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ABSTRACT. Let M be a commutative monoid. The (restricted) finitary power monoid of
M is the monoid consisting of all finite nonempty subsets of M (containing a unit) under
the so called sumset operation. We say that M possesses the MCD (resp., MCD-finite)
property if every nonempty finite subset of M admits at least one (at most finitely many)
maximal common divisors (MCD). In this paper we investigate divisibility conditions based
on MCDs in the class of finitary power monoids. Our first goal is to study the ascent of
the MCD and MCD-finite properties from the base monoid M to its finitary power monoid
Pan(M) and its restricted finitary power monoid Pen, % (M). We prove that both properties
ascend in full generality: if M is an MCD monoid (resp., an MCD-finite monoid), then
s0 is Pan(M) (resp., Pan,2(M)). Then we turn to the irreducible-divisor-finite (IDF)
property, whose ascent to polynomial extensions has been considered over the past three
decades by many authors, including Malcolmson, Okoh, and Zafrullah. In this direction, we
prove that the IDF property ascends to finitary power monoids over the class of MCD-finite
monoids, whose analogue for polynomial extensions was established in 2018 by Eftekhari
and Khorsandi. In the final section we consider polynomial extensions: first, we prove that
the MCD-finite property ascends to polynomial extensions, and then we prove that every
primitive-super-primitive monoid (PSP monoid) possesses the MCD-finite property, which
allows us to connect two recent results about the ascent of the IDF property to polynomial
extensions.

1. INTRODUCTION

Let M be a commutative monoid, which is additively written, and let % (M) denote the
group of invertible elements of M (i.e., the group of units). The large power monoid of M is
the set consisting of all nonempty subsets of M under the following binary operation, often
called the sumset or the Minkowski sum: for all nonempty subsets S and T of M,

(1.1) (S, T)—» S+T :={s+t:(s,t) e SxT}.

The finitary power monoid of M, denoted by Pg, (M), is the submonoid of the power monoid
of M consisting of all nonempty finite subsets of M. A systematic study of power monoids
and finitary power monoids was initiated by Tamura and Shafer [29] back in the sixties.
Certain submonoids of P, (M) have been considered in recent literature, including the
restricted finitary power monoid gy 4 (M), which is the submonoid of the finitary power
monoid of M consisting of all nonempty finite subsets of M containing at least an invertible
element. These constructions have recently been used as a combinatorial framework for
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studying factorization and divisibility in additive monoids and in integral domains via their
multiplicative monoids of nonzero elements.

An element of a commutative monoid M is called atomic if either it is a unit or it can
be written as a finite sum of atoms (i.e., irreducible elements), and we say that M is atomic
if every element of M is atomic. Also, M is said to satisfy the ascending chain condition
on principal ideals (ACCP) if M does not contain any infinite strictly ascending chain of
principal ideals. Another finiteness condition, intermediate between atomicity and ACCP,
is the irreducible-divisor-finite (IDF) property, introduced and first studied by Grams and
Warner [23] in 1975: M is called an IDF monoid if every element of M has only finitely
many irreducible divisors up to associate. The IDF property has been studied extensively as
it naturally interpolates between atomicity and stronger uniqueness conditions such as finite
factorization and unique factorization.

In their influential paper [1], Anderson, Anderson, and Zafrullah introduced and studied the
bounded and finite factorization properties (two natural relaxations of unique factorization
property) in the setting of integral domains, thereby laying the foundation for a subsequent
systematic investigation of factorization theory. In the same paper, the authors included
exactly the following two open questions:

e [1, Question 1] Does the property of being an atomic domain ascend to polynomial
rings?
e [1, Question 2] Does the property of being an IDF domain ascend to polynomial rings?

A commutative monoid is said to have the MCD property if every nonempty finite subset
admits a maximal common divisor (MCD). It is well known that every commutative monoid
that satisfies the ascending chain condition on principal ideals (ACCP) necessarily has the
MCD property. In 1993, Roitman [28] gave a negative answer to Question 1 and, in the
same paper, he proved that the property of being atomic does ascend to polynomial domains
when restricted to the class of MCD domains. The ascent of atomicity to finitary power
monoids parallels the ascent of atomicity to polynomial extensions (see [17, Section 3] and
[11, Section 4]). The ascent of the MCD property to finitary power monoids over the class
of linearly orderable monoids was established in [11, Proposition 4.1]. In Section 3, we
generalize this result by replacing the class of linearly orderable monoids by the larger class
of cancellative monoids (without assuming the torsion-free condition).

In 2009, Malcolmson and Okoh [27, Theorem 6.5] gave a negative answer to Question 2
above, proving that every countable domain embeds into a countable antimatter domain
whose polynomial extension does not have the IDF property (an integral domain is called
antimatter if it has no atoms). In the same paper, they prove that the IDF property ascends
from any GCD domain to its polynomial extension. In 2018, Eftekhari and Khorsandi [12]
introduced and studied the MCD-finite property and, in the same paper they prove that
the IDF property ascends to polynomial extensions over the class of MCD-finite domains,
generalizing the ascent of the IDF property previously proved by Malcolmson and Okoh. In
Section 4 we introduced a class of rank-one monoids that are MCD-finite. Then we prove
that the MCD-finite property ascends to power monoids, generalizing a result by Dani et
al. [11]). We conclude the same section investigating the ascent of the IDF property to power
monoids. First, we prove that the IDF property ascends to power monoids over the class
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of linearly orderable MCD-finite monoids, mirroring the ascent of the IDF to polynomial
extensions over the class of MCD-finite domains. This complements a construction in [11,
Section 6] of an Archimedean linearly orderable monoid M that is an IDF monoid but its
power monoid is not an IDF monoid.

Let R be an integral domain. A nonzero polynomial f(x) € R[x] is called primitive if the
ideal Iy of R generated by the coefficients of f(x) is not contained in any proper principal
ideal of R, while we say that f(x) is super-primitive if the inverse of the ideal I is the whole
ring R. It follows from the given definitions that every super primitive polynomial is primitive.
Following Arnold and Sheldon [5], we say that R is a primitive-super-primitive (PSP) domain
if every primitive polynomial of R is super primitive. PSP domains were introduced and first
investigated in [5] back in 1975 in the setting of integral domains. To generalize the PSP
property to a cancellative commutative monoid M, we only need to define the notions of
primitive and super primitive ideals mimicking the corresponding standard definition used
for polynomials: a finitely generated ideal I of M is called

e primitive if I is not contained in any proper principal ideal of M and
e super primitive if the inverse ideal I~ equals M.

