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Abstract

High-dimensional datasets with far more variables than samples (p ≫ n) overwhelm classical flat Bayesian-network learners:

their search space over directed acyclic graphs (DAGs) grows super-exponentially and, by treating all nodes at one level,

they ignore the modular, multi-scale organization that real systems exhibit, hurting both computational tractability and

interpretability. We introduce MT-BN (Multi-Scale Topological Bayesian Networks), a Bayesian structure-learning framework

that infers an adaptive hierarchy of modules and learns directed influence networks at multiple resolutions, while defining

within-resolution directionality on resolution-specific innovations rather than on inherited shared signal. Concretely, MT-BN

learns a nested partition of the p variables (via a truncated nCRP prior), associates each module at each level with latent

states, decomposes each state into inherited signal plus a level-specific innovation, and learns within-level DAGs exclusively on

innovation latents to avoid spurious dependencies induced by common ancestry. Connectivity is regularized by topology-aware

priors that encourage sparsity, hierarchy-consistent proximity structure, and heterogeneous hub degree profiles, and a hybrid

inference pipeline combines variational inference for continuous latents with stochastic structure search over hierarchies and

DAGs to yield scalable computation and edge posterior summaries. Under a minimum module size constraint, MT-BN replaces

flat structure search over p observed nodes with multi-resolution structure search over module graphs whose node counts are

bounded by the number of admissible modules at each level; equivalently, MT-BN searches over a product of within-level DAG

spaces
∏L

ℓ=1 DAG(Mℓ) rather than DAG(p), and reduces the candidate edge universe from p(p−1) to
∑L

ℓ=1 Mℓ(Mℓ−1). On the

DREAM5 Network Inference Challenge, MT-BN outperforms flat Bayesian-network baselines, achieving higher edge-recovery

accuracy (e.g., Net1 AUPR 0.325 vs. 0.218, +49%; Net3 AUPR 0.071 vs. 0.043, +65%) and consistent AUROC gains (Net1

0.733 vs. 0.683; Net3 0.597 vs. 0.559). We further demonstrate MT-BN on tuberculosis gene-expression cohorts (p = 6503

genes, n = 2722 samples), where MT-BN recovers interpretable immune programs (including interferon/ISG and upstream

JAK–STAT control) supported by external pathway evidence and yields stable hub- and edge-based candidates for biomarker

nomination. These results highlight MT-BN as a practical multi-scale alternative to flat BN learning for structure discovery

in the p ≫ n regime.

Keywords
Bayesian networks, structure learning, multi-scale modeling, hierarchical latent variables, causal discovery, variational
inference, gene regulatory networks, p≫ n
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1 Introduction

Bayesian networks (BNs) provide a principled framework for representing multivariate dependence through directed
acyclic graphs (DAGs).[1] They are attractive in scientific settings because a learned structure can be interpreted
as a compact hypothesis about directional influence, and because Bayesian scoring naturally regularizes against
overfitting by integrating uncertainty in parameters.[2] However, standard BN structure learning becomes brittle in
the high-dimensional regime p ≫ n: the number of DAGs grows super-exponentially in p, statistical evidence is
limited for orienting edges, and common algorithms exhibit unstable behavior under small perturbations of the data
or hyperparameters.[2, 3] These difficulties are pronounced in genomics and other biological systems where p may be
in the thousands with only tens to hundreds of samples [4, 5], and similarly arise in financial dependence modeling
when one seeks directed relationships among large collections of assets or latent factors.[6]

A second difficulty is that dependency structure in real systems is rarely arbitrary. Empirical networks often
exhibit modular organization, sparse long-range connectivity across modules, and heterogeneous degree profiles in
which a small number of hubs mediate substantial directed influence.[7] Flat BN learning procedures, whether score-
based, constraint-based, or hybrid, typically treat the full variable set as the graph node set, forcing the method to
decide simultaneously among an enormous space of possible edges while ignoring multi-resolution organization.[8, 9,
10] Practical workarounds often impose a two-stage pipeline: variables are clustered into modules and a module-level
graph is learned afterwards, or a latent factor model is fit and a graph is learned on inferred factors.[11, 12, 13, 14]
While these approaches can improve stability, they decouple representation learning from structure learning and can
confound within-module shared signal with genuine directed relationships.

This paper introduces MT-BN, a multi-scale topological Bayesian network framework for tractable, interpretable
structure learning in high dimensions. MT-BN replaces a single flat structure learning problem with a coupled model
that simultaneously (i) learns a hierarchy of nested modules that partitions the p observed variables at multiple
resolutions, (ii) associates each module with latent trajectories across samples that summarize module activity, and
(iii) learns directed acyclic graphs among modules at each resolution. The hierarchy captures vertical organization,
while within-level DAGs capture horizontal directed dependencies among modules at the same resolution. By moving
graph learning to the module level, MT-BN reduces the effective search dimension from p to the number of modules
at each resolution, enabling localized structure updates and substantially shrinking the search space.

A key modeling principle that distinguishes MT-BN from existing hierarchical or modular graphical models is that
within-level directed structure at a given resolution is defined on what is newly expressed at that resolution rather
than on signal inherited from coarser scales. Concretely, each module state at level ℓ decomposes into an inherited
component determined by its parent module at level ℓ− 1 and an innovation component capturing residual variation
newly expressed at level ℓ. MT-BN places directed edges exclusively among innovation latents rather than among
full module states. This choice prevents sibling modules from appearing spuriously dependent due solely to shared
inheritance and yields a clean interpretation: directed edges at resolution ℓ represent relationships among innovations
conditional on higher-level structure and shared signal. Under standard structural equation model assumptions, these
directed edges admit a causal interpretation at the corresponding resolution; otherwise they should be interpreted
as directed predictive dependencies induced by the model class.

MT-BN further regularizes and accelerates learning through topology-aware priors on within-level DAGs. These
priors encode global sparsity, hierarchy-induced block structure favoring denser connectivity among nearby modules
in the hierarchy, and heterogeneous degree profiles consistent with hub structure. The priors reduce posterior mass
over implausible graphs and enable efficient local score updates under single-edge proposals. Because exact posterior
inference over hierarchies and DAGs is intractable in the targeted regime, MT-BN uses a blocked hybrid inference
strategy: variational inference for continuous latent variables and parameters conditional on a fixed discrete structure,
coupled with Metropolis-style stochastic search over discrete structures guided by a variational structure score. The
result is a scalable procedure for locating high-scoring multi-scale structures and producing stability-based uncertainty
summaries over recurrent edges and module assignments.

