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Abstract. Let M be a cancellative and commutative monoid. A non-invertible element of
M is called an atom (or irreducible element) if it cannot be factored into two non-invertible
elements, while an atom a of M is called strong if an has a unique factorization in M
for every n ∈ N. The monoid M is atomic if every non-invertible element factors into
finitely many atoms (repetitions allowed). For an algebraic number α, we let Mα denote
the additive monoid of the subsemiring N0[α] of C. The atomic structure of Mα reflects
intricate interactions between algebraic number theory and additive semigroup theory. For
m,n ∈ N0∪{∞} (with m ≤ n), the pair (m,n) is called realizable if there exists an algebraic
number α ∈ C such thatMα hasm strong atoms and n atoms. Our primary goal is to identify
classes of realizable pairs with the long-term goal of providing a complete description of the
full set of realizable pairs.

1. Introduction

The study of factorizations in algebraic structures such as commutative monoids, rings, and
semirings has become a vibrant area of modern algebra, intersecting with combinatorics [1],
number theory [17], and geometry [18]. A particularly rich framework for these investigations
is provided by additive monoids arising from commutative semidomains [4], especially the so-
called simple extensions N0[α] of the semidomain N0 for all α ∈ A, where A denotes the set
of all algebraic numbers (see [2, 8] and references therein). For each α ∈ A, we denote by
Mα the underlying additive monoid of the semidomain N0[α]. The atomic structure of Mα is
tightly connected to the arithmetic and algebraic properties of the minimal polynomial of α,
denoted mα(x) throughout this paper.

A nonzero element of Mα is called an atom if it cannot be expressed in Mα as a sum of
two nonzero elements. We let A (Mα) denote the set of all atoms of Mα. The monoid Mα is
said to be atomic if every nonzero element can be written as a sum of finitely many atoms
(repetitions allowed). It was shown in [8, Theorem 4.2] that Mα is atomic if and only if 1 is
an atom; in this case, A (Mα) = {1, α, . . . , αn} for some n ∈ N0 when Mα is finitely generated
while A (Mα) = {αn : n ∈ N0} when Mα is not finitely generated.

An atom a in Mα is called a strong atom if, for each n ∈ N, the only decomposition of na
as a finite sum of atoms in Mα is the obvious one, which consists of n copies of a. The set of
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all strong atoms of Mα is denoted by S (Mα). It follows from the definition of a strong atom
that S (Mα) ⊆ A (Mα).

A nonzero p ∈ Mα is defined to be a prime if for all b, c ∈ Mα, the condition b+c ∈ p+Mα

implies that either b ∈ p + Mα or c ∈ p + Mα. The set of all primes of Mα is denoted by
P(Mα). Clearly, every prime in Mα is a strong atom. It was established in [3] (CrowdMath
2022) that, for each positive algebraic number α ∈ A, the monoidMα contains prime elements
if and only if it is a unique factorization monoid (UFM). In such a case, one has

P(Mα) = S (Mα) = A (Mα) = {αn : n ∈ J0, d− 1K},
where d is the degree of the minimal polynomial of α. However, as we will see in Example 3.1
and Theorem 3.6, the monoid Mα may contain strong atoms even when it is not a UFM.

More generally, the notions of atoms, strong atoms, and primes can be defined for any
commutative cancellative monoidM analogously to the way we have just defined these notions
in Mα. For such a monoid M , we obtain the natural inclusions

(1.1) P(M) ⊆ S (M) ⊆ A (M),

where P(M), S (M), and A (M) denote the sets of primes, strong atoms, and atoms of M ,
respectively. For an integral domain R, we let R∗ denote its multiplicative monoid (the
multiplicative monoid consisting of all nonzero elements of R). In the recent paper [12],
Fadinger et al. study the chain of inclusions (1.1) in the setting of multiplicative monoids of
integral domains, providing explicit examples of atomic integral domains that exhibit each of
the eight possible combinations regarding the existence or absence of primes, strong atoms
that are not atoms, and atoms.

The first systematic study of the atomic and factorization-theoretic structure of the family
of monoids Mα was carried out by Correa-Morris and Gotti in [8]. Motivated by their
investigation, we undertake a detailed analysis of the sets of atoms and the sets of strong
atoms in the monoids Mα with the aim of determining the possible pairs

(|S (Mα))|, |A (Mα)|)
as α varies over A. Since we have already observed that Mα is a UFM precisely when
it contains primes, we focus our attention on the sets A (Mα) and S (Mα) and disregard
P(Mα) in our analysis. We say that a pair (m,n) ∈ N2

0 is realizable if it belongs to the set{
(|S (Mα)|, |A (Mα)|) : α ∈ A

}
.