Then we say that M is a PSP monoid if every primitive ideal of M is super primitive. We
dedicate the last section to the ascent of the MCD and IDF to polynomial extensions. We
prove that every nonempty finite subset of a PSP monoid has at most one MCD up to
associate, which implies that every PSP monoid is an MCD-finite monoid. Thus, the class
of PSP monoids contains the class of GCD monoids and is contained in the class of MCD-
finite monoids, as the diagram in Figure 2 illustrates. As a consequence, we obtain that the
ascent of the IDF property to polynomial extensions over the class of PSP domains (as proved
in [22]) is a special case of the ascent of the IDF property to polynomial extensions over the
class of MCD-finite monoids (as proved in [12]). In Section 5, we also establish the ascent of

GCD monoids —— PSP —— MCD-finite

FIGURE 1. Nested classes of generalized GCD monoids.

the MCD-finite property to polynomial extensions.

2. BACKGROUND

In this section, we collect the basic terminology and notation used throughout the paper.
All monoids are assumed to be commutative and written multiplicatively with identity el-
ement 1. We will denote the group of units of M by M* (or % (M) when M is written
additively). The set consisting of all the left cosets of M,

M/M* :={aM* :a € M},
is the monoid whose elements are the associate classes of M, and M is called reduced when

M/M* is trivial. For any nonempty subset S C M, the quotient S/~ denotes the family of
associate classes in M having a representative in S:

Sp~i={sM*:se€S}C M/M*.
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2.1. Cancellativity and Divisibility. For the rest of this section, we assume that S is a
nonempty finite subset of M. An element a € M is called cancellative with respect to S
if for all s,t € M, the equality as = at implies that s = ¢, while a is called cancellative
if a is cancellative with respect to M. The monoid M is called cancellative if it consists
of cancellative elements. Cancellativity is not assumed globally in this paper; instead, it is
invoked only when required by a specific argument. It is well known that the monoid M is
cancellative if and only if it is isomorphic to a submonoid of an abelian group, and in such a
case, the smallest abelian group having a submonoid isomorphic to M is denoted by ¢ (M)
and called the Grothendieck group of M.

Divisibility is taken in the standard monoid-theoretic sense: for each ¢ € M, we say that
an element d € M divides ¢ if ¢ € dM, in which case we write d |y; ¢. For each ¢ € M, we set

D.:={de M :d|y c}.

For the rest of this section, we let S be a nonempty finite subset of M. An element d € M
is called a common divisor of S if d | s for every s € S. A common divisor d of S is called
a greatest common divisor (GCD) if every common divisor of S in M divides d.

For m,d € M, we set m/d := {c € M : e¢d = m}, and we observe that m/d is a nonempty
set if and only if d |5y m, in which case, m/d is a singleton if d is cancellative with respect to
m/d. It is also convenient to set

Sjd:= | s/d.
seS
A common divisor m € M of S is called a mazimal common divisor (MCD) of S in M if
the set of common divisors of S/m is M *. It follows from the definitions that every GCD is
an MCD. We let mcd s (S) denote the set consisting of all MCDs of S in M. We proceed to
introduce some of the most relevant classes of monoids whose (restricted) power monoids we
study in this paper.
Definition 2.1. Let M be a commutative monoid.
e M is called a quasi-GCD (q-GCD) monoid if |meds(S)/~| < 1 for every nonempty
finite subset S C M.
e M is called an MCD monoid if medas(S)/~ is nonempty for every nonempty finite
subset S C M.

o M is called an MCD-finite monoid if |mcdps(S)/~| < oo for every nonempty finite
subset S C M.

It is clear that every GCD monoid is a ¢-GCD monoid, while every q-GCD monoid is
an MCD-finite monoid. Observe that if d is a GCD of S in M, then d is also an MCD of
S in M. Hence every GCD monoid is both an MCD monoid and an MCD-finite monoid.
Thus, we obtain nested classes of generalized GCD monoids determined by the black-arrow
implications:

GCD —— PSP —— q-GCD —— MCD-finite .

FIGURE 2. Nested classes of generalized GCD monoids.
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2.2. Ideals and PSP Domain. Let ¢ (M) be the Grothendieck group of the monoid M. A
subset I of M is called an ideal if IM C I or, equivalently, IM C I. For subsets S and T of
G (M), we write

(S:T):={9e€¥9(M):gT CS},

Let I be an ideal of M and set I=1 := (M : I) and I, = (M : (M : I)). If an ideal I of M
satisfies that I, = I, then [ is called divisorial. We say that

e [ is a primitive ideal of M if I is finitely generated and is not contained in any proper
principal ideal of M, and

o [ is a super-primitive ideal if I is a finitely generated ideal of M and I~! = M.

It follows directly from the definitions that every super-primitive ideal is a primitive ideal.
However, the converse does not hold in general.

Definition 2.2. Let M be a cancellative commutative monoid. If every primitive ideal of M
is super-primitive, then M is called a PSP monoid.

The PSP property was first studied by Tang [30], who proved that, for any integral do-
main R, the product of a super-primitive polynomial and a primitive (super-primitive) poly-
nomial is a primitive (resp., super-primitive) polynomial, which implies that every GCD
domain is a PSP and also that every PSP satisfies the Gauss’s lemma. Generalized GCD
has been a recurrent subject of study in the literature of commutative semigroup [3] and
commutative rings [2].

Irreducibles and Factorizations. An element a € M \ M™ is called an irreducible (or an
atom) if whenever a = uv for some u,v € M, one of the elements u or v belongs to M*. The
set consisting of all irreducibles of M is denoted by </ (M). For b € M, we let Z(b) denote
the set consisting of all irreducibles dividing b in M:

20):={ac A (M):a|pmb}.

