job qualification, or income level.
This tension between removing sensitive information and preserving predictive
utility motivates the method introduced in this section. Since the learned rep-
resentation (i.e., embedding) is designed to be free of sensitive attributes and
their proxies, any downstream prediction based on this representation aims to be
fair. This approach helps mitigate bias by ensuring the model cannot leverage
spurious correlations.

Figure 4: Illustrating the IterativeSifting method.

As illustrated in Figure 4, IterativeSifting consists of the following compo-
nents:

• The training data is first mapped to a latent representation Z (i.e., em-
beddings) by an encoder F , which may take the form of a multilayer per-
ceptron (MLP), a convolutional neural network (CNN), or a graph neural
network (GNN), depending on the data modality.

• A neural network, referred to as the prediction head H, operates on the
representation Z to produce the prediction Ŷ for the target task.

• A projection function G, implemented as a neural network, maps the em-
beddings Z into a projected embedding space that is used for fairness-
aware processing.

• A codebook C is jointly learned in the projected embedding space, where
each code c ∈ C corresponds to a specific joint value of one or more sensi-
tive attributes (e.g., White Male). Each code c is itself represented as an
embedding vector in the projected space.
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These components interact through an iterative procedure that progressively
reduces sensitive attribute information in the learned representations while pre-
serving predictive performance. The goal of the IterativeSifting algorithm is
to remove latent features and proxy information related to one or more sensi-
tive attributes from the embeddings Z, using the projected embedding space
and the codebook, while retaining task-relevant features necessary for accurate
prediction by the head H. The training procedure is summarized below.

1. Joint initialization. Jointly train the encoder F , prediction head H,
projection function G, and codebook C via back-propagation. The loss for
H is task-dependent (e.g., binary cross-entropy for binary classification).
The codebook C contains a learned embedding vector for each combination
of sensitive attribute values. The loss for G encourages each sample’s
projected embedding to be close to the code corresponding to its sensitive
attribute combination, while the loss for C enforces a margin that separates
distinct codes in the projected space.

2. Sifting step. Freeze the parameters of G and the codebook C, and up-
date the encoder F and prediction head H. In addition to the task loss for
H, an auxiliary loss is introduced that encourages the distances between
a sample’s projected embedding and all codes in C to be approximately
equal. This step performs the sifting operation, reducing sensitive at-
tribute–dependent information and proxy signals in the embeddings pro-
duced by F .

3. Refinement step. Freeze the parameters of the encoder F (and hence
the embeddings Z), and update H, G, and the codebook C using the same
loss functions as in Step 1. Intuitively, this step refines the projection
space and codebook to better capture any remaining sensitive attribute
information present in Z.

4. Iteration. Repeat Steps 2 and 3 until a stopping condition is met. Specif-
ically, the procedure terminates when the accuracy of predicting sensitive
attribute combinations, computed by assigning each projected embedding
to its nearest code in C, fails to improve for a fixed number of consecutive
iterations.

This alternating optimization procedure can be interpreted as a minimax-
style process, in which the projection and codebook attempt to expose sensitive
information while the encoder progressively removes it [11].

4.1.1 Intuition Behind IterativeSifting

The key intuition behind IterativeSifting is that sensitive attribute informa-
tion is encoded in the representation space through directions that allow the
projected embedding to be distinguishable with respect to sensitive attribute
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values. The projection function G and codebook C explicitly expose these direc-
tions by learning to map embeddings to codes associated with sensitive attribute
combinations.

During the sifting step, the encoder F is trained to produce embeddings
whose projections are approximately equidistant from all codes in the codebook.
This enforces invariance with respect to the sensitive attributes, as no single code
is preferred over others in the projected space. Consequently, features in the
representation that act as direct or indirect proxies for sensitive attributes are
suppressed.

The refinement step then updates the projection function and codebook to
capture any remaining sensitive attribute information present in the current
embeddings. Alternating between these two steps creates an iterative process
in which sensitive attribute information is progressively identified and removed
from the representation. At the same time, the prediction head H is continu-
ously trained on the task objective, ensuring that task-relevant information is
preserved.