In this paper, we try to understand which pairs of N2
0 are realizable. Towards this end, we

introduce and analyze the function f : A → (N0 ∪ {∞})2 defined as follows:

f(α) := (|S (Mα)|, |A (Mα)|)
for all α ∈ A. The function f describes the number of strong atoms and atoms of the associ-
ated monoidMα. We identify various realizable and non-realizable pairs, provide constructive
methods to produce algebraic numbers α for which f(α) assumes prescribed values, and ex-
amine how transformations of minimal polynomials (such as the substitution x 7→ xk) affect
atomic and factorization-theoretic properties. Our results shed new light on the algebraic
and combinatorial behavior of the monoids Mα and establish connections to classical results,
including Descartes’ Rule of Signs and Curtiss’ Theorem.
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This paper is organized as follows. In Section 2, we introduce the notation, terminology,
and known results that we shall use throughout the paper. Then in Section 4, we determine
the pairs of N2

0 that are realizable by the algebraic numbers of degree 2, namely, those
algebraic numbers whose minimal polynomials have degree 2. Finally, in Section 5, we first
prove that for every (k, c) ∈ N×N0, the pair (4k+ c, 5k+ c) is realizable, and we then prove
that the pair (n, n+ 1) is realizable if and only if n ≥ 4. This last result also illustrates that
not every pair (m,n) ∈ N2

0 with m ≤ n is a realizable pair.

2. Background

2.1. General Notation. Throughout this paper, we let Z, Q, R, A, and C stand, as usual,
for the set integers, rational numbers, real numbers, algebraic complex numbers, and complex
numbers, respectively. We let P, N, and N0 denote the set of standard primes, positive
integers, and nonnegative integers, respectively. For any r, s ∈ R, we let Jr, sK denote the set
of integers between r and s, that is,

Jr, sK := {n ∈ Z : r ≤ n ≤ s}.
Observe that Jr, sK is empty for any r, s ∈ R with r ≥ s. For a subset S of the real line, we
set S≥r := {s ∈ S : s ≥ r} and S>r := {s ∈ S : s > r}.

2.2. Commutative Monoids. Although a monoid is conventionally defined to be a semi-
group with an identity element, in the scope of this paper we will reserve the term monoid
to refer to a semigroup that has an identity element and is cancellative and commutative.
Monoids here are written additively unless we explicitly state otherwise.

Let M be a monoid. The set U (M) consisting of all invertible elements of the monoids M
is an abelian group that is often referred to as the group of units of M . When the group
U (M) is trivial, the monoid M is called reduced. The monoids we study in this paper are
reduced. The quotient monoid M/U (M) is called the reduced monoid of M and is denoted
by Mred: the monoid Mred is clearly reduced, and M ≃ Mred if and only if M is already a
reduced monoid.

An element a ∈ M \U (M) is called an atom if whenever a = u + v for some u, v ∈ M ,
then either u ∈ U (M) or v ∈ U (M). The set consisting of all the atoms of M is denoted by
A (M). Following Coykendall, Dobbs, and Mullins [9], we say that M is antimatter provided
that A (M) is the empty set. An element of M is said to be atomic if it is invertible or can
be written as a sum of finitely many atoms in M (repetitions allowed). Following Cohn [7],
we say that the monoid M is atomic if every element of M is atomic.

For the rest of this section, assume that M is an atomic monoid. An atom a ∈ A (M) is
called a strong atom provided that, for every n ∈ N, the element na can be written as a sum
of finitely many atoms in only one way, the obvious one. We let S (M) denote the set of
strong atoms of M . A non-invertible element p ∈ M is called a prime if for any b, c ∈ M the
fact that b+ c ∈ p+M implies that b ∈ p+M or c ∈ p+M . We let P(M) denote the set
consisting of all primes of M . It is well known and easy to prove that

P(M) ⊆ S (M) ⊆ A (M).
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Let Z(M) denote the free commutative monoid on the set of atoms A (Mred), and let
π : Z(M) → Mred denote the only monoid homomorphism that fixes every element of the
set A (Mred). The elements of Z(M) are called factorizations. Given a factorization z :=
a1 · · · aℓ ∈ Z(M) for atoms a1, . . . , aℓ ∈ A (Mred), we say that the length of z is ℓ and we
often denote the length of z by |z|. For each b ∈ M , we set

ZM (b) := π−1(b+ U (M)) and LM (b) := {|z| : z ∈ Z(b)}.
When there seems to be no risk of ambiguity, we write Z(b) and L(b) instead of ZM (b) and
LM (b), respectively. The monoid M is called a unique factorization monoid (resp., finite
factorization monoid) if |Z(b)| = 1 (resp., 1 ≤ |Z(b)| < ∞) for every b ∈ M . We will write
UFM (resp., FFM) instead of unique factorization monoid (resp., finite factorization monoid).
Every UFM is clearly an FFM. We say that M is a bounded factorization monoid (BFM)
if 1 ≤ |L(b)| < ∞ for all b ∈ M . It follows directly from the corresponding definitions that
every FFM is a BFM.

2.3. Polynomial Rings and Semirings. Let R be an integral domain. Let f(x) be a

nonzero polynomial in R[x] and write f(x) =
∑d

n=0 cnx
n for some coefficients c0, . . . , cd ∈ R

such that cd ̸= 0. Then the support of f(x) is the set

supp f(x) := {k ∈ J0, dK : ck ̸= 0},
while deg f(x) := d and ord f(x) := min supp f(x) are called the degree and order of f(x),
respectively. Descartes’ Rule of Signs will be helpful later: it states that the number of
variations of sign of a nonzero polynomial f(x) ∈ R[x] has the same parity as and is at
least the number of positive roots of f(x) (counting multiplicity). The following theorem is
another tool we will use later.

Theorem 2.1. [10, Section 5] For each nonzero polynomial f(x) ∈ R[x], there exists a
nonzero polynomial µ(x) ∈ R[x] such that the number of variations of sign of µ(x)f(x) equals
the number of positive roots of f(x), counting multiplicity.