We now introduce the IDF property, which is central in this paper and plays a fundamental
role in [22, 12], the papers motivating Sections 4 and 5. An element b € M has the irreducible-
divisor-finite (IDF) property (or is an IDF element) if the sets Z(b)/~ is finite, which means
that b is only divisible by finitely many irreducibles up to associates. Notice that every unit
is an IDF element.

Definition 2.3. A commutative monoid M is called an IDF monoid if every element b € M
has the IDF property.

The IDF property has been systematically considered by many authors since then (see the
recent paper [22] and reference therein).
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Linearly Orderable Monoids. Linearly orderable monoids provide an important class
where divisibility enjoys additional structure.

Definition 2.4 (Linearly orderable monoid). A commutative monoid M is linearly orderable
if there exists a total order =< on M such that, for all a,b € M, the inequality a < b implies
ac < be for all ¢ € M. In this case, M is said to be linearly ordered with respect to <.

Linearly orderable monoids are cancellative. Indeed, it is due to Levi [24] that an abelian
group is linearly orderable if and only if it is torsion-free and, as a consequence, a commutative
monoid is linearly orderable if and only if it is cancellative and torsion-free. The relevance of
linearly orderable monoids in this paper stems from their compatibility with finitary power
monoid constructions and the IDF property.

Finitary Power Monoids. We proceed to introduce the most central algebraic structure
in the scope of this paper: the monoid consisting of all nonempty finite subsets of M. As we
did in the introduction, we let &?(M) denote the large power monoid of M whose product,
defined additively in (1.1), is written multiplicatively throughout this section: for any two
nonempty subsets .S and T of M,

(2.1) ST :={st:(s,t)e SxT}.
This set-wise product induces a monoid structure on & (M) with identity element {1}.

Definition 2.5. The finitary power monoid of a commutative monoid M is the submonoid
Pin(M) of P(M) consisting of all nonempty finite subsets:

Pon(M) ={SCM:1<|S|< o0l

As Pg, (M) is the fundamental algebraic object inside the scope of this paper, from now on
we will refer to Pg, (M) simply as the power monoid of M. Along the paper, the relevance
of the submonoid P4, 4 (M) of P, (M) consisting of all the subsets of M intersecting M*
is also significant. We call the monoid Pgy, 4 (M) the restricted power monoid of M. is a
submonoid of M consisting of all nonempty subsets of M containing at least a unit:

Pena (M) :={S € Pan(M): SNM™ # @},

To simplify terminology, in the scope of this paper we call the monoids %4, (M) and Py, 2 (M)
the power monoid and the restricted power monoid of M, respectively.

3. THE MCD PROPERTY

The main purpose of this section is to understand the potential ascent of the MCD property
and the MCD-finite property in the setting of finitary power monoids. We also prove that
the IDF property ascends to restricted power monoids.

The existence of MCDs in the setting of power monoids was first studied by Dany et al.
in [11], where they proved that the MCD property ascends to finitary power monoids over the
class of linearly orderable monoids. We will generalize this result in the next theorem, proving
that the MCD property ascends to finitary power monoids over the class of cancellative
commutative monoids (without assuming torsion-freeness). First, let us argue the following
lemma.
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Lemma 3.1. Let M be a cancellative and commutative monoid. Let A and B be elements
of Pin(M). Then |A+ B|> max(|A|,|B]).

Proof. Without loss of generality, let |A| > |B|, let A := {a1,...,a;} and let b € B. Then
a1 +b,az +0b,...,a,+ b are all elements of A+ B. They must be distinct as if a; +b = a; +b
for i # j, then by cancellativity, we have that a; = a;, which is a contradiction. Therefore,
A + B has at least |A| distinct elements, so |A + B|> max(|A|,|B]). O

The following proposition will be helpful to establish the main results of this section.

Proposition 3.2. Let M be an MCD monoid, and let . be a finite nonempty subset of
Pin(M). If D € Psn(M) is a common divisor of % in Pgn(M), then there exists an
element r € M that satisfies the following conditions:
(a) D+ {r} is also a common divisor of .#, and
(b) for any ' € M such that r |p ', the fact that D + {r'} is a common divisor of ./
implies that v’ ~pp 7.

Proof. Assume that M is written additively, and set & := Pg,(M). Suppose, by way of
contradiction, that there exists a common divisor D of . in & := P, (M) such that none
of the elements r € M simultaneously satisfy conditions (a) and (b) in the statement of the
lemma.

Set n := |.7| and take S,..., S, in Psy(M) such that .7 = {S1,...,S,}. For each index
i € [1,n], the fact that D divides S;, guarantees that the set

H; =S, — D= {RE :@ﬁn(M) : R-f—D:Si}
is not empty. Then the product #; X --- X %, is nonempty, and so we can take an n-tuple

(Rig,...,Ri;) in %1 x -+ X %p. As |J;_, Ri,; is a nonempty finite subset of the MCD
monoid M, the former must contain an MCD my € M. Observe that

Si =Ry +D = (Ri;—{mi}) + (D + {m1})

for every i € [1,n], and so D + {m;} is a common divisor of .#" in the power monoid &,
whence m; satisfies condition (a) in the lemma. Therefore m; cannot guarantee condition
(b), which ensures the existence of an element my € M such that mg —mqy € M \ % (M)
such that D + {ma} is a common divisor of .. Therefore, for each i € [1,n], we can take
a nonempty finite subset Ry; of M such that Ry; + (D + {msa}) = S;. Observe that mg is
an MCD of |J;; Ra,;. Continue in this fashion, we can obtain an n-tuple (Rj1,...,R;,) in
K1 X -+ X Ky and an element m; € M for every index j € N such that the following two
conditions hold:

e D+ {m;} is a common divisor of .7,

e m; properly divides m;i1 in M,

o Rji+ (D +{m;}) =5, for every i € [1,n], and

e my is an MCD of |J;; Ra;.
Since D is a common divisor of ., the set %; is nonempty for every i € [1,n] and, therefore,
H X -+ X Ay 1s a finite set and, as a result, there exist indices k, ¢ € N with & < ¢ such that
Ry; = Ry; for every i € [1,n]. This implies that my, and m, are both MCDs of |J;'_; Ry,
which contradicts the fact that m; properly divides my in M. O
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We are in a position to generalize the ascent of the MCD property to power monoids and
restricted power monoids over the setting of cancellative commutative monoids.