4.1.2 Loss Functions for IterativeSifting

We formalize the objective functions used in the IterativeSifting algorithm. Let
X denote the input data, Y the target label, and S ∈ S the (possibly multi-
dimensional) sensitive attribute vector. The encoder F maps inputs to em-
beddings Z ∈ Rd, the prediction head H maps Z to predictions Ŷ , and the
projection function G maps Z to a projected embedding Z̃ ∈ Rk. A codebook
C = {cs ∈ Rk : s ∈ S} contains one learnable code for each sensitive attribute
combination.

Task loss. The task-dependent prediction loss is defined as

Ltask(F ,H) = E(x,y)

[
ℓ
(
H(F(x)), y

)]
, (1)

where ℓ(·, ·) is an appropriate loss function (e.g., cross-entropy for classification).

Projection–code alignment loss. To encourage projected embeddings to
align with their corresponding sensitive attribute codes, we define

Lalign(F ,G, C) = E(x,s)

[
∥G(F(x))− cs∥22

]
. (2)

Code separation (margin) loss. To ensure that codes corresponding to
different sensitive attribute combinations remain distinguishable, we impose a
margin constraint:

Lmargin(C) =
∑

s,s′∈S
s̸=s′

max(0, m− ∥cs − cs′∥2) , (3)

where m > 0 is a fixed margin hyperparameter.



Fairness in Embedding-Based Machine Learning Models 13

Algorithm 1 IterativeSifting

Input: Training data {(xi, yi, si)}ni=1, sensitive attribute set S
Input: Encoder F , prediction head H, projection function G, codebook C
Input: Hyperparameters λalign, λmargin, λsift

Output: Fairness-aware encoder F and predictor H
1: Initialization: Jointly train F , H, G, and C by minimizing

L1 = Ltask + λalignLalign + λmarginLmargin.

2: repeat
3: Sifting step: Freeze G and C; update F and H by minimizing

L2 = Ltask + λsiftLsift.

4: Refinement step: Freeze F ; update H, G, and C by minimizing

L3 = Ltask + λalignLalign + λmarginLmargin.

5: until Sensitive attribute prediction accuracy does not improve
6: return F ,H

Sifting loss. During the sifting step, the encoder is trained to remove sensitive
attribute information by encouraging the projected embedding to be approxi-
mately equidistant from all codes. This is achieved via

Lsift(F ,G, C) = Ex

[
1

|S|
∑
s∈S

(
∥G(F(x))− cs∥2 − d̄(x)

)2
]
, (4)

where

d̄(x) =
1

|S|
∑
s∈S

∥G(F(x))− cs∥2 (5)

denotes the average distance between the projected embedding and all codes.

Overall objectives by training phase. The losses used in each phase of
IterativeSifting are summarized as follows:

L1 = Ltask + λalignLalign + λmarginLmargin, (6)

L2 = Ltask + λsiftLsift, (7)

L3 = Ltask + λalignLalign + λmarginLmargin, (8)

corresponding respectively to the joint initialization, sifting, and refinement
steps of the algorithm. IterativeSifting is summarized in Algorithm 1.
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4.2 Experimental Results for IterativeSifting

4.2.1 Datasets and Metrics

We primarily evaluate IterativeSifting on the Adult Census Income dataset [22],
a standard benchmark widely used in fairness research. We also conduct ex-
periments on a larger and more recent dataset, ACSIncome [23], and observe
similar trends; results on this dataset are presented near the end of this sec-
tion. The Adult Census Income dataset is derived from the 1994 U.S. Census
and contains individual-level attributes such as education level, occupation, age,
marital status, and native country. The prediction task is to determine whether
an individual’s income exceeds $50K per year. In our experiments, we consider
gender and race as sensitive attributes, enabling the evaluation of intersectional
fairness across multiple sensitive attributes. For all experiments, we implement
the encoder F , the prediction head H, and the projection function G as multi-
layer perceptrons (MLPs).