Now assume that f(x) =
∑d

n=0 cnx
n ∈ Q[x] is a nonzero polynomial with deg f(x) = d.

Then there exists a unique r ∈ Q>0 such that rf(x) is a polynomial in Z[x] with content 1
(i.e., the greatest common divisor of the set of coefficients of rf(x) is 1). Then there exists
a unique pair of polynomials (p(x), q(x)) ∈ N0[x] such that rf(x) = p(x) − q(x), called the
minimal pair of f(x). Let α be a nonzero algebraic number. We often denote the minimal
polynomial of α by mα(x) ∈ Q[x]. We refer to the minimal pair of mα(x) also as the minimal
pair of α. Recall that the degree of α is degmα(x) while the conjugates of α are the roots of
mα(x).

2.4. The Additive Monoid of the Semidomain N0[α]. For any nonempty set S and
binary operations ‘+’ and ‘·’ on S, we say that the triple (S,+, ·) is a semidomain if the
following conditions hold:

• (S,+) is a monoid,

• (S \ {0}, ·) is a monoid, and

• the distributive law holds: r(s+ t) = rs+ rt for all r, s, t ∈ S.
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Let (S,+, ·) be a semidomain, which we denote simply by S. The identity element 0
(resp., 1) of (S,+) (resp., (S \{0}, ·)) is called the zero element (resp., identity element) of S.
A submonoid S′ of S is called a sub-semidomain of S provided that 1 ∈ S′ and S′ is closed
under multiplication. It is well known that any semidomain can be naturally extended to an
integral domain (i.e., a commutative ring with identity and without nonzero zero-divisors).
As for polynomial domains, we let S[x] denote the semidomain consisting of all polynomials
over S. Then, for any τ ∈ C, it follows that

N0[τ ] :=
{
p(τ) : p(x) ∈ N0[x]

}
.

is a semidomain, which we call the cyclic semidomain generated by τ . When τ is transcen-
dental, N0[τ ] is isomorphic to the polynomial semiring N0[x] and so its additive monoid is
isomorphic to the free commutative monoid

⊕
n∈N0

N0. As every free commutative monoid
is a UFM, the additive monoids of cyclic semidomains generated by transcendental numbers
are rather trivial from the viewpoints of atomicity and factorizations. Thus, without loss
of generality, we can restrict our attention to cyclic semidomains N0[α] parameterized by
algebraic numbers α ∈ A. As the underlying additive monoids of the semidomains N0[α] (for
any α ∈ A) are the central algebraic objects we study in this paper, in order to distinguish
the former from the later, it is convenient to introduce the following notation.

Notation. For any α ∈ A, we let Mα denote the underlying additive monoid of the cyclic
semidomain N0[α].

For both self-containment and future reference, we conclude this section mentioning some
known results on the atomicity and factorization of the monoids Mα (for any α ∈ A). We
start with a characterization of atomicity.

Theorem 2.2. [8, Theorem 4.2] For α ∈ A, the additive monoid Mα is atomic if and only
if 1 ∈ A (Mα), in which case, there exists σ ∈ N0 ∪ {∞} such that

(2.1) A (Mα) = {αn : n ∈ [0, σ) ∩ N0}.
Moreover, σ = min{n ∈ N : αn ∈ {αj : j ∈ J0, n − 1K}} if Mα is finitely generated (and so
atomic).

Here we have a sufficient condition for the atomicity of the studied monoids.

Proposition 2.3. [3, Proposition 4.5] Let α be a positive algebraic number with minimal
polynomial polynomial mα(X). The monoid Mα is atomic with infinitely many atoms if
mα(x) has a positive root different from α.

We conclude with a characterization of the monoids Mα that are UFMs.

Theorem 2.4. [8, Theorem 5.4] Let α be an algebraic number with degree d, minimal poly-
nomial mα(x) ∈ Q[x], and minimal pair (p(x), q(x)) ∈ N0[x]

2. Then the following conditions
are equivalent.

(a) Mα is a UFM.

(b) degmα(x) = |A (Mα)|.
(c) p(x) = xd for some d ∈ N.

Moreover, if Mα is a UFM, then it is finitely generated.
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3. Realization of the Sizes of the Sets of Atoms and Strong Atoms

3.1. Atoms and Strong Atoms. Fix an algebraic number α. It was proved in [3] (Crowd-
Math 2022) that we can take m ∈ N0 ∪ {∞} such that the set of strong atoms of Mα is

(3.1) S (Mα) =
{
αk : k ∈ [0,m) ∩ N0

}
.

Thus, when Mα has infinitely many strong atoms, S (Mα) = A (Mα). This is not necessarily
the case when Mα has only finitely many strong atoms. The following simple example (also
worked out in CrowdMath 2022) shows a monoid Mα with infinitely many atoms and only
one strong atom.

Example 3.1. Consider the polynomial m(x) := x2 − 3x + 1 ∈ Z[x]. Observe that m(x)
is an irreducible polynomial over Q such that m(0) = 1 and m(1) = −1. Thus, m(x) has
two positive roots: one root α ∈ (0, 1) and another root β > 1. By Proposition 2.3, Mα is
atomic with infinitely many atoms, so A (Mα) = {αn : n ∈ N0}. Since 3α = 1+α2, it follows
that α is not a strong atom, and so the inclusion αMα ⊆ Mα ensures that αn cannot be a
strong atom for any n ≥ 1. On the other hand, we claim that 1 is a strong atom. For some
n ∈ N and c1, . . . , cN ∈ N0, set g(x) :=

(∑N
i=1 cix

i
)
− n, and observe that g(x) has only one

variation of sign, so by Descartes’ Rule of Signs, g(x) has one positive real root. However, if

g(α) = 0 such that n · 1 =
∑N

i=1 ciα
i, we would need g(x) to be divisible by m(x) and have

at least two distinct positive real roots. Thus, S (Mα) = {1}.