Theorem 3.3. For a cancellative and commutative monoid M, the following statements

hold.
(1) If M is an MCD monoid, then Pun(M) is also an MCD monoid.
(2) If M is an MCD monoid, then Ppn a4/ (M) is also an MCD monoid.

Proof. In order to ease notation, let us set &2 := Pg,(M).

(1) It suffices to fix a nonempty finite subset . := {S1,...,S,} of the power monoid &
and argue that . has an MCD in &. Since every divisor has cardinality at most

min{|S;|: i € [1,n]},

there must be a common divisor of .¥ in the power monoid & having maximum size: D be
a divisor whose size is as large as it can possibly be. In light of Proposition 3.2, we can take
m € M such that the following two conditions hold:

e D+ {m} is also a common divisor of .7, and

e for each d € M, the fact that D + {m + d} is a common divisor of . implies that
de % (M).

Set D1 := D + {m} and observe that D; is also a common divisor of .¥ having maximum
size possible. We proceed to argue that D; is an MCD of . in &. To do so, let T :=
{t1,...,tm} be a common divisor of . — D; in &. It follows from the maximality of D
that |D; + T'|= |D1|. Hence, for every i € [1,m], the equality Dy +T = D; + {t;} holds, and
so | Dy + {t;}|= |D1| and Dy + {t;} € D+ T. Since m + t; is a common divisor of . — D,
it follows that t; € % (M). Therefore we can deduce from the equality Dy +7T = D; + {t1}
that D + T is associate of Dy in &2, which means that D is an MCD of .¥ in £.

(2) We show that Pg, 4 (M) is a divisor-closed submonoid of Pg,(M). Let A and B
be elements of Pgn(M) such that A & Pgn o (M), B € Pgnay (M), and A |» B. Write
A+ A" = B for some A’ in the power monoid Pgy 4 (M), and fix u € % (M) that belongs to
B. Then there exist a € A and a’ € A’ such that a+a’ = u, from which we obtain that a also
belongs to % (M) so A € Pgna (M), giving a contradiction. Hence all divisors of elements
of Pana (M) must also be in Py, 4 (M).

Therefore if we let T' be the MCD of a subset .7’ of %, (M), then it must be an element
of Pn,a (M). Furthermore, it still must be an MCD as if there is a common divisor D such
that T' | D and T and D are not associates, then D is a common divisor of . in P, (M)
and so it lies in Pqy, 4 (M) because Py, o (M) is a divisor-closed submonoid. However, this
contradicts the maximality of T. O

Even for a rank-one linearly orderable monoid M, it may exist a nonempty finite subset
S of M whose only common divisors are the invertible elements of M for which we can pick
two finite nonempty subsets A and B of M such that the following conditions hold:

(a) A=B+ S, and
(b) B + {d} divides A in Pg,(M).
Let us take a look at an example.
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Example 3.4. Consider the numerical monoid M := {0} UN>9, and then let & be the
power monoid of M. Set S := {4,5,6} and observe that the only common divisor of S in M
is the zero element. In addition, after setting A := {6,7,8,9} and B := {2, 3}, we obtain the
following;:

B+S=1{2,3}+{4,5,6} ={6,7,8,9} = A,
and so A, B, and S satisfy the condition (a). In addition, with the choice of d = 4 we
guarantee that the condition (b) is also satisfied: indeed,

B+ {d} = {2,3} + {4} = {6,7},
which divides A in the power monoid %, (M) because {6,7} +{0,2} = {6,7,8,9} = A.

4. THE MCD-FINITE PROPERTY

In this section we study the MCD-finite property and, as our primary results, we establish
the ascent of the MCD-finite property in both the setting of power monoids and the setting
of polynomial extensions.

4.1. A Class of Rank-One MCD-finite Monoids. We start by taking a deeper look to
a class of atomic MCD rank-one monoids introduced in [19] and recently considered in [26].
Let P be an infinite set of primes, and let (p,)n,>1 be the strictly increasing sequence with
underlying set P. Then consider the Puiseux monoid Mp defined as follows:

(4.1) Mp:< :n€N>

PnPn+2
Following [26], we call the monoid Mp the 2-prime reciprocal monoid induced by the set of
primes P. It is not hard to verify that the monoid Mp is atomic. Indeed, it was proved
in [19, Proposition 3.10] that M is strongly atomic, and it was proved in [26, Theorem 5.3]
that Mp is an MCD monoid. One can readily verify that

(4.2) dm@g:{ :neN}

PnDPn+2

On the other hand, the monoid Mp does not satisfy the ACCP. Indeed, as shown in [19,
Example 3.9], for each n € N, the following identity

1 1 1
— = + (pn+2 - pn)
Pn Prn+2 PnPn+2
holds, which implies that pin +Mp C ﬁ + Mp, whence (miﬂ +Mp),>o and (ﬁ%—Mp)nZl

are ascending chains of principal ideals that do not stabilize in Mp.

Next, we find a canonical sum decomposition for elements inside Mp. Although the sum
decomposition we proposed is similar to that given in the proof of [26, Theorem 5.2], the one
we describe here is slightly more refined and so we can prove that is unique.



10 G. BLITZ, F. GOTTL D. HAN, & H. LIANG

Proposition 4.1. Let P be an infinite set of primes, and let Mp be the 2-prime reciprocal
monoid induced by P. Fach r € M can be written as follows:

n(r )

p1

(4.3) r=co(r)+

pzpz—i-?

where N € N, ¢o(r) € No, ni(r) € [0,p1 — 1], ng(r) € [[0,p2 — 1], en(r) € N, and ¢;(r) €
[0, piyo — 1] for every i € [1, N].

Proof. Fix r € Mp. It is clear that if r is a positive integer, then we can decompose r as
in (4.3) by setting N = 0 and n;(r) = na(r) = 0. Therefore we assume that r ¢ No. Observe
that if a prime p divides the denominator of r, then p € P. Let p, be the largest prime that
divides the denominator of r, and set N = n — 2. Now write

T—do+*+*+2d

i=1 DipPi+2

for some initial triple (dop,n1,n2) € Ng x [0,p1 — 1] x [0,p2 — 1] and some index N’ € Ny
such that each of the coefficients d; € [0,p;42 — 1] for i € [1, N'], with dy,...,dns € Ny
and dps > 0. We can further assume that the index N’ has been taken minimum such that
dy+ > 0. Let us argue the following claim.