We validate MT-BN on three case studies spanning benchmark and real-world settings. First, we evaluate
directed edge recovery on DREAM5 network inference tasks with available ground truth. Second, we apply MT-
BN to tuberculosis gene expression data to identify modular structure and candidate regulatory drivers at multiple
resolutions. Across these studies, MT-BN yields interpretable module hierarchies, directed dependencies that are
stable under the induced exploration distribution, and competitive performance relative to baselines that do not
incorporate multi-resolution organization.

The contributions of this work are as follows. We propose a unified probabilistic framework that couples hi-
erarchical partition learning, latent representation learning, and multi-scale directed structure learning within one
Bayesian model. We introduce the innovation-based causality principle, placing within-level directed structure on
resolution-specific innovations rather than inherited module states. We develop topology-aware graph priors that en-
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code sparsity, hierarchy-induced proximity, and hub structure, and that admit localized updates suitable for efficient
discrete search. Finally, we present a scalable hybrid inference procedure and demonstrate the utility of MT-BN
across biological and financial datasets in the high-dimensional regime.

Organization. Section 2 reviews related work. Section 3 summarizes the BN and variational inference preliminaries
used later. Section 4 formalizes the learning problem. Section 5.1–Section 5.8 present the MT-BN framework,
inference, and outputs. Section 6 formalizes computational efficiency gains. Section 7 reports experimental results,
and Section 8 discusses limitations and future directions.

2 Related Work

This section positions MT-BN relative to prior work in Bayesian network (BN) structure learning, modular and
hierarchical network models, latent-variable graphical modeling, and topology-aware priors. The central distinction
is that MT-BN is a joint model of (i) a multi-level hierarchy over variables, (ii) latent module representations, and
(iii) within-level directed structure defined on resolution-specific innovations rather than on inherited shared signal.

2.1 Bayesian network structure learning in high dimensions

Classical BN structure learning methods are typically organized around a scoring criterion (e.g., marginal likelihood
or a large-sample approximation such as BIC) combined with a discrete search procedure over DAG space.[15, 16]
Greedy equivalence search (GES) is a canonical example of score-based search over Markov equivalence classes, with
asymptotic guarantees under standard assumptions but a search space that becomes difficult to explore as p grows.[17]
Constraint-based methods such as the PC algorithm instead infer a CPDAG from conditional-independence tests
and then orient edges where possible, but are well known to become statistically brittle when reliable high-order
conditional independences cannot be estimated (a common situation in p≫ n regimes).[18]

More recently, continuous relaxations formulate DAG learning as optimization over a weighted adjacency matrix
by imposing a smooth acyclicity constraint. NOTEARS is a representative approach that replaces combinatorial
search by a continuous objective coupled to an exact differentiable characterization of acyclicity.[19] These methods
can be highly effective for medium-scale problems, but they still ultimately target a single flat DAG over observed
variables (or a single layer of latent variables) and therefore do not, by themselves, resolve the statistical and compu-
tational issues that arise when dependencies are multi-scale, modular, and hub-dominated in very high dimensions.

MT-BN is complementary to these lines. Rather than proposing a new flat-DAG solver, MT-BN changes the
object being learned: it replaces a single p-node structure problem with a hierarchy of smaller within-level module
graphs coupled through a vertical inheritance model. This shifts difficulty from searching an enormous global DAG
space to jointly inferring a hierarchy plus multiple smaller DAGs on innovation latents, with topology-aware priors
further shrinking the effective search space.

2.2 Module-based and clustered representations for networks

A common strategy in genomics and other domains is to reduce dimensionality by clustering variables into modules
and then learning relationships between modules. The module networks framework is a prominent example: it groups
genes into co-regulated modules and associates each module with regulators and condition-specific dependencies,
yielding a probabilistic description that is more interpretable than a fully gene-level BN in many settings.[20] More
broadly, many pipelines follow a two-stage pattern in which module discovery (clustering, community detection, or
factor extraction) is performed first, and graph learning is performed second on aggregated module summaries.

The key limitation for MT-BN’s target setting is not modularity itself, but how modularity is used. In two-stage
pipelines, the representation is typically treated as fixed (or only weakly coupled) when learning directed structure.
This decoupling makes it hard to prevent inherited shared signal from creating spurious within-level dependencies: if
sibling modules share a strong common parent-level component, any graph learned directly on the module summaries
can be dominated by that shared inheritance rather than by resolution-specific interactions.[11, 21] MT-BN addresses
this by defining within-level directed structure on innovation latents U (ℓ) that isolate what is newly expressed at
level ℓ, conditional on higher-level variation. This is a modeling choice about what counts as within-level dependence
and what is treated as inherited context, and it is enforced explicitly through the vertical inheritance construction
in Section 5.5.

4



2.3 Latent-variable graphical models and factor-analytic structure

A second major line of work explains high-dimensional dependence via latent variables. Factor models represent
covariance structure through low-rank latent factors, while latent-variable graphical models combine sparse condi-
tional dependence among observed variables with a small number of latent confounders. A representative formulation
decomposes the observed precision matrix into a sparse component plus a low-rank component corresponding to la-
tent effects, and can be fit via convex optimization under suitable conditions.[21] These approaches are powerful for
distinguishing direct from confounded associations in undirected settings, and they provide an important conceptual
baseline: shared latent variation can induce apparent dependencies that are not direct interactions.

MT-BN differs in both target and semantics. First, MT-BN is explicitly multi-resolution: it introduces a hierarchy
of latent summaries, not a single latent layer, and it uses the hierarchy to define what is inherited versus what is new at
each resolution. Second, MT-BN’s within-level objects are directed and are learned on innovations rather than on full
latent states. In standard latent-variable graphical models, the latent component typically represents shared variation
that is integrated into the model primarily to improve recovery of direct relationships among observables. In MT-BN,
shared variation is elevated to a structured multi-level hierarchy and then explicitly removed (via conditioning on
ancestors) before within-level directionality is inferred on the residual innovation signal.