As our primary purpose is to determine the pairs (m,n) ∈ (N2
0 ∪ {∞})2 for which there

exists α ∈ A such that the monoid Mα has exactly m strong atoms and n atoms, it is
convenient to formally introduce the following function:

(3.2) f : A →
{
(m,n) ∈ (N0 ∪ {∞})2 : m ≤ n

}
,

defined as

f(α) :=
(
|S (Mα)|, |A (Mα)|

)
for all α ∈ A. We are mostly interested here in determining the image of the function f .
Thus, let us introduce the following terminology.

Definition 3.2. We call the function f in (3.2) the realization function and, for any m,n ∈
N0 ∪ {∞}, we call the pair (m,n) a realizable pair if (m,n) ∈ f(A).

Observe that in light of Example 3.1, there exists α ∈ A such that f(α) = (1,∞). As a
result of the main theorem of the next section, we obtain infinitely many α ∈ A such that
f(α) = (0,∞).

The following lemma will be helpful later in characterizing the number of strong atoms of
the monoid Mα.

Lemma 3.3. Let α be an algebraic number with minimal polynomial mα(x). If Mα is finitely
generated and 1 ≤ |S (Mα)| < |A (Mα)|, then there exists a polynomial f(x) ∈ Q[x] of
degree |S (Mα)| − degmα(x) so that f(x)mα(x) has negative leading coefficient and all other
coefficients nonnegative.
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Proof. Set m := |S (Mα)| and n := |A (Mα)|. It suffices to show that the equality αm =∑m−1
i=0 qiα

i holds for some q0, . . . , qm−1 ∈ Q≥0. Indeed, if ℓ is a common multiple of the
denominators d(q0), . . . , d(qm−1), then the polynomial

ℓxm −
m−1∑
i=0

ℓqix
i ∈ Z[x]

will have α as a root and, therefore, be divisible by mα(x). Observe that because m ≤ n− 1,

the atom αn−1 is not a strong atom, so we can write αn−1 as
∑n−2

i=0 qn−1,iα
i, where each

qn−1,i ∈ Q≥0.

Now we prove by induction that for all k ∈ N such that k ∈ Jm,n− 1K, we can write αk as
a linear combination of the elements αi for i ∈ J0, k − 1K. We have proved the base case of
k = n− 1, so fix m ≤ k < n− 1 and assume that for all j where k < j < n, we have αj equal

to
∑j−1

i=0 qj,iα
i, where qj,i ∈ Q≥0. Denote this summation with zj . Because α is not a root of

any polynomial in Q[x] with degree m ≥ 1, at least two coefficients qj,i are nonzero for each j.

Now let
∑n−1

i=0 ciα
i be a nontrivial factorization of cαk for some large enough c ∈ N, which

must exist because αk is not a strong atom. Going from the αn−1 term to the αk+1 term,
we can successively rewrite the αi in each term as zi for k < i < n from our assumption.

We then obtain a new representation cαk =
∑k

i=0 qk,iα
i, where, since each zi has at least

two nonzero coefficients, at least two qk,i are nonzero. We can then assume that qk,k = 0

by subtracting an appropriate rational multiple of αk from both sides. This completes the
induction step. Hence we can write αm =

∑m−1
i=0 qiα

i, as desired. □

As direct consequences of the previous proposition, we obtain the following corollaries,
which will be useful later.

Corollary 3.4. Let α be an algebraic number with minimal polynomial mα(x) ∈ Q[x]. Then
the following statements hold.

(1) If p(x) is a polynomial of minimal degree such that p(x)mα(x) = xn −
∑n−1

i=0 aix
i for

some n ∈ N and coefficients a0, . . . , an−1 ∈ N0, then |A (Mα)| = n.

(2) If Mα is finitely generated and q(x) is a polynomial of minimal degree such that

q(x)mα(x) = bmxm −
∑m−1

i=0 bix
i for some m ∈ N and coefficients b0, . . . , bm ∈ N0,

then |S (Mα)| = m.

Corollary 3.5. Let α be an algebraic number with minimal polynomial mα(x) ∈ Q[x]. If Mα

is finitely generated, then |S (Mα)| ≥ degmα(x).

3.2. Binomial Minimal Polynomials. It was proved in [16, Theorem 6.2] that, for each
q ∈ Q>0 \ N±1, the monoid Mq is atomic with |A (Mq)| = ∞. This result was generalized
in [2, Proposition 3.9] for any positive irreducible n-th root of any q ∈ Q>0\N±1 (for q ∈ Q>0,
an irreducible root of q is an n-th root α := n

√
q of q such that α, . . . , αn−1 are all irrationals).