CrLam. N’ < N.

PROOF OF CLAIM. Assume, by way of contradiction, that N’ > N. Then py/;o does not
divide the denominator of r, and so dy+ must be divisible by pn/io: in this case, we can
write dy = dppnr4o, decreasing dns to 0 and increasing dy/_o by dpn/_2, we get another
representation of r with largest term decreased, contradicting the minimality of N’. Thus,
the claim is established.

Hence we have argued that every element » € Mp that is not an integer can be decomposed
as in (4.3). To show uniqueness, suppose that r has a decomposition as that in (4.3), and let

N
kq ko 1

44 T:CO+7+7+E C;
( ) p Zpipi+2

be another such decomposition of r, which means that (co, k1, k2) € Ngx [0, p1 —1] x [0, p2 —1]
and ci,...,cy € Ng with ¢y > 0. After subtracting both sum decompositions, we obtain the
following equality:

n—ki  no— ko N 1
0= (co—do) + + + C; — di .
(0 = do) 2 2 ;( )Pipi+2

Taking pyyo-valuation on both sides of the resulting equality, we find that ¢y — dy = 0.
Repeating this by taking p;-valuations for each i € [1,N + 2], we obtain that ny = kq,
ny = ko, and ¢; = d; for every i € [0, N], implying the uniqueness of the desired sum
decomposition. O
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We begin by proving that the 2-prime reciprocal monoids introduced in (4.1) have the
MCD-finite property. Before doing so, it is convenient to introduce the notion of a maximum
term. Let P be an infinite set of primes, and let Mp be the 2-prime reciprocal monoid
induced by P. Choose an element r € Mp. If r has canonical sum decomposition

n (1") n (r) N 1
1 2

T = Co\T + + + E cilr

( ) b1 b2 i—1 l( )pipi+2

as in (4.3), then the integer N is called the mazimum term of r in Mp. We are in a position
to prove that every 2-prime reciprocal monoid has the MCD-finite property.

Theorem 4.2. Let P be an infinite set of primes, and let Mp be the 2-prime reciprocal
monoid induced by P. Then Mp is an MCD-finite monoid.

Proof. Let S be a nonempty finite subset of Mp. Let N be an integer such that for every
n € N with n > N, the prime p,, does not divide the denominator of any element in S. Thus,

let s1,..., s, be the elements of S, and assume that s; < --+ < s,,. For each i € [1,n], let
N
ni(s;)  na(s;) 1
si = co(si) + + + > cj(si)
' " P2 ; T ppie

be the canonical sum decomposition of the element s; in Mp. Also, let d be the largest
common divisor of S whose canonical sum decomposition has maximum term at most V.

Suppose that S — d had a positive common divisor in Mp, and let pzpléw be the largest atom

that is a common divisor of S — d. First, if £ < n, then d + ¢ is a common divisor of S with
maximum term at most ¢, contradicting the maximality of d. Next, suppose £ > n, and fix

s € S. Let m be the maximum term in the canonical sum decomposition of s — d, and set

a = pmp1m+2. Then, if m > ¢, the denominator of s — d is not divisible by py,+2, implying
1

that ¢,,(s) is a multiple of p,,, and it could be replaced by P —
above. This contradicts maximality, so m = £. Thus, since the denominator of s — d is not

divisible by pyy2, we again can instead write s —d with the atom p(pLQ in its representation,
1

pepa” Thus S —d has no common divisor and so we conclude

like the process described

contradicting the maximality of
that Mp is an MCD monoid.

As in the previous paragraph, let S be a nonempty finite subset of Mp and let d be an
MCD of S in Mp. Let N be the maximum of the maximum term of each element in S. We
proceed to establish the following claim.

CLAIM 2. The maximum term of d is at most V.

PROOF OF CLAIM 2. Suppose that the maximum term of d was an integer N’ > N. Fix
s € S. The maximum term of s — d must not be less than N’ since otherwise the maximum
term of (s —d) + d is N’. Similarly, the maximum term of s — d must not be greater than
N' as otherwise the maximum term of (s —d) + d is greater than N’ as well. Thus, s — d has

maximum term N’, so m |pp s — d for each s € S, implying that d is not an MCD of
! /+
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S in Mp. Thus, any MCD d of S can be written as

N
nl(d) ng(d) 1
d=cyld)+ ——+ ———+ ci(d .
0( ) b1 b2 Jz:l J( )pjpj+2

However, d < min S is required as well, so n;(d), na(d), and each ¢;(d) is bounded for every
index j € [0, N]. Hence only finitely many such d exist. We can therefore conclude that Mp
is an MCD-finite monoid. 0

4.2. Ascent of the MCD-Finite Property. We proceed to prove that the MCD-finite
property ascends to both power monoids and restricted power monoids.

Theorem 4.3. Let M be an MCD-finite monoid. Then the following statements hold.
(1) Pan(M) is an MCD-finite monoid.
(2) Pana (M) is an MCD-finite monoid.

Proof. We assume that M is an additive monoid.

(1) Suppose, towards a contradiction, that the power monoid Pg, (M) is not MCD-finite.
Then we can pick Si,...,S, € Px,(M) such that the subset . := {S1,...,S,} of Ps,(M)
has infinitely many pairwise non-associate MCDs in Pg, (M), that is, mcd g, (a) (<) has
infinite cardinality. As .% consists of finite sets, we can pick £y € N large enough so that

lp > nmax{|S;|: i € [1,n]}.

Fix U € mcd g, (v)(7), and notice that for each i € [1,n], the fact that U divides S; in
Pan(M) ensures the existence of an element P; € Pg, (M) such that

Now for each ¢ € [1,n], one can consider the following family of sets:
U :={U+A{p}:pep}.

Observe also that |%;| < |P;| for any choice of i € [1,n]. Now fix u € U and notice that for
any index i € [1,n], the inclusion {u} + P, C U + P, = S; implies that |P;| < [S;]. After
combining the inequalities in the last two sentences, we obtain that |%;|< |S;| < ¢p. Thus,
for each i € [1,n], an arbitrary element of %; has the form U + {p} for some p € P; and
so U+ {p} C U+ P; = S;, which in turn implies that |U + {p}|< |S;|< ¢p. Therefore %;
is a family of sets with a bounded number of elements, there are finitely many possible %;.
Therefore there are finitely many ng-tuples of %;.