2.4 Hierarchical network models and multi-scale community structure

There is extensive work on hierarchical structure in networks, particularly in the form of nested community models and
hierarchical stochastic block models (SBMs). The nested SBM formalism provides a principled Bayesian approach
to representing networks at multiple resolutions by recursively grouping nodes into blocks, often yielding strong
compression and interpretability for large graphs.[22] However, this literature typically assumes an observed network
is given and seeks a hierarchical description of its connectivity patterns, often in undirected or non-causal directed
settings. The hierarchy is a model of block structure in an observed adjacency matrix rather than a model that
jointly generates data matrices X through latent module trajectories and within-level structural equations.

MT-BN instead treats the hierarchy as a prior over nested partitions of variables that is learned jointly with
directed within-level structure and latent representations from the underlying data. This distinction matters for
novelty and identifiability: MT-BN’s hierarchy is not merely a descriptive compression of an observed graph, but a
component of a generative model in which inheritance across levels explains shared signal and within-level edges are
restricted to innovations.

2.5 Topology-aware priors, sparsity, and hub structure

Bayesian approaches to BN learning often incorporate sparsity through edge-count penalties or Beta–Bernoulli con-
structions, reflecting the empirical belief that real networks are sparse.[15] Separately, empirical studies of biological
and technological networks motivate priors that allow heterogeneous degree profiles and hub-like behavior. Most
existing priors emphasize either global sparsity or degree heterogeneity, and when modularity is included it is often
encoded through block constraints or partition-dependent edge probabilities.

MT-BN combines these preferences in a multi-resolution setting via a product-of-experts construction: a global
sparsity component, a hierarchy-induced proximity component, and a hub-structure component applied at each level
(Section 5.4). The intent is not to claim that any one of these ingredients is new in isolation, but that their joint
use inside a multi-resolution latent-innovation framework yields a search space reduction mechanism that aligns with
common empirical regularities while preserving a clear causal target at each resolution.

2.6 Benchmarks and gene network inference context

Gene regulatory network inference has a long history of benchmarking methodologies under partially observed ground
truth. The DREAM5 Network Inference Challenge remains a widely used reference point for comparing network
inference methods across in silico and in vivo settings, while also highlighting the difficulty of evaluation when real-
network ground truth is incomplete.[23] MT-BN’s case studies use this benchmarking tradition as motivation for
evaluating not only edge-recovery accuracy where ground truth is available, but also interpretability and stability of
inferred multi-scale structure.

Summary of the gap MT-BN targets. Across these literatures, there exist effective methods for (i) learning
a single DAG, (ii) clustering into modules, (iii) introducing latent variables to explain shared dependence, and
(iv) describing hierarchical block structure in an observed network. MT-BN targets the intersection that is less
directly addressed: joint learning of a multi-level hierarchy and directed within-level structure where causality at
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each resolution is defined on what is newly expressed at that resolution (innovations), not on inherited shared
signal. This design choice is the mechanism by which MT-BN aims to avoid spurious within-level edges induced by
hierarchical inheritance while retaining a coherent multi-scale directed interpretation.

3 Preliminaries

This section summarizes the Bayesian network and inference concepts needed to formalize MT-BN. The goal is to fix
notation and state standard results that will be used implicitly in the model construction and inference procedure.

3.1 Directed acyclic graphs and Bayesian networks

Let G = (V,E) be a directed acyclic graph (DAG) on node set V = {1, . . . , d}. For a node v ∈ V , write PaG(v) ⊆
V \{v} for its parent set. A Bayesian network associated with G is a joint distribution on random variablesX1, . . . , Xd

that satisfies the directed Markov property: each variable is conditionally independent of its non-descendants given
its parents.[16] Equivalently, the joint density factorizes as

p(x1, . . . , xd | G, θ) =
d∏
v=1

p
(
xv | xPaG(v), θv

)
, (1)

where θ = {θv} denotes local parameters of the conditional distributions.
Given i.i.d. samples x(1), . . . , x(n) collected into a data matrix X ∈ Rn×d, the likelihood under a BN factorizes

across nodes:

p(X | G, θ) =
n∏
t=1

d∏
v=1

p
(
x(t)v | x(t)PaG(v), θv

)
=

d∏
v=1

p
(
X:,v | X:,PaG(v), θv

)
. (2)

This decomposability is the basis for efficient score updates under local modifications of parent sets in score-based
structure learning.

Two DAGs can encode the same set of conditional independences, forming a Markov equivalence class. In
purely observational settings, without additional assumptions beyond the directed Markov property and faithfulness,
the data identify the equivalence class rather than a unique DAG. Methods that output a single directed graph
therefore either target an arbitrary representative of the class or rely on additional modeling assumptions that break
equivalence.

3.2 Linear Gaussian structural equation models

A common parametric BN family is the linear Gaussian structural equation model (SEM).[24] Let X ∈ Rn×d be the
data matrix with columns X:,v. Under a DAG G, a linear Gaussian SEM specifies that for each node v,

X:,v =
∑

u∈PaG(v)

X:,u βu→v + εv, εv ∼ N (0, σ2
vIn), (3)

with independent noise across nodes. This induces a BN with Gaussian conditionals and hence a joint Gaussian
distribution whose precision matrix respects the DAG. The SEM view is useful because it separates the directed
structure G from the regression parameters {βu→v} and noise variances {σ2

v}, and because it clarifies how directed
edges correspond to predictive relations conditional on parents.

Causal interpretation of the arrows in G generally requires assumptions beyond observational factorization. In
MT-BN we will adopt an SEM-based generative model for latent innovations at each resolution and interpret directed
edges as causal at that resolution only under the corresponding SEM assumptions (appropriate noise structure and
absence of additional unmodeled confounding after conditioning on higher-level latents). Without these assumptions,
the learned DAGs should be read as directed dependencies within the chosen model class.

3.3 Bayesian scoring and decomposability

Bayesian structure learning places a prior p(G) over DAGs and a prior p(θ | G) over parameters.[15] The posterior
over structures is

p(G | X) ∝ p(G) p(X | G), p(X | G) =
∫
p(X | G, θ) p(θ | G) dθ, (4)
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where p(X | G) is the marginal likelihood. The log posterior score is therefore

log p(G | X) = log p(G) + log p(X | G) + const. (5)

When the model is conjugate and node-conditional likelihoods depend only on PaG(v), the marginal likelihood
factorizes across nodes:

p(X | G) =
d∏
v=1

p
(
X:,v | X:,PaG(v)

)
, (6)

where each factor is obtained by integrating out θv in the local regression problem induced by PaG(v). This implies
that local changes to a graph affecting only one node’s parent set modify only a constant number of terms in
log p(G) + log p(X | G). Practical score-based algorithms exploit this property to compute score differences under
add/delete/reverse moves without recomputing global quantities.