It is not difficult to argue that the polynomial xn − q is irreducible in Q[x] for any pair
(n, q) ∈ Z≥2 ×Q>0 such that n

√
q is an irreducible n-th root of q (see [22, page 297]). Let us

establish a similar result for the set of strong atoms.
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Theorem 3.6. For q ∈ Q>0 \ N±1, let α be a positive irreducible n-th root q. Then the
monoid Mα is atomic with A (Mα) = {αn : n ∈ N0} and S (Mα) = ∅.

Proof. As shown in [22, page 297], if q = a
b for relatively prime a, b ∈ Z≥2, the polynomial

xn − a
b is irreducible in Q[x]. Thus, the polynomial bxn − a is irreducible in Z[x]. From [2,

Proposition 3.9], the set of atoms is A (Mα) = {αn : n ∈ N0}, and so Mα is an atomic
monoid. Now observe that, for each k ∈ N0, the equality a · αk = b · αn+k holds, and so the
atom αk ∈ Mα cannot be a strong atom of Mα. As a consequence, we conclude that the set
of strong atoms of Mα is empty. □

Corollary 3.7. There exists α ∈ A such that f(α) = (0,∞).

In the following example we exhibit a class of monoids Mα with infinitely many strong
atoms, which implies that the pair (∞,∞) is realizable.

Proposition 3.8. Let α be a positive algebraic number with exactly three positive conjugates
(including α itself). Then f(α) = (∞,∞).

Proof. Define m(x) as the minimal polynomial of α. Since m(x) has 3 positive roots, Mα is
atomic with infinitely many atoms by Proposition 2.3. Assume, for the sake of contradiction,
that some αℓ is not a strong atom in Mα. Then α must be a root of some polynomial
q(x) =

∑N
i=0 cix

i, where cℓ ≤ −1, and every other ci is nonnegative. Observe that q(x) has at
most 2 changes in sign, so it has at most two positive real roots by Descartes’ Rule of Signs.
However, this contradicts that q(x) is a multiple of m(x), which has three positive real roots.
Thus, every power of α is a strong atom, and so f(α) = (∞,∞). □

4. Degree-2 Minimal Polynomials

Let A2 be the subset of C consisting of all algebraic numbers with minimal polynomials
of degree 2. In this section, we determine f(A2) by considering cases regarding the form of
minimal polynomials of degree 2.

Proposition 4.1. Let α be an algebraic number of degree 2, and let m(x) be the only primitive
polynomial that is a scalar multiple of the minimal polynomial of α. Then the following
statements hold.

(1) If m(x) ∈ N0[x], then f(α) = (0, 0).

(2) If m(x) := ax2 + bx − c ∈ Z[x] for some a, b, c ∈ N with
√
b2 + 4ac ∈ R \ Q, then

f(α) ∈ {(0, 0), (0,∞)}.
(3) If m(x) := ax2 − bx + c ∈ Z[x] for some a, b, c ∈ N with

√
b2 − 4ac ∈ R \ Q, then

f(α) = (1,∞).

(4) If m(x) := ax2 − bx − c ∈ Z[x] for some a, b, c ∈ N with
√
b2 + 4ac ∈ R \ Q, then

f(α) ∈ {(2, 2), (2,∞)}.
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Proof. (1) If m(x) ∈ N0[x], then N0[α] = Z2×Z/a, where a is the leading coefficient of m(x).
In this case, Mα is an abelian group, and thus an antimatter monoid. As a consequence,
A (Mα) and S (Mα) are both empty sets, which means that f(α) = (0, 0).

(2) If c = 1, then 1 = ax2 + bx and so 1 ∈ Mα is not an atom. Consequently, no elements
of the generating set are atoms. In this case, Mα is antimatter, so f(α) = (0, 0). Now assume
that c > 1. Then c · 1 can be written as a ·α2+ b ·α, and so the inclusion 1Mα ⊆ Mα ensures
that αn cannot be a strong atom for any n ≥ 0. Hence Mα contains no strong atoms. Let us
argue now that the equality A (Mα) = {αn : n ∈ N0} holds.

Suppose, for the sake of contradiction, that Mα has finitely many atoms, and then set n :=
|A (Mα)|. Therefore we can write αn =

∑n−1
i=0 piα

i for some coefficients p0, . . . , pn−1 ∈ N0.

This assumption implies that m(x) divides xn−
∑n−1

i=0 pix
i in Z[x], which in turn implies that

a = 1. Let xn−2 +
∑n−3

i=0 qix
i for q0, . . . , qn−3 ∈ Z be the quotient of the polynomial division

such that

xn −
n−1∑
i=0

pix
i = (x2 + bx− c)

(
xn−2 +

n−3∑
i=0

qix
i

)
.

We can assume, without loss of generality, that q0 ̸= 0 as, otherwise, we can divide out a
factor of x. Since p0 ≥ 0, we must have cq0 = p0, meaning that q0 is positive. Since p1 ≥ 0,
we have cq1 − bq0 > 0, which also implies that q1 is positive. Furthermore, we have the
following relations:

p2 = cq2 − bq1 − q0 ≥ 0

p3 = cq3 − bq2 − q1 ≥ 0

...

pn−3 = cqn−3 − bqn−4 − qn−5 ≥ 0.

If qi and qi+1 are positive, and we have the relation cqi+2 − bqi+1 − qi ≥ 0, then qi+2 must
be positive. Hence, by induction we have qn−3 > 0. However, we also have the relation
pn−1 = −b − qn−3 ≥ 0, which implies qn−3 < 0. This gives a contradiction. Therefore
f(α) = (0,∞) in this case.