We evaluate fairness at both the representation and decision levels. At the
representation level, we quantify the dependence between the learned embed-
ding Z and the sensitive attributes using mutual information [30]. Lower
mutual information values indicate greater invariance of the representation to
sensitive attributes. At the decision level, we measure fairness using equalized
odds [7] and report the maximum equalized odds difference across the four
intersectional groups defined by gender and race. Specifically, for each group,
we compute the true positive rate (TPR) and false positive rate (FPR), and
report the maximum absolute difference between any pair of groups across both
rates. Formally, this is defined as

max
g,g′

max(|TPRg − TPRg′ | , |FPRg − FPRg′ |) .

This metric captures the worst-case disparity in model outcomes among inter-
sectional subgroups. Model utility is measured using the prediction accuracy
of the prediction head H, reported both before and after applying the proposed
debiasing algorithm to assess the impact on predictive performance. Together,
these metrics allow us to evaluate how effectively IterativeSifting reduces sensi-
tive attribute information in the representation while maintaining performance
on the target task.

4.2.2 Evaluating IterativeSifting and Its Variants

We first evaluate IterativeSifting together with two variants to gain insight into
the factors that contribute to its performance.

• Filtered Input. In this variant, we remove the explicit sensitive attributes
gender and race from the input to the encoder F . These attributes are still
used to define sensitive attribute labels and to compute the fairness-related
losses. This variant allows us to examine whether simply excluding sensi-
tive attributes from the encoder input is sufficient to achieve fairness, or
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(a) Mutual information comparison. (b) Accuracy comparison.

Figure 5: Comparing variants of IterativeSifting.

whether proxy information for sensitive attributes remains in the learned
representation.

• Unconstrained. In this variant, the prediction head H is trained only
during the Initialization step of Algorithm 1. During the subsequent Sift-
ing and Refinement steps, H is not updated and the task loss Ltask is
excluded from L2 and L3. This variant removes task-performance con-
straints during the debiasing process, allowing us to study the trade-off
between fairness and predictive utility.

These variants serve as ablations that isolate the effects of input filtering and
task constraints within IterativeSifting. We evaluate the mutual information
between the encoder output embedding Z and the sensitive attributes, as well
as the prediction accuracy of the prediction head, both before and after applying
IterativeSifting, enabling direct comparison across the original method and its
two variants. The results are shown in Figure 5.

The first two bars in Figure 5a show that the original IterativeSifting algo-
rithm substantially reduces the mutual information between the encoder output
Z and the sensitive attributes, decreasing it by approximately half from 14.9 to
7.46. This demonstrates the effectiveness of IterativeSifting in removing sensi-
tive attribute information from the learned representation.

Interestingly, the second pair of bars shows that even after removing the
explicit sensitive attributes gender and race from the encoder input, the mutual
information between Z and the sensitive attributes S remains relatively high
(nearly 10). This value is considerably larger than the mutual information ob-
tained by applying IterativeSifting when sensitive attributes are included in the
input, indicating that proxy attributes for S are present in the original dataset.
After applying IterativeSifting to this filtered-input setting, the mutual infor-
mation further decreases to a level below that of the original IterativeSifting
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configuration. This result highlights the necessity of representation-level debi-
asing methods that go beyond simply removing sensitive attributes from the
model input.

The last group of two bars in Figure 5a shows the result when IterativeSift-
ing is applied without the constraint of training H, the target prediction. We
observe that the mutual information I(Z;S) decreases further, dropping below
4. This demonstrates that aggressively removing sensitive attribute information
from Z can conflict with retaining information useful for the target task.

Figure 5b compares the prediction accuracy across variants. Both the orig-
inal IterativeSifting and the Filtered Input variant show only a slight accuracy
decrease, indicating that IterativeSifting effectively preserves target prediction
utility. In contrast, the unconstrained variant exhibits a significant accuracy
drop, highlighting the inherent tradeoff between removing sensitive information
and maintaining predictive performance.

Figure 6: Evaluation using the maximum equalized odds difference metric.