Bayesian learning principles of this kind are also used in biological inference settings, including proteomics appli-
cations that explicitly review Bayesian methodology through Bayesian networks.[25]

In high dimensions, structure priors play an essential role because many distinct graphs can achieve similar
likelihood. Priors that penalize edge counts, restrict in-degree, or encode plausible topology can dominate posterior
concentration and stabilize discrete search.

3.4 Regularization via edge-inclusion priors

A basic and widely used sparsity prior treats edges as exchangeable conditional on an unknown inclusion probabil-
ity.[26] Let E denote the edge set and let N = d(d−1) be the number of possible directed edges excluding self-loops. If
conditional on θ edges are independent Bernoulli and θ ∼ Beta(a, b), then integrating out θ yields the Beta–Bernoulli
marginal

p(G) ∝ B(a+ |E|, b+N − |E|)
B(a, b)

. (7)

This provides a calibrated global penalty on |E| without fixing a single inclusion probability a priori. More structured
priors can condition edge probabilities on covariates or on hierarchical relationships among nodes, and degree-based
preferences can encode hub-like behavior. MT-BN will use a product of sparsity, proximity, and hub components as
an unnormalized potential on DAGs at each resolution.

3.5 Variational inference and the evidence lower bound

Let Y denote latent variables and parameters in a probabilistic model with joint density p(X,Y ). Exact posterior
inference for p(Y | X) is often intractable. Variational inference approximates the posterior by a tractable family Q
and solves [27]

max
q∈Q

L(q) = Eq[log p(X,Y )]− Eq[log q(Y )] . (8)

The quantity L(q) is the evidence lower bound (ELBO), and it satisfies

log p(X) = L(q) + KL(q(Y ) ∥ p(Y | X)) , (9)

so maximizing L(q) is equivalent to minimizing the KL divergence from q to the true posterior.
In a mean-field family q(Y ) =

∏
i qi(Yi), coordinate ascent updates satisfy the standard optimality condition

log q⋆i (yi) = Eq−i [log p(X,Y )] + const, (10)

where q−i =
∏
j ̸=i qj . When the model is conditionally conjugate, the right-hand side corresponds to a familiar

Bayesian update in the exponential family, yielding closed-form updates for qi. MT-BN will use this machinery
conditional on a fixed discrete structure.

3.6 Metropolis–Hastings on discrete structures

Let S be a discrete structure (such as a graph or hierarchy) and let π(S) be a target distribution on structures.
Metropolis–Hastings constructs a Markov chain with stationary distribution π by proposing S′ ∼ Q(S → ·) and
accepting with probability [28]

α(S, S′) = min

{
1,

π(S′)

π(S)
· Q(S′ → S)

Q(S → S′)

}
. (11)
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If π(S) ∝ exp(s(S)) for a score function s(S), then the acceptance ratio depends only on the score difference
s(S′)−s(S) and the proposal ratio. In Bayesian structure learning, a natural choice is s(S) = log p(S)+log p(X | S),
but computing log p(X | S) exactly is often intractable when S couples to latent variables. A common scalable
alternative is to use a variational surrogate score in place of the exact marginal likelihood. MT-BN follows this
approach by using an ELBO-based structure score, yielding a practical exploration procedure designed for MAP
discovery and stability summaries in regimes where exact posterior sampling is not computationally feasible.

4 Problem Statement

We are given an observational dataset
X ∈ Rn×p,

with n samples and p measured variables, in the high-dimensional regime p ≫ n. Our goal is to infer directed
dependence structure at multiple resolutions while simultaneously learning a hierarchy of modules that organizes
variables into nested groups. We emphasize that, absent interventions, any causal interpretation requires additional
modeling assumptions; accordingly, we state the target in terms of a structured probabilistic model class and the
corresponding posterior over model structures.

4.1 Multi-resolution modular structure

Fix a user-chosen maximum depth L ≥ 1. A hierarchical modular structure is represented by a rooted tree T that
induces, for each level ℓ ∈ {1, . . . , L}, a partition of the p observed variables into Mℓ modules

{C(ℓ)
1 , . . . , C

(ℓ)
Mℓ

},
Mℓ⋃
m=1

C(ℓ)
m = {1, . . . , p}, C(ℓ)

m ∩ C(ℓ)
m′ = ∅ (m ̸= m′).

Nestedness means that partitions refine with depth: for any ℓ < L and any variable i, the level-(ℓ + 1) module
containing i is a subset of the level-ℓ module containing i. Equivalently, each observed variable i has a unique path

π(i) =
(
z
(1)
i , . . . , z

(L)
i

)
,

where z
(ℓ)
i ∈ {1, . . . ,Mℓ} indexes its module at level ℓ. The hierarchy T is fully determined by the collection of paths

{π(i)}pi=1 together with the parent-child relations between modules across levels.

4.2 Innovation-based directed structure at each resolution

At each level ℓ, MT-BN associates each module m ∈ {1, . . . ,Mℓ} with a latent trajectory across samples. We

distinguish (i) a full module state Z
(ℓ)
m ∈ Rn×rℓ and (ii) an innovation trajectory U

(ℓ)
m ∈ Rn×rℓ , where rℓ is a user-

chosen latent dimension. The modeling principle is that within-level directed structure is defined on innovations

U (ℓ) rather than on full states Z(ℓ). Intuitively, Z
(ℓ)
m contains signal inherited from coarser resolutions, whereas U

(ℓ)
m

isolates the variation newly expressed at resolution ℓ after conditioning on higher-level latents.
Accordingly, for each level ℓ we seek a directed acyclic graph (DAG)

G(ℓ) = (V (ℓ), E(ℓ)), V (ℓ) = {1, . . . ,Mℓ},

that parameterizes a within-level structural equation model for innovations at that resolution. The collection G =
{G(ℓ)}Lℓ=1 defines a multi-scale directed dependency representation.

4.3 Desired outputs

The outputs of the learning problem are:

1. A hierarchy T of nested partitions of {1, . . . , p} with depth L (or with effective depth up to L under truncation).

2. A set of within-level DAGs {G(ℓ)}Lℓ=1 defined on modules at each resolution, interpreted as directed structure
on innovations at that resolution.

3. Latent module trajectories {Z(ℓ)
m , U

(ℓ)
m } and associated parameters Θ sufficient to (approximately) explain the

observed data via a hierarchical latent-variable model.