(3) If b = 1, then it is impossible for
√
b2 − 4ac to be real. Now assume that b > 1. Then

the roots of m(x) are 1
2a(b±

√
b2 − 4ac) which are both positive. By Proposition 2.3, Mα is

atomic with infinitely many atoms. Because b ·α = a ·α2+ c, α is not a strong atom, and the
inclusion αMα ⊆ Mα ensures that αn cannot be a strong atom for any n ≥ 1. On the other
hand, we claim that 1 is a strong atom. Suppose that this is not the case, and take n ∈ N
and c1, . . . , cN ∈ N0 such that n · 1 =

∑N
i=1 ciα

i. Now set

g(x) :=

( N∑
i=1

cix
i

)
− n,

and observe that g(x) has at least two distinct positive real roots because it is divisible by
m(x), which has two distinct positive real roots. However, this contradicts the statement of
the Descartes’ Rule of Signs as g(x) has only one variation of sign. Hence S (Mα) = {1}, so
f(α) = (1,∞).
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(4) Since a · α2 = b · α + c, the inclusion α2Mα ⊆ Mα ensures that αi cannot be a strong
atom for any i ≥ 2. We claim that S (Mα) = {1, α}. Suppose that α is not a strong atom.
Then m(x) divides a polynomial f(x) of the form c0 − c1x +

∑n
i=2 cix

i for some n ∈ N and

ci ∈ N0. Let
∑N−2

i=0 dix
i for d0, . . . , dN−2 ∈ Z be the quotient of the polynomial division such

that

c0 − c1x+
n∑

i=2

cix
i = (ax2 − bx− c)

n−2∑
i=0

dix
i.

Since −cd0 = c0 > 0, we must have d0 < 0. Also, −c1 = −bd0 − cd1, and since −c1 < 0 and
−bd0, c > 0, we must have d1 > 0. We also have

c2 = −cd2 − bd1 + ad0 ≥ 0

c2 = −cd3 − bd2 + ad1 ≥ 0

...

cn−2 = −cdn−2 − bdn−3 + adn−4 ≥ 0.

We claim that for each i ∈ J0, n−3K, at least one of di and di+1 is negative. The statement is
true for i = 0, so we proceed by induction. Assume the statement is true for some i < n− 3.
If di+1 < 0, then the statement automatically is true for i + 1. Otherwise, we have di < 0
and di+1 ≥ 0, in which case ci+2 = −cdi+2 − bdi+1 + adi ≥ 0 and −bdi+1 ≤ 0, adi < 0, which
forces di+2 < 0, completing the induction. Now dn−2 must be positive, as cn = adn−2. Thus,
dn−3 is negative, so cn−1 = adn−3 − bdn−2 > 0 gives a contradiction. Therefore α is a strong
atom as desired, and so 1 is as well, proving that |S (Mα)| = 2.

We now determine the possible values of |A (S)|. If a = 1, then α2 = b · α+ c holds, so α2

is not an atom, and the inclusion α2Mα ⊆ Mα ensures that αn cannot be an atom for any
n ≥ 2. The set of atoms is thus {1, α}, as otherwise m(x) would not be minimal.

Now assume a > 1. We claim that A (Mα) = {αn : n ∈ N0}. To prove this assume, for
the sake of contradiction, that αn is not an atom. By Gauss’s Lemma, if m(x) divides a

polynomial of the form xn −
∑N−1

i=0 cix
i for some c0, . . . , cN−1 ∈ N0, then a = 1, which is a

contradiction. Hence f(α) ∈ {(2, 2), (2,∞)}, concluding the proof. □

5. Further Realizable Pairs

In this section, we determine other pairs that belong to the image of our main function f .
Let us start with the following proposition.

Proposition 5.1. Let α be an algebraic number with minimal polynomial m(x) ∈ Q[x]
such that m(xk) is irreducible in Q[x] for some k ∈ N≥2. If β is a root of m(xk), then
f(β) = kf(α).

Proof. Fix k ∈ N≥2 such that the polynomial m(xk) is irreducible in Q[x], and let β be a
root of m(xk). As m(xk) is monic and irreducible, it must be the minimal polynomial of β.
We are done once we establish the following two equalities:

|A (Mβ)| = k|A (Mα)| and |S (Mβ)| = k|S (Mα)|.
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To argue the first of these two equalities, take g(x) ∈ Z[x] to be the monic polynomial
with minimal degree such that its non-leading coefficients are negative and m(x)q(x) = g(x)
for some q(x) ∈ Z[x]. Then deg g(x) = |A (Mα)|. Since m(xk)q(xk) = g(xk) also holds,
and g(xk) satisfies the condition that its leading coefficient is positive while the rest of its
coefficients are negative, we have that

deg g(xk) = k|A (Mα)| ≥ |A (Mβ)|.

In order to show that equality holds, we will show that g(xk) has minimal degree among
polynomials with this property.

Suppose, for the sake of a contradiction, that the degree of g(xk) is not minimal among
such polynomials, and let h(x) ∈ Z[x] be such a polynomial of minimal degree. Then, we can
write m(xk)b(x) = h(x) for some b(x) ∈ Z[x] such that deg b(x) < deg q(xk). Let us argue
the following claim.

Claim. k is a common divisor of supp b(x).