As med g, (a)(-) is an infinite set, it follows from the Pigeonhole Principle, that there
exists a set %/ with infinitely many non-associate MCDs of . in Pg, (M) corresponding to
the same ng-tuple of %;.

Fix U € % . Since U is an MCD of . in Ps,(M), if d € M divided all of the elements
of P:=J;_, P, then U + {d} would be a common divisor of ., and the maximality of U
would imply that d € M*. For a fixed index ¢ € [1,n], we now split up the P into the new
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elements pq, ..., pm of M, and also split up the ng-tuple of %; into the sets Ay,..., A,,. From
Equation (4.5), we obtain the following equation:

(4.6) Aj =U+{p;}-
Then, since {p1,...,pm} has no common divisors in M, the set U must be an MCD of the the
elements Ay, ..., Ay,. Without loss of generality, we assume that the A; and p; are pairwise

distinct and non-associate.

Let n be the cardinality of U and take uq,...,u, € M such that U = {uy,...,u,}. Note
that |A;|= |U|= n, so n is constant across all such MCDs U. Also define a;j, := uy + p; for
all k € [1,n] and j € [1,m]. From Equation (4.6), we have A; = {a;1,a;2,...,ajn}. Now,
we “swap rows and columns” and iterate over k instead of over j and define

(4.7) By = {alk,azk,...,amk} :uk+Q,

where @ := {p; : j € [1,m]}. From our previous argument, we can deduce that there is no
d € M\ M* such that d |y p; for each j € [1,m]. Also, since there are infinitely many such
non-associate U, there are infinitely many corresponding non-associate () since QQ = By — ug
and, for every pair of distinct Uy, Us, there must exist a k£ such that the corresponding wuy
differ.

Now, we will construct a set of elements in M that have infinitely many MCDs. Let U, be
an infinite sequence of non-associate U satisfying the condition. We denote the corresponding
Uj as Ugr, the corresponding @ as @, and the p; as pj,.. Fix Up. Since up € M and By,
is independent of U, by Equation (4.7), we have By = ug + Qo = uk, + Qr, so setting
gr = Uk — U, € G(M) implies Q, = gr + Qo. Fix a := aj;. We claim that the set a + Qg
has infinitely many MCDs of the form

my = a+ P10 — Pir-

First, note that m, = a—g, and so (a+ Qo) —m, = (a+ Qo) —(a—g,) = Qo+9gr = Qr C M.
Also, from the previous paragraph, we have that the elements of (), have no nonunit common
divisor, so it remains to show that m, are elements of M and non-associate.

For the first part, note that m, = (a — p1,) +pio = w1, +p1o € M. To prove non-associate,
note that m, ~ mg if and only if pi,. ~ p1s. However, this would imply that g, ~ gs so
Q, ~ Qs, contradiction as we assumed the (); are non-associate. Thus, these are infinitely
many MCDs in M, contradiction.

(2) Once again, assume that M is an MCD-finite monoid, and set & := Pq, 4 (M). To
argue that & is an MCD-finite monoid, let S be a nonempty finite subset of &?. If there
does not exist an MCD of S, it is trivially MCD-finite. Otherwise, let A be an element of S,
and P be an MCD of S. Note that P |5 A, so there exists a C € & such that A= P + C.
Since C € &, there exists a unit v € M such that u € C,sou+ P C C+ P = A. Then
P C —u+ A. Let % denote the family of subsets of A. Since A € &, there are finitely
many elements in A, so there are finitely many elements of .%. Note that P is associate to
an element of .%, and denote this element by f(P). If f(P1) = f(P2) =T, then P, ~T ~ P,
so P ~ P,, so f is injective up to associativity. Since the image of f is a subset of % and
% is finite, there are finitely many MCDs of S up to associates. Hence & is an MCD-finite
monoid, which concludes our proof. O
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In the proof of Theorem 4.3 we have indeed proved a statement that is stronger than the
ascent of the MCD-finite property to finitary power monoids. With the notation as in the
mentioned proof, we say that D in Pg,(M) is a p-MCD of a finite nonempty subset .¥ of
Pn(M) provided that the elements of | J;pcg(7" — D) have no nonunit common divisors or,
equivalently, that there does not exist any element m € M \ M* such that the singleton {m}
divides Jpeg(T — D) in Pg,(M). Observe that the p-MCD property is a generalization of
the MCD property, as D + {m} is a common divisor if such a singleton {m} exists.

Corollary 4.4. If M is an MCD-finite monoid, then Pgn(M) is p-MCD-finite.

Proof. If a finite nonempty subset . of Pg,(M) has finitely many p-MCDs, then . has
only finitely many MCDs. Assume that M is an MCD-finite monoid. If %g,(M) is an MCD
monoid, then %5, (M) is a p-MCD monoid, whence, or p-MCD-finite implies MCD-finite. [

4.3. The IDF Property Ascends Over the Class of MCD-finite Monoids. In this
section, we will establish two main results. First, we argue the ascent of the IDF property to
power monoids provided that the ground monoid is MCD-finite. This result mimics the direct
implication of Theorem 5.1. Then we establish a result parallel to the reverse implication of
Theorem 5.1 for power monoids over the class of linearly orderable monoids.

In parallel to this result, we prove in this section that the IDF property ascends to power
monoids over the class of linearly orderable MCD-finite monoids.

Theorem 4.5. Let M be a linearly orderable monoid that is also an MCD-finite monoid.
If M is an IDF monoid, then Pg,(M) is also an IDF monoid.

Proof. Let M be a linearly orderable MCD-finite monoid, and further assume that M has the
IDF property. As M is a linearly orderable monoid, we obtain that the subset .#3; consisting
of all the singleton subsets of M is a divisor-closed submonoid of Pg,(M). Thus, every unit
of Pgn(M) must belong to .#y; and so the group of units of both Pg, (M) and S is

U = {{u}:ueuM)},

while the set of atoms of .} is that consisting of all the atoms of P5,(M) that belongs to
- It suffices to fix an element S of the power monoid Pg, (M) and then argue that the
set o7 (S) consisting of all the atoms of P, (M) that divides S is finite up to associates. It
suffices to argue that the set <7 (S) (resp., @%2(S)) consisting of all the singletons (resp.,
non-singletons) in o7(S) is finite up to associates.