In addition to point estimates, we aim to provide uncertainty summaries over discrete structures and latent quantities
induced by the model and inference procedure.
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4.4 Model-based objective and inferential target

We formalize learning as inference in a joint probabilistic model over

(T , G, Z, U,Θ),

where T is the hierarchy, G are the within-level DAGs, (Z,U) are latent module states and innovations, and Θ are
continuous parameters. Given a prior p(T , G,Θ) and a likelihood p(X | Z,U,Θ, T ) induced by the hierarchical latent
construction, the inferential target is the posterior

p(T , G, Z, U,Θ | X).

Because exact inference is intractable in the regime of interest, we seek scalable approximate inference procedures
that (i) locate high-scoring discrete structures (T , G) and (ii) produce stable summaries of multi-scale directed
dependencies and hierarchical module structure.

4.5 Evaluation criteria

We evaluate solutions along three axes. First, statistical accuracy: when ground truth is available (e.g., benchmark
networks), we evaluate recovery of directed edges and modular structure. Second, interpretability: inferred modules
should be coherent and the multi-scale graphs should yield intelligible drivers and pathways. Third, scalability:
runtime and memory should remain practical in high-dimensional settings by exploiting modularization and localized
score updates.

5 MT-BN Framework

5.1 Method Overview and Intuition

Bayesian network structure learning becomes brittle in the high-dimensional regime p ≫ n because the space of
directed acyclic graphs (DAGs) grows super-exponentially in p while the amount of statistical signal available to
validate and orient edges remains limited. In many domains, however, dependency structure is not arbitrary. Empir-
ical networks often exhibit modular organization, sparse long-range connectivity across modules, and heterogeneous
degree patterns in which a small number of hubs mediate a large fraction of directed influence. MT-BN is designed
to exploit these regularities by replacing a single flat graph-learning problem with a multi-level representation that
is both statistically efficient and computationally tractable, with tractability driven by operating on module-level
latent variables and by topology-aware priors that shrink the effective search space.

MT-BN jointly learns three coupled objects. First, it learns a multi-level hierarchy of nested modules that
partitions the p observed variables at multiple resolutions. Second, it associates each module at each resolution with
a latent state that summarizes the module’s activity across samples. Third, it learns a within-level DAG among
modules at each resolution, yielding a directed influence network at multiple scales. The hierarchy captures vertical
organization, while the within-level DAGs capture horizontal directed dependencies among modules at the same
resolution. In contrast to two-stage pipelines that cluster variables and subsequently learn separate graphs, MT-BN
couples modularization, representation learning, and within-level structure inference within a single probabilistic
model. Figure 1 provides a schematic contrast between flat structure learning and MT-BN’s hierarchical, multi-
resolution representation.

A key modeling principle is that within-level directed structure at a given resolution is defined on what is newly
expressed at that resolution rather than on signal inherited from coarser scales. For each level ℓ, each module m

has a latent state Z
(ℓ)
m that decomposes into a component inherited from its parent module and a level-specific

innovation U
(ℓ)
m . MT-BN does not place directed edges on the full latent states Z(ℓ), which combine inherited and

level-specific variation. Instead, within-level DAGs are defined on innovation latents U (ℓ), which isolate residual
variation after accounting for inherited signal. If edges were learned directly on Z(ℓ), sibling modules could appear
strongly dependent purely due to shared inheritance from their parent, leading to spurious within-level edges and
potentially misleading directions. By defining within-level structure exclusively on innovations, MT-BN targets
directed relationships among modules at level ℓ conditional on higher-level variation.

Throughout, MT-BN interprets within-level directionality under the modeling assumptions made explicit later:
innovations follow a within-level structural equation model consistent with a DAG, and higher-level latents act as
conditioning variables that explain shared inherited signal across descendants. Under standard causal assumptions

9



Figure 1: Schematic comparison of flat structure learning (left) versus MT-BN’s multi-resolution modular repre-
sentation (right). MT-BN learns a hierarchy of modules and within-level directed structure at each resolution on
innovation latents rather than on inherited shared signal.

for SEM-based graph learning (including appropriate noise structure and the absence of additional unmodeled con-
founding at the corresponding resolution after conditioning on higher-level latents), directed edges on innovations
admit a causal interpretation at that resolution; without these assumptions, they should be read as directed predictive
dependencies induced by the model class.

MT-BN further regularizes and accelerates structure learning by incorporating topology-aware priors. These
priors encode sparsity, heterogeneous degree patterns consistent with hub structure, and hierarchy-induced block
structure favoring denser connectivity among nearby modules in the hierarchy and sparser connectivity across distant
branches. These priors shrink posterior mass over implausible graphs, thereby reducing the effective search space
and improving interpretability. The following subsections formalize the MT-BN model, specify priors, and present
a hybrid inference algorithm for approximate posterior inference and MAP estimation, along with computational
considerations.

5.2 Setup and Notation

We observe a data matrix X ∈ Rn×p with n samples and p observed variables. Rows correspond to samples and
columns correspond to variables. MT-BN represents multi-scale organization through a hierarchy of maximum depth
L. The hierarchy T induces, at each level ℓ ∈ {1, . . . , L}, a partition of the p variables into Mℓ modules, where Mℓ

is the realized number of modules at level ℓ under T (and is therefore random a priori under the nCRP prior in
Section 5.3). We write V (ℓ) = {1, . . . ,Mℓ} for the set of level-ℓ module indices.

Each module m ∈ V (ℓ) has a latent trajectory across samples

Z(ℓ)
m ∈ Rn×rℓ ,

where rℓ is a user-chosen latent dimension for level ℓ. We interpret the t-th row Z
(ℓ)
m,t ∈ Rrℓ as the level-ℓ latent

state of module m in sample t. MT-BN separates inherited signal from resolution-specific signal by introducing an
innovation latent

U (ℓ)
m ∈ Rn×rℓ ,

whose rows U
(ℓ)
m,t capture variation newly expressed at level ℓ after conditioning on higher levels. Linear maps

act on latent coordinates (columns) via right-multiplication. For example, if U
(ℓ)
j ∈ Rn×rℓ and A ∈ Rrℓ×rℓ , then

U
(ℓ)
j A ∈ Rn×rℓ .
The hierarchy induces nested partitions of the observed variables. Each observed variable i ∈ {1, . . . , p} is assigned

a path through the hierarchy,

π(i) =
(
z
(1)
i , z

(2)
i , . . . , z

(L)
i

)
,
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where z
(ℓ)
i ∈ V (ℓ) denotes the level-ℓ module containing i. The induced level-ℓ cluster is C

(ℓ)
m = {i : z(ℓ)i = m},

so {C(ℓ)
1 , . . . , C

(ℓ)
Mℓ

} partitions {1, . . . , p}. Nestedness means membership refines down the hierarchy: for each i,

C
(ℓ+1)

z
(ℓ+1)
i

⊆ C
(ℓ)

z
(ℓ)
i

. Each module m at level ℓ ≥ 2 has a unique parent module, denoted pa(m, ℓ) ∈ V (ℓ−1). For

notational convenience, we treat level ℓ = 1 as having an implicit root ancestor and later impose the convention

Z
(1)
m := U

(1)
m .