Proof of Claim. Suppose that supp b(x) had two distinct elements mod k. For each
e ∈ J0, k − 1K, we let he(x) denote the sum of the terms of h(x) with degree e mod k. Since
supp b(x) has two distinct elements modulo k, we see that ha(x), hb(x) ̸= 0 for some distinct
a, b. Since supp m(xk) only consists of multiples of k, the polynomial m(xk) divides both
ha(x) and hb(x). We know that h(x) only has one positive coefficient, meaning one of ha(x)
and hb(x) must have all of its coefficients being negative. However, m(xk) has a positive
real root, which gives a contradiction by Descartes’ Rule of Signs. Therefore all the positive
integers in supp b(x) are equal modulo k. Since 0 ∈ supp b(x) for h(x) to be minimal, we see
that supp b(x) ⊂ kN0. The claim is then established.

In light of the proved claim, we can write b(x) = b1(x
k) and h(x) = h1(x

k) where
b1(x), h1(x) ∈ Z[x]. Therefore m(xk)b1(x

k) = h1(x
k), and so m(x)b1(x) = h1(x). This,

along with the inequality deg h(x) < deg g(xk), implies that deg h1(x) < deg g(x). How-
ever, this last inequality contradicts the minimality of g(x). As a consequence, |A (Mβ)| =
deg g(xk) = k deg g(x) = k|A (Mα)|, as desired.

Establishing the equality |S (Mβ)| = k|S (Mα)| is quite similar. First, let g(x) be a
polynomial in Z[x] with exactly one negative coefficient such that the degree d of the term
with the negative coefficient is minimal, and m(x)q(x) = g(x) for some q(x) ∈ Z[x]. Then, for
the sake of contradiction, we let h(x) be a polynomial satisfying the same condition form(xk),
where the degree of the negative term is less than k deg g(x), and write m(xk)b(x) = h(x) for
some polynomial b(x) ∈ Z[x]. Since h(x) only has one negative coefficient, we can follow as
we did previously to obtain that all the terms of supp b(x) are divisible by k. Then we can
write b(x) = b1(x

k) and h(x) = h1(x
k), giving m(x)b1(x) = h1(x). However, h1(x) has its

negative coefficient term with degree less than d, which contradicts the minimality of g(x).
Hence the equality |S (Mβ)| = k|S (Mα)| also holds, which concludes our proof. □

Observe that the hypothesis in the statement of Proposition 5.1 is guaranteed to hold if
the minimal polynomial m(x) satisfies Eisenstein’s criterion, whence we obtain the following
corollary.
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Corollary 5.2. Let α be an algebraic number with minimal polynomial m(x) ∈ Z[x] satisfying
the hypothesis of Eisenstein’s criterion. Then, for every k ∈ N, the polynomial m(xk) is
irreducible in Q[x] and f(β) = kf(α) for any root β of m(xk).

As an immediate consequence of Proposition 5.1, we also obtain the following realization
result.

Corollary 5.3. If f(α) = (m,n), then the pair (cm, cn) is realizable for every c ∈ N0 such
that mα(x

c) is irreducible.

Next, we prove the following realization result.

Theorem 5.4. The pair (4k + c, 5k + c) is realizable for all (k, c) ∈ N× N0.

Proof. For the case when c = 0, we claim that for the positive root α of m(x) = x3 − 8x2 +
4x − 2, we have f(α) = (4, 5). Since m(x) satisfies Eisenstein’s criterion, it will follow from
Corollary 5.2 that the pair (4k, 5k) is realizable for any k ∈ N. To see that |A (Mα)| = 5,
note that

(x2 + 2x+ 1)m(x) = x5 − 6x4 − 11x3 − 2x2 − 2,

so |A (Mα)| ≤ 5. By Corollary 3.5, |A (Mα)| ≥ 3, and clearly |A (Mα)| ̸= 3 as m(x) has
multiple negative coefficients. It remains to show that |A (Mα)| ≠ 4.

Suppose, for the sake of a contradiction, that there are 4 atoms. Then there must exist
some linear polynomial f(x) = bx+ a ∈ Z[x] such that f(x)m(x) has a leading coefficient 1
and all other coefficients non-positive. Multiplying, we get that

f(x)m(x) = bx4 + (a− 8b)x3 + (4b− 8a)x2 + (4a− 2b)x− 2a.

Note that we must have b = 1, and also 4b−8a ≤ 0 and 4a−2b ≤ 0 imply that b−2a = 0. Thus,
clearly a is not an integer, so we reach a contradiction, proving that indeed |A (Mα)| = 5.
To show that |S (Mα)| = 4, note that due to Corollary 3.5, we have |S (Mα)| ≥ 3, and
clearly there are more than three strong atoms as m(x) has multiple negative coefficients.
Note that (2x+ 1)m(x) = 2x4 − 15x3 − 2, which satisfies the conditions of Corollary 3.4, so
|S (Mα)| = 4.

We now consider the case when c > 0. Fix (k, c) ∈ N × N, and let us show that the
(4k + c, 5k + c) belongs to the image of f . To do so, first observe that the polynomial

m(x) = x3k+c − 8x2k+c + 4xk+c − 2xc − 2

is irreducible in Z[x] by Eisenstein’s criterion at the ideal 2Z and, therefore, in Q[x] by virtue
of Gauss’s lemma. In addition, m(x) has a positive root α as m(0) < 0. We proceed to show
that Mα is an atomic monoid with exactly 5k + c atoms and 4k + c strong atoms. To see
that there are at most 5k + c atoms, consider the polynomial f(x) = 1 + 2xk + x2k, so that

f(x)m(x) = −2− 2xc − 4xk − 2x2k − 2x2k+c − 11x3k+c − 6x4k+c + x5k+c.