To argue that <7 (.5) is finite up to associates, fix sg € S and note that for any a € M such
that the singleton {a} divides S in Ps,(M), it follows that {a} divides {so}. This, along
with the fact that the singleton that are atoms in Zg, (M) are also atoms in .7, ensures that
the set consisting of all singleton subsets of M that are atoms in Pq,(M) dividing S is

1 (S):={{a}:ae (M) and a | so}-

As M is an IDF monoid, the set {a € &7 (M) : a |ar so} is finite up to associates and so the
fact that M and .#); are canonically isomorphic ensures that the set <7 (S) is finite up to
associates in g, (M). Consider the function ju: 25 /% x (M /% (M)) — Pgn(M) /% defined
by:

WA+U,p+u%(M)):=A-{B}+%,
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where 3 is an MCD of A. To check that u is a well-defined map, take A;, As and B1, B2 such
that Ao = A1 + {u1} and B2 = 1 + uz. Then,

pw(Ai+ %, +%(M))=A1 —{b1}+%
=A1 = {Bi} +{w}t —{u} + %
=Ay—{B}+u
= u(As + %, P2 +62/(M))

Now, we claim that @%,(S) is contained inside the range of the function. Take A € &/54(S5).
Then, there exists some finite nonempty subset B of M such that S = A+ B in Pg, (M), and
for some 3 € B, we have A+ 3 C S. Since A is an atom of P4, (M), none of the singletons
{m} can divide A in Pg,(M) when m € M \ % (M), whence 5 is an MCD of A+ 5 in M.
So, A+ U = pw(A+B8+%,B+%(M)), and is contained inside the range. Since the domain
of the function is finite as each subset of S has finitely many MCDs up to associates, the
range must also be finite. Since .&/59(S) is a subset of the range, it must be finite. O

It is worth emphasizing that the MCD-finite restriction is not superfluous in the statement
of Theorem 4.5: it was proved in [11, Theorem 6.5] that the IDF property does not ascend to
power monoids over the class of linearly orderable monoid. We proceeed to exhibit a linearly
orderable monoid that is not an MCD-finite monoid.

Example 4.6. Consider the additive submonoid M := {0} UQ>; of Q. Fix ¢,r € M such
that 2 < ¢ < r. Let us argue that the subset S := {q¢,r} of M has infinitely many MCDs (and
so it does not have any GCD). Observe that every element in the subset Dg :=[1,¢—1]NQ
of M is a common divisor of S: indeed, for each d € Dg, we see that g —d>q¢—(¢—1) =1
and sor —d > qg—d > 1, whence d |y ¢ and d |y 7. Now fix e € R with 0 < e < g — 2.
Because 1 < (¢—1) —e < ¢—1, it follows that the infinite subset Mg := ((¢—1) —€,¢—1)NQ
of M is contained in Dg, and so each m € Mg is a common divisor of S in M. On the other
hand, for each pair (m,q’) € Mg x (M \ {0}), the inequalities m+¢' > m+1 > ¢ hold and so
m + ¢ tu ¢, whence m is an MCD of S in M. Thus, every element in Mg is an MCD of S,
which implies that S has infinitely many non-associate MCDs in M. As a consequence, M
is a linearly orderable monoid (under the standard order) that is not an MCD-finite monoid.

The following lemma is well known, but we include its proof here for the sake of complete-
ness.

Lemma 4.7. Let M be a linearly orderable monoid. Then for any A, B € Ps,(M), the
following holds:
|A+ B|> |A|+|B|—-1.

Proof. Let A = {a1,aq9,...,ap} where k > 1 and a1 < a2 < -+ < ag, and let B =
{b1,b2,...,b,}, where n > 1 and by < by < --- < b,. Then note that a; +b; € A+ B
for all j € [1,n], and a; + b, € A+ B for all ¢ € [1,k]. Note that, since M is linearly
orderable,

art+tbhi<art+b<---<ap+b,<as+b, <---<ap+ay.

This implies |A 4+ B|>n+ k — 1 = |A|+|B|—1, as desired. O
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Theorem 4.8. Let M be a linearly orderable IDF monoid. If the finitary power monoid of
Pn(M) is IDF, then M is MCD-finite.

Proof. Towards a contradiction, suppose that M is not MCD-finite. Then there exist n € N
and ay, a9, ...,a, with infinitely many MCDs, which implies there are infinitely many non-
associate {b; : i € I} (for an infinite set I) such that a; — b; for k € [1,n] have no nonunit
common divisor. Set
Si:={ar —b; : k € [1,n]}.

Note that S := {ai,...,a,} = {b;} + S;. Since the singleton {¢} is an atom (resp. unit) of
Phin(M) if and only if ¢ is an atom (resp. unit) of M, note that each nonunit divisor of S;
has cardinality at least 2. Also, for any nonunits T, € Pgn(M) such that S; = > -, Ty,
repeatedly applying Lemma 4.7 implies that

|Si|= |Th|+|Tal4+ -+ |Tm|—(m—=1) >2m —(m—1)=m+ 1

so m < |S;|—1. Therefore, every factorization of S; has bounded length, and by taking the
longest factorization we obtain that S; can be factored into atoms of Pg,(M).

Since Pg,(M) is IDF, there are finitely many non-associate atoms dividing S. Let these
atoms be {di,da,...,dn}, up to associates. Since every atom dividing S; also divides S,
every S; can be expressed as a finite sum of atoms d; for j € [1,m], up to associativity.
However, for all ¢ € I, there exist r; € No such that S; ~g, ) 27:1 d;r;, and Lemma 4.7
implies r; < n for all j € [1,m]. Therefore there are finitely many such sums Z;”Zl d;r; that
correspond to at least one S;, so there exist two S; that are associate. Since S = b; + 5;,
this implies the two b; are associate, which is a contradiction as we assumed the b; are not
associate. Hence M is MCD-finite, which concludes the proof. O

5. ASCENT oF THE IDF AND MCD-FINITE PROPERTIES TO POLYNOMIAL EXTENSIONS

In this final section, we provide two results that should shed some light upon the ascent
of both the MCD-finite and the IDF properties to polynomial extensions. First, we establish
the ascent of the MCD-finite to polynomial extensions. Then we prove that the PSP property
is stronger than the MCD-finite property, and deduce from this fact that the ascent of the
IDF property to polynomial extensions over the class of PSP domains [22, Theorem 3.2] is
a special case of the ascent of the IDF property to polynomial extensions over the class of
MCD-finite domains [12, Theorem 2.1].