At each level ℓ, MT-BN also learns a within-level directed acyclic graph G(ℓ) on the Mℓ modules. We write
PaG(ℓ)(m) ⊆ V (ℓ) \ {m} for the parent set of node m in G(ℓ). These graphs encode within-level directed structure on

innovations {U (ℓ)
m } rather than on full states {Z(ℓ)

m }, as formalized in Section 5.5.
We use standard notation Ik for the k × k identity matrix, vec(·) for column-stacking vectorization, and ∥ · ∥F

for the Frobenius norm. We also fix distributional conventions used throughout. The Beta function is B(a, b) =
Γ(a)Γ(b)/Γ(a + b). For x ∼ InvGamma(a, b) we use the shape–scale convention with density proportional to
x−a−1 exp(−b/x) on x > 0. Finally, MN (M,Σr,Σc) denotes the matrix-normal distribution on Rn×r satisfying
vec(Y ) ∼ N (vec(M), Σc ⊗ Σr).

5.3 Hierarchical Partitions and the nCRP Prior

MT-BN places a nested Chinese Restaurant Process (nCRP) prior on the hierarchical assignments of observed
variables. Concretely, each observed variable i ∈ {1, . . . , p} is treated as an exchangeable object that selects a
depth-L path

π(i) =
(
z
(1)
i , z

(2)
i , . . . , z

(L)
i

)
,

thereby inducing a hierarchy T of nested partitions {C(ℓ)
m }Mℓ

m=1 at each level ℓ. We use level-specific concentration
parameters αℓ > 0, ℓ = 1, . . . , L, and we fix the maximum depth L as a user-chosen model parameter.

For notational convenience, define a single implicit root at level 0 and set z
(0)
i = 1 for all i. Fix a level ℓ ∈ {1, . . . , L}

and a parent module a at level ℓ− 1. Let

S(ℓ)
a = {i : z(ℓ−1)

i = a}

be the set of variables whose paths pass through parent a. Within each parent a, the assignments {z(ℓ)i }
i∈S(ℓ)

a
follow

a Chinese Restaurant Process with concentration αℓ. Let n
(ℓ)
a,k be the number of variables in S

(ℓ)
a currently assigned

to an existing child k under a, excluding i. Then the conditional assignment probabilities are

Pr
(
z
(ℓ)
i = k

∣∣∣ {z(ℓ)i′ }
i′∈S(ℓ)

a \{i}

)
=

n
(ℓ)
a,k∑

k′ n
(ℓ)
a,k′ + αℓ

, (12)

and the probability of instantiating a new child module under a is

Pr
(
z
(ℓ)
i = new

∣∣∣ {z(ℓ)i′ }
i′∈S(ℓ)

a \{i}

)
=

αℓ∑
k′ n

(ℓ)
a,k′ + αℓ

. (13)

When a new child is instantiated, it receives the next unused index among the children of a, which updates the
number of modules Mℓ implied by the hierarchy.

To prevent degenerate fragmentation and to ensure well-posed local structure learning, we enforce a minimum
module size mmin. Formally, we use a truncated nCRP prior supported only on hierarchies satisfying

|C(ℓ)
m | ≥ mmin for all instantiated modules m and levels ℓ, (14)

that is,

p(T ) ∝ pnCRP(T )

L∏
ℓ=1

Mℓ∏
m=1

1
{
|C(ℓ)
m | ≥ mmin

}
. (15)

In inference, this truncation is implemented by restricting reassignment proposals to moves that preserve (14).
Unless otherwise stated, {αℓ}Lℓ=1 are treated as fixed hyperparameters. A Gamma hyperprior αℓ ∼ Gamma(να, ωα)

can be incorporated with standard auxiliary-variable updates, but is not required for the formulation used here.
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5.4 Topology-Aware Priors for Multi-Scale DAG Structure

Conditioned on the hierarchy T , MT-BN places topology-aware priors on the within-level directed acyclic graphs
{G(ℓ)}Lℓ=1. Each G(ℓ) is a DAG on the Mℓ level-ℓ modules and parameterizes the within-level structural equation
model on innovations in (23). The role of the graph prior is twofold: it regularizes structure learning toward sparse,
modular, hub-dominated networks commonly observed in practice, and it yields localized score updates under single-
edge proposals.

Fix a level ℓ. Let V (ℓ) = {1, . . . ,Mℓ} and let E(ℓ) ⊆ V (ℓ) × V (ℓ) denote a directed edge set with no self-loops.
We restrict the support to acyclic graphs and optionally enforce a maximum in-degree constraint dmax. Define the
admissible set

Gℓ =
{
G(ℓ) = (V (ℓ), E(ℓ)) : G(ℓ) ∈ DAG(V (ℓ)), max

v∈V (ℓ)
d
(ℓ)
in (v) ≤ dmax

}
.

We specify the multi-level graph prior through an unnormalized potential and use it only through ratios inside the
variational structure score. Concretely, we define the joint prior on discrete structure by

p
(
T , {G(ℓ)}Lℓ=1

)
∝ p(T )

L∏
ℓ=1

p̃
(
G(ℓ) | T

)
1
{
G(ℓ) ∈ Gℓ

}
, (16)

where p̃(G(ℓ) | T ) is given in (17). Since the space of admissible DAGs on Mℓ nodes is finite, a normalizing constant
exists, but it is not required for scoring or inference.