Similarly, there are at most 4k + c strong atoms since multiplying m(x) by 1 + 2xk gives

(1 + 2xk)m(x) = −2− 2xc − 4xk − 15x3k+c + 2x4k+c.

Note that there are no issues in both cases when c is a multiple of k, as all non-leading
coefficients will remain negative. Now suppose for the sake of contradiction that α4k+c−1 is not
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a strong atom. Then there exists some q(x) so that m(x)q(x) has all non-positive coefficients
except for the coefficient of x4k+c−1. We can assume deg q(x) = k−1 by Lemma 3.3, so write

q(x) =
∑k−1

d=0 adx
d. Then

m(x)adx
d = −2adx

d − 2adx
d+c + 4adx

k+c+d − 8adx
2k+c+d + adx

3k+c+d.

Observe that for any d < k − 1, the set supp (ak−1x
k−1m(x)) ∩ supp (adx

dm(x)) contains
only numbers less than k+ c+d. Therefore the coefficients of the x2k+c−1 and x3k+c−1 terms
are given by 4ak−1, and −8ak−1, respectively, from which it follows that ak−1 = 0. However,
this contradicts that deg q(x) = k − 1.

Similarly, for the atoms, suppose for the sake of a contradiction that α5k+c−1 is not an atom.

Then there exists some q(x) =
∑k−1

d=0 qd(x) where qd(x) = adx
d + bdx

d+k so that m(x)q(x)

has all non-positive coefficients except for the term x5k+c−1, which has coefficient 1. We have

m(x)qd(x) = −2adx
d − 2adx

d+c − 2bdx
d+k + (4ad − 2bd)x

k+c+d

+ (4bd − 8ad)x
2k+c+d + (ad − 8bd)x

3k+c+d + bdx
4k+c+d.

Note that the set supp (qd(x)m(x)) ∩ supp (qd′(x)m(x)) contains only numbers less than
2k + c + d′ for each pair (d′, d) with d′ < d < k. Therefore the coefficients of the terms
x2k+c+d, x3k+c+d, and x4k+c+d inm(x)q(x) are given by 4ad−8bd, ad−8bd, and bd, respectively.
Hence, when d < k−1, the inequalities bd ≤ 0 and ad ≤ 8bd hold, and so it follows that ad ≤ 0.
Now, consider the coefficient of term xd for d < k−1 in m(x)q(x). Only qd(x) and qd−c(x) can
contribute and so the coefficient of the xd-term of the polynomial q(x)m(x) is −2ad − 2ad−c,

which results from writing the xd-term as −2adx
d − 2ad−cx

(d−c)+c (set ad−c to be 0 when
d − c < 0). Suppose that ad−c = 0 for some d, and notice that because the coefficient in
m(x)q(x) of the term xd cannot be positive, ad ≤ 0, and so ad = 0. Since ad−c = 0 for d < c,
it follows by induction that ad = 0 for each d < k − 1. Additionally, from the inequalities
bd ≤ 0 and 8bd ≥ ad we obtain that bd = 0. Thus, q(x) = qk−1(x) = ak−1x

k−1 + x2k−1. Now
multiplying q(x) by m(x) gives

m(x)q(x) = −2ak−1x
k−1 − 2ak−1x

k−1+c − 2x2k−1 + (4ak−1 − 2)x2k+c−1

+ (4− 8ak−1)x
3k+c−1 + (ak−1 − 8)x4k+c−1 + x5k+c−1.

We get ak−1 ≥ 0 from the first coefficient, and ak−1 ≤ 1
2 from the coefficient of the term

x2k+c−1. As a result, ak−1 = 0, which contradicts 4 − 8ak−1 ≤ 0 from the coefficient of the
term x3k+c−1. □

We conclude this section showing that the pair (n, n+1) is realizable for almost all n ∈ N0.

Proposition 5.5. The pair (n, n+ 1) is realizable if and only if n ≥ 4.

Proof. It follows from Theorem 5.4 that the pair (4+ c, 5+ c) is realizable for all c ∈ N0. For
n < 4, we claim that (n, n + 1) is not realizable. Consider n = 3. Suppose that for some
α ∈ A the monoid Mα has 3 strong atoms and 4 atoms. Then it follows from Corollary 3.5
that deg m(x) ≤ 3. Suppose for the sake of a contradiction that degm(x) = 3. Then by
Lemma 3.3, the leading coefficient of m(x) is positive while the rest of its coefficients are non-
positive. If m(x) is monic, then Mα must have 3 atoms by [8, Theorem 5.4], and otherwise it

must have infinitely many atoms as m(x) cannot divide any polynomial xk −
∑k−1

i=0 bix
i with
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nonnegative coefficients b0, . . . , bk−1. Thus, degm(x) ≤ 2, so the result of Proposition 4.1
applies. For n ∈ {1, 2}, we have degm(x) ≤ 2 by Corollary 3.5. For n = 0, note that 1 must
be the only atom, and thus Mα = N0, which has one strong atom. □
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