Next, we evaluate fairness using the maximum equalized odds difference met-
ric, which measures disparities in true positive rates (TPRs) and false positive
rates (FPRs) across the four intersectional sensitive attribute groups. The re-
sults are shown in Figure 6. We observe that disparities in TPRs are substan-
tially larger than those in FPRs. In particular, before applying IterativeSifting,
the black female group exhibits the lowest TPR, while the white male group has
the highest TPR. After applying IterativeSifting, the white female group attains
the highest TPR, and the overall gap among groups is reduced.

Importantly, the maximum equalized odds difference decreases by approxi-
mately half, from 0.222 to 0.115. This reduction indicates that IterativeSifting
effectively mitigates worst-case disparities in model outcomes across intersec-
tional groups. Combined with the reduction in mutual information, these results
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suggest that removing sensitive attribute information from the representation
translates into improved fairness at the decision level.

4.2.3 Comparisons with Baselines

Figure 7: Comparing target prediction accuracy with the SAE baseline.

Now we compare IterativeSifting with baselines. A major baseline we com-
pare against is the sparse autoencoders (SAEs) as presented in Section 3.2. We
apply SAE to each of the two sensitive attributes and then neutralize the embed-
dings. First, we compare the accuracy of prediction head, as shown in Figure 7.
In both cases, there is only a very slight decrease in prediction accuracy.

Next, we use the mutual information and the maximum equalized odds dif-
ference metrics. We also compare against another baseline called Editing with
an Auxiliary Regression (EAR), which is essentially a gradient ascent–based
approach in which a regression model predicts the sensitive attributes and gra-
dient ascent is applied to erase sensitive features from the embeddings [31]. The
results are shown in Figure 8. We can see that IterativeSifting achieves signif-
icantly better results than the two baselines. Even combining IterativeSifting
with SAE yields only slightly better performance on the maximum equalized
odds difference metric, while resulting in slightly worse performance on the mu-
tual information metric.

The underlying reason is that, as discussed earlier, the SAE-based approach
relies on the availability of carefully constructed contrasting examples that rep-
resent the same underlying concept while differing primarily in a single sensitive
attribute. Although such pairs can be obtained for certain data types, such as
natural language text, constructing them is challenging and often infeasible for
other data modalities, including tabular data and graphs. As a result, the SAE
approach does not perform as effectively in these settings.
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(a) MI comparison with baselines. (b) Fairness comparison with baselines.

Figure 8: Comparing IterativeSifting with baselines.

ACSIncome Dataset
We also experimented with a much larger dataset, the ACSIncome data [23].

We observe similar trends as those of the Adult Census Income dataset. Some
of the results are shown in Table 1.

Mutual information Max equalized odds diff.

Without IterativeSifting 3.753 0.117
With IterativeSifting 2.317 0.062

Table 1: Mutual information and fairness comparisons using the ACSIncome
dataset.

5 Conclusions and Future Work

In this work, we studied fairness in embedding-based machine learning mod-
els, with a particular focus on intersectional fairness in decision making tasks.
We first examined gender bias in text embeddings produced by pretrained lan-
guage models and introduced a baseline approach using sparse autoencoders to
disentangle a gender-related feature and mitigate bias at the embedding level.
While this approach provides useful insights into how sensitive attributes can be
encoded in latent representations, it relies on carefully constructed contrasting
examples and is therefore limited in its applicability to certain data modalities.

To address these limitations, we proposed IterativeSifting, a general and
model-agnostic framework for reducing sensitive attribute information and proxy
features in learned embeddings while preserving task-relevant information. It-
erativeSifting operates through an iterative training procedure that alternates
between identifying sensitive attribute signals and removing them from the rep-
resentation. Experimental results on standard fairness benchmarks demonstrate
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that IterativeSifting substantially reduces mutual information between embed-
dings and sensitive attributes, improves intersectional fairness as measured by
maximum equalized odds difference, and maintains competitive predictive ac-
curacy.

There are several directions for future work. First, while we focused on tab-
ular data and simple neural architectures in our experiments, IterativeSifting
can be extended to more complex models and data modalities, such as graph
neural networks and multimodal representations. Second, more sophisticated
stopping criteria and convergence analyses could further improve the stability
and efficiency of the iterative training process. Third, future work may ex-
plore integrating IterativeSifting with other fairness objectives or constraints,
as well as evaluating its effectiveness under different definitions of fairness [32].
Finally, studying the behavior of IterativeSifting in real-world deployment set-
tings, where sensitive attribute labels may be incomplete or noisy, remains an
important direction for future research [10].