Factorization as a product of structural preferences. We specify p̃(G(ℓ) | T ) as a product of three inter-
pretable components:

p̃
(
G(ℓ) | T

)
= psp

(
G(ℓ)

)
pprox

(
G(ℓ) | T

)
phub

(
G(ℓ)

)
. (17)

This is a product-of-experts prior: psp favors global sparsity, pprox favors hierarchy-induced block structure, and phub
favors heterogeneous degree profiles. Because all three terms are ultimately functions of (V (ℓ), E(ℓ)), the product
defines a proper prior on the finite admissible set Gℓ up to a normalizing constant that cancels in score differences.

Global sparsity prior. Let Nℓ = Mℓ(Mℓ − 1) denote the number of possible directed edges excluding self-loops.
We use the Beta–Bernoulli marginal likelihood over edges:

psp
(
G(ℓ)

)
=

B
(
aℓ + |E(ℓ)|, bℓ +Nℓ − |E(ℓ)|

)
B(aℓ, bℓ)

. (18)

Equivalently, this is obtained by integrating out a global edge-inclusion probability θℓ ∼ Beta(aℓ, bℓ) under indepen-
dent Bernoulli edge indicators conditional on θℓ. This term supplies a calibrated global penalty on |E(ℓ)| without
fixing a single edge probability a priori. For the top resolution ℓ = 1, proximity is not defined because modules have
no parents in T . We therefore set

pprox
(
G(1) | T

)
:= 1,

and define the proximity construction below only for ℓ ≥ 2.

Hierarchy-induced proximity prior. MT-BN encourages denser connectivity among modules that are nearby
in the hierarchy and sparser connectivity between distant branches. For two level-ℓ modules u, v ∈ V (ℓ), let parℓ(u)
denote their parent at level ℓ − 1, and let gparℓ(u) denote their grandparent at level ℓ − 2 (defined only for ℓ ≥ 3).
We define a coarse proximity class map κℓ(u, v) ∈ {1, 2, 3} by

κℓ(u, v) =


1, if parℓ(u) = parℓ(v),

2, if ℓ ≥ 3, gparℓ(u) = gparℓ(v) and parℓ(u) ̸= parℓ(v),

3, otherwise.

(19)

For each bin b ∈ {1, 2, 3}, define

Nℓ,b =
∣∣∣{(u, v) ∈ V (ℓ) × V (ℓ) : u ̸= v, κℓ(u, v) = b}

∣∣∣ , Eℓ,b =
∣∣∣{(u, v) ∈ E(ℓ) : κℓ(u, v) = b}

∣∣∣ .
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We introduce bin-specific edge probabilities θℓ,b ∼ Beta(η
(1)
ℓ,b , η

(0)
ℓ,b ) and conditionally independent Bernoulli edges

within each bin given θℓ,b. Integrating out {θℓ,b} yields

pprox
(
G(ℓ) | T

)
=

3∏
b=1

B
(
η
(1)
ℓ,b + Eℓ,b, η

(0)
ℓ,b +Nℓ,b − Eℓ,b

)
B
(
η
(1)
ℓ,b , η

(0)
ℓ,b

) . (20)

This prior is sensitive only to counts by proximity class and therefore admits constant-time updates under single-edge
proposals.

Hub-structure prior on degree heterogeneity. Real networks frequently exhibit heavy-tailed out-degree pro-

files. To encourage this behavior, we place a prior preference on the out-degrees d
(ℓ)
out(u). Because degrees are discrete,

we define phub as a discretized log-normal potential on d
(ℓ)
out(u) + 1:

phub
(
G(ℓ)

)
=

Mℓ∏
u=1

φµℓ,σℓ

(
log(d

(ℓ)
out(u) + 1)

)∑Mℓ−1
k=0 φµℓ,σℓ

(
log(k + 1)

) , (21)

where φµ,σ(x) = (σ
√
2π)−1 exp

(
− (x−µ)2

2σ2

)
is the normal density. The denominator in (21) converts the log-normal

preference into a proper discrete distribution on k ∈ {0, . . . ,Mℓ − 1} for each node. In practice, this term is still
used as a local structural preference within p̃, and its contribution to acceptance ratios depends only on the degrees
of the nodes whose out-degrees change under the proposal.

Optionally, we place hyperpriors on (µℓ, σ
2
ℓ ) to adapt the degree profile to the domain:

µℓ ∼ N (µ0, τ
2
0 ), σ2

ℓ ∼ InvGamma(aσ, bσ), (22)

though fixed (µℓ, σℓ) is sufficient for the formulation used here.

Independence across resolutions. Conditioned on T , MT-BN assumes within-level graph potentials contribute
multiplicatively across levels through (17). Equivalently, the joint discrete prior in (16) treats the level-wise graph
terms as independent components given T up to an overall normalizing constant on the finite admissible space∏L
ℓ=1 Gℓ. This reflects the modeling choice that horizontal causality is learned separately at each resolution, while

cross-resolution dependence is mediated by the hierarchy and the vertical inheritance model in (25).

5.5 Joint Distribution and Posterior Formulation

This subsection specifies the complete MT-BN probabilistic model and the posterior inference target. The model
combines (i) an nCRP prior over the hierarchy T , (ii) topology-aware priors over within-level DAGs {G(ℓ)}Lℓ=1, (iii)
a multi-level latent inheritance construction separating inherited signal from resolution-specific innovations, and (iv)
a linear measurement model mapping bottom-level latent states to observed variables.

Matrix-normal convention. For an n× r random matrix Y , we write

Y ∼ MNn,r(M,Σ,Ω)

to mean vec(Y ) ∼ N (vec(M), Ω ⊗ Σ). In particular, MNn,r(M, In, σ
2Ir) corresponds to independent rows with

isotropic covariance σ2Ir in latent dimensions.

Horizontal structural equations on innovations. Fix a level ℓ. Let G(ℓ) be a DAG on V (ℓ) = {1, . . . ,Mℓ} with

parent sets PaG(ℓ)(m). Conditional on G(ℓ), the innovation latents {U (ℓ)
m }Mℓ

m=1 are generated by a linear Gaussian
SEM with independent sample rows:

U (ℓ)
m

∣∣∣ {U (ℓ)
j }j∈Pa

G(ℓ) (m), {A
(ℓ)
j→m}, σ2

η,ℓ ∼ MNn,rℓ

 ∑
j∈Pa

G(ℓ) (m)

U
(ℓ)
j A

(ℓ)
j→m, In, σ

2
η,ℓIrℓ

 . (23)
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Because G(ℓ) is acyclic, there exists a topological orderingm1, . . . ,mMℓ
such that each node’s parents appear earlier in

the order. Consequently, the within-level joint density of U (ℓ) = {U (ℓ)
m }Mℓ

m=1 is well-defined by the DAG factorization

p
(
U (ℓ) | G(ℓ), A(ℓ), σ2

η,ℓ

)
=

Mℓ∏
m=1

p
(
U (ℓ)
m

∣∣∣ {U (ℓ)
j }j∈Pa

G(ℓ) (m), A
(ℓ), σ2

η,ℓ

)
, (24)

where each conditional factor is given by (23). MT-BN defines within-level causality exclusively on the innovation
variables U (ℓ), not on the inherited full states Z(ℓ).