5.1. Ascent of MCD-Finite Property — Polynomial Extensions. The MCD-finite
property was introduced by Eftekhari and Khorsandi [12] back in 2018, who were moti-
vated by the study of the ascent of the IDF property to polynomial extensions. The primary
result of their paper is the following.

Theorem 5.1. [12, Theorem 2.1] For an integral domain R, the following conditions are
equivalent.

(a) R is an MCD-finite IDF domain.

(b) R[z] is an IDF domain.
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However, in their paper they did not address the potential ascent of the MCD-finite prop-
erty to polynomial extension. Although the main algebraic structures of this paper are power
monoids, we conclude this section proving the ascent of the MCD-finite property to polyno-
mial extensions.

Theorem 5.2. Let R be an MCD-finite integral domain. Then the polynomial domain R[x]
is also an MCD-finite domain.

Proof. Let F be the field of fractions of R. Since F[x] is a Euclidean domain, it is a UFD,
whence every nonzero polynomial in F[z] has finitely many divisors up to associates. Since
the units of F[z] are precisely the scalars in F* and the divisibility relation A(x) |g[y) B(z)
implies A(x) |p[y B(x) for all A(z), B(r) € R[z], every nonzero polynomial in R[z] has
finitely many divisors in R[x]| up to multiplication by an nonzero scalar.

Assume, by way of contradiction, that R[x] is not an MCD-finite domain. Then there
exists a finite subset S of R[z]* having infinitely many MCDs in R[z] up to associates. Set
n := |S| and let Fi(z),..., F,(z) € R[x] be the polynomials in S. Let D denote a maximal
set of non-associate representatives of the set of divisors of Fj(x) in F[z], and consider the
map ¢: S — S/~p defined as follows: ¢:m(z) — [m(z)|pp). As D is finite, it follows from
the Pigeonhole Principle that there exist infinitely many MCDs of S that are associate in

Let A(xz) be an MCD of S in R[z], and let (7,)n>1 be a sequence of scalars in F' such
that r, A(z) are also MCDs of S in R[z]. Now for each index k € [1,n], take a polynomial
By (z) € R[x] such that Fj(z) = A(x)Bi(z). Let C denote the subset of R that is the union
of the sets of coefficients of the polynomials By (x) for every k € [1,n]. Observe that because
A(z) is an MCD of S in R[z], the set C' has no nonunit common divisors in R. Similarly,
the set éC has no nonunit common divisor in R. Let a1, b1, and f; denote the leading
coefficients of the polynomials A(z), By(x), and Fj(x), respectively. Thus, fi = a1b;.

Finally, we proceed to construct infinitely many MCDs of the finite subset f1C of R, from
which we can obtain our desired contradiction. For every m € N, the equalities

firm = a1biry, = (a17m)b1

holds in R because a7y, is the leading coefficient of r,,, A(z) € R[z]. In addition, the equality
fLO(firm) L = %C holds in R and they have no nonunit common divisors, whence fi7,, is
an MCD of fiC' in R. From the fact that the elements 7,,’s are not pairwise associates in R,
we can now deduce that the elements fir,,’s are not pairwise associates in R neither, whence

they are infinitely many MCDs of the subset fiC' of R, which concludes our proof. U

5.2. The PSP and the MCD-finite Properties. In this final section we prove that the
PSP property is stronger than the q-GCD property, and deduce that the class consisting of
all PSP monoids (resp., domains) is larger than the class consisting of all MCD-finite monoids
(resp., domains).

Proposition 5.3. FEvery PSP monoid is a ¢-GCD monoid.
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Proof. Let M be a PSP monoid. Assume, towards a contradiction, that M is not a q-GCD.
Then there exists a nonempty finite subset S of M possessing two non-associate MCDs in
M, namely, d; and da. Now set S; := S/d;, and then consider the subset

I:= U sM.

seSt

of M, which is clearly an ideal of M. We claim that the only principal ideal of M containing
I is M itself. To argue this, suppose that I C bM for some b € M. Then s € bM for every
s € S1 and, therefore, b is a common divisor of S;. Now the fact that d; is an MCD of §
ensures that b € M*. Thus, bM = M, and so the only principal ideal of M containing I
is M itself. Hence I is primitive ideal.

We proceed to argue that I is not super-primitive. To do so, fix a € I, and then take

5q € 51 such that a € s,M or, equivalently, == € M. In addition, d}é“ € M because s, € S1

and ds is a common divisor of S = d;.57. Therefore %a = i% € M. As a was take to be

an arbitrary element in I, it follows that %I C M. As a consequence,
(5.1) —ec(M:I)=T1".

From the fact that d; and dy are non-associate MCDs of S in M, we deduce that dy 157 d;
or, equivalently, % ¢ M. This, along with (5.1), guarantees that {1}-I~! ¢ M. This in turn
implies that 1 ¢ (M : I~1) = I,,. Therefore the divisorial ideal I, is a proper ideal of M and,
as a consequence, the ideal I is not super-primitive.

Then we have proved that the ideal I is primitive but not super-primitive, which contradicts
the fact that M is a PSP monoid. Hence we conclude that M is a g-GCD monoid. U

As an immediately consequence of Proposition 5.3 we obtain that the PSP property is
stronger than the MCD-finite property.

Corollary 5.4. Every PSP monoid (resp., domain) is an MCD-finite monoid (resp., do-
main).

Corollary 5.4 reveals that the ascent of the IDF property to polynomial extensions over
MCD-finite domains [12, Theorem 2.1] is stronger than the ascent of the IDF property to
polynomial extensions over PSP domains [22, Theorem 3.2].
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