Beyond representation-level fairness, we also plan to study bias and fairness
in LLM-based generative models. Since text generation is driven by latent rep-
resentations, understanding how fairness and in particular intersectional fairness
can be enforced during generation is an important problem.

References

[1] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, An empirical study of rich
subgroup fairness for machine learning, Proceedings of the Conference on
Fairness, Accountability, and Transparency (FAT*), 2019.

[2] S. Barocas and A. D. Selbst, Big data’s disparate impact, California Law
Review, vol. 104, no. 3, pp. 671–732, 2016.

[3] M. Ranzato, Y. Boureau, and Y. LeCun, Sparse feature learning for
deep belief networks, Advances in Neural Information Processing Systems
(NeurIPS), 2007.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training
of deep bidirectional transformers for language understanding, Proceedings
of NAACL-HLT, 2019.

[5] T. Brown et al., Language models are few-shot learners, Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[6] A. Caliskan, J. J. Bryson, and A. Narayanan, Semantics derived automat-
ically from language corpora contain human-like biases, Science, vol. 356,
no. 6334, pp. 183–186, 2017.

[7] Moritz Hardt, Eric Price, and Nati Srebro. Equality of Opportunity in
Supervised Learning. Advances in Neural Information Processing Systems
(NeurIPS 2016). 2016.



Fairness in Embedding-Based Machine Learning Models 20

[8] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard Zemel. Fairness Through Awareness. 3rd Innovations in Theoreti-
cal Computer Science Conference (ITCS 2012). 2012.

[9] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing
Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness.
35th International Conference on Machine Learning (ICML 2018). 2018.

[10] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accu-
racy Disparities in Commercial Gender Classification. Conference on Fair-
ness, Accountability, and Transparency (FAT* 2018). 2018.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-Adversarial Training of Neural Networks. Journal of Machine
Learning Research (JMLR). 2016.

[12] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating Un-
wanted Biases with Adversarial Learning. AAAI Conference on Artificial
Intelligence (AAAI 2018). 2018.

[13] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learn-
ing Adversarially Fair and Transferable Representations. 35th International
Conference on Machine Learning (ICML 2018). 2018.

[14] Zhewei Wei, Yao Ma, Jiliang Tang, and Suhang Wang. Adversarial Learn-
ing on Graphs: A Survey. IEEE Transactions on Knowledge and Data
Engineering (TKDE). 2021.

[15] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Geert van den Broeck, and
Stephan Mandt. Invariant Representations without Adversarial Training.
Advances in Neural Information Processing Systems (NeurIPS 2018). 2018.

[16] Alessandro Achille and Stefano Soatto. Information Dropout: Learning
Optimal Representations through Noisy Computation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI). 2018.

[17] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and
Adam Kalai. Man is to Computer Programmer as Woman is to Home-
maker? Debiasing Word Embeddings. Advances in Neural Information
Processing Systems (NeurIPS 2016). 2016.

[18] Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav
Goldberg. Null It Out: Guarding Protected Attributes by Iterative
Nullspace Projection. 58th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2020). 2020.

[19] Ecmonsen gendered words. https://github.com/ecmonsen/gendered_

words/.

https://github.com/ecmonsen/gendered_words/
https://github.com/ecmonsen/gendered_words/


Fairness in Embedding-Based Machine Learning Models 21

[20] The English-language Wiktionary. https://en.wiktionary.org/wiki/

Wiktionary:Main_Page.

[21] The sentence transformers. https://huggingface.co/

sentence-transformers.

[22] The Adult Census Income dataset. https://archive.ics.uci.edu/

dataset/2/adult.

[23] The ACSIncome dataset. https://fairlearn.org/main/user_guide/

datasets/acs_income.html.

[24] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng, The woman worked
as a babysitter: On biases in language generation, Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2019.

[25] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach, Language (tech-
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