Vertical inheritance model. For each level ℓ ≥ 2 and module m ∈ {1, . . . ,Mℓ}, the full latent state Z(ℓ)
m ∈ Rn×rℓ

is generated as inherited signal from its parent state plus a level-specific innovation:

Z(ℓ)
m

∣∣∣Z(ℓ−1)
pa(m,ℓ), U

(ℓ)
m , B

(ℓ)
pa(m,ℓ)→m, σ

2
ξ,ℓ ∼ MNn,rℓ

(
Z

(ℓ−1)
pa(m,ℓ)B

(ℓ)
pa(m,ℓ)→m + U (ℓ)

m , In, σ
2
ξ,ℓIrℓ

)
, (25)

where B
(ℓ)
pa(m,ℓ)→m ∈ Rrℓ−1×rℓ . At the top level, we impose the deterministic identification

Z(1)
m := U (1)

m for all m ∈ {1, . . . ,M1}, (26)

which is treated as a definitional constraint (equivalently, a Dirac measure) rather than as a separate noisy regression.

Measurement model. Each observed variable loads on the bottom-level module state. Let m(i) = z
(L)
i denote

the bottom-level module containing observed variable i. Then

X:,i

∣∣∣Z(L)
m(i), wi, ψi ∼ N

(
Z

(L)
m(i)wi, ψiIn

)
, wi ∈ RrL , ψi > 0, (27)

with conditional independence across i ∈ {1, . . . , p} given {Z(L)
m } and parameters.

Priors on discrete structure. The hierarchy T is induced by the nCRP paths {π(i)}pi=1 with the minimum-size
constraint in (14). The discrete structure prior is specified jointly as in (16): an nCRP prior on T together with, for
each level ℓ, an unnormalized topology-aware potential p̃(G(ℓ) | T ) restricted to admissible DAGs G(ℓ) ∈ Gℓ. This
construction is used only through log-ratios and therefore does not require evaluating normalizing constants.

Priors on continuous parameters. Let Θ denote the collection of continuous parameters

Θ =
{
{A(ℓ)

j→m}, {B(ℓ)
pa→m}, {wi}, {σ2

η,ℓ}, {σ2
ξ,ℓ}, {ψi}

}
.

We place independent zero-mean Gaussian priors on linear maps and loadings:

vec
(
A

(ℓ)
j→m

)
∼ N

(
0, λ−1

A,ℓI
)
, vec

(
B(ℓ)

pa→m

)
∼ N

(
0, λ−1

B,ℓI
)
, wi ∼ N

(
0, λ−1

w IrL
)
, (28)

and inverse-gamma priors on variances:

σ2
η,ℓ ∼ InvGamma(aη,ℓ, bη,ℓ), σ2

ξ,ℓ ∼ InvGamma(aξ,ℓ, bξ,ℓ), ψi ∼ InvGamma(aψ, bψ). (29)

We write p(Θ) for the product of these parameter priors. We interpret A
(ℓ)
j→m as a free parameter only when

(j → m) ∈ E(ℓ); absent edges correspond to the constraint A
(ℓ)
j→m ≡ 0 and introduce no free parameter.
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Full joint distribution with named components. Let G = {G(ℓ)}Lℓ=1, U = {U (ℓ)
m }ℓ,m, and Z = {Z(ℓ)

m }ℓ,m. The
MT-BN model defines the joint density

p
(
X,Z,U,G, T ,Θ

)
= p(T )︸ ︷︷ ︸

nCRP hierarchy prior with minimum-size constraint

L∏
ℓ=1

p̃
(
G(ℓ) | T

)
1
{
G(ℓ) ∈ Gℓ

}
︸ ︷︷ ︸

topology-aware within-level DAG prior potentials and DAG constraints

p(Θ)︸︷︷︸
parameter priors

×
L∏
ℓ=1

p
(
U (ℓ) | G(ℓ), A(ℓ), σ2

η,ℓ

)
︸ ︷︷ ︸
within-level SEM on innovations

L∏
ℓ=2

Mℓ∏
m=1

p
(
Z(ℓ)
m | Z(ℓ−1)

pa(m,ℓ), U
(ℓ)
m , B(ℓ), σ2

ξ,ℓ

)
︸ ︷︷ ︸

vertical inheritance model

×
p∏
i=1

p
(
X:,i | Z(L)

m(i), wi, ψi
)

︸ ︷︷ ︸
measurement model

M1∏
m=1

δ
(
Z(1)
m − U (1)

m

)
︸ ︷︷ ︸
top-level identification

, (30)

where p(U (ℓ) | ·) factorizes according to (24) with conditionals given by (23), the inheritance conditionals are given
by (25), and the measurement conditionals are given by (27). The Dirac factors in the final product encode the
deterministic constraint (26).

Posterior distribution and estimation targets. The posterior is

p
(
T , G, Z, U,Θ | X

)
=
p
(
X,Z,U,G, T ,Θ

)
p(X)

, p(X) =
∑
T

∑
G

∫
p
(
X,Z,U,G, T ,Θ

)
d(Z,U,Θ), (31)

where the sums are over admissible hierarchies and DAGs under the constraints of Sections 5.3 and 5.4. MT-BN
supports both approximate uncertainty quantification (posterior edge probabilities and co-assignment probabilities)
and point estimation (MAP hierarchies and graphs), as described in Section 5.6.

5.6 Inference and Optimization

The posterior over MT-BN parameters couples discrete objects (the hierarchy T and within-level DAGs {G(ℓ)}Lℓ=1)
with high-dimensional continuous latent variables and parameters (Z,U,Θ). Exact inference is intractable in the
regimes of interest. MT-BN therefore uses a blocked hybrid strategy: (i) a variational approximation for continuous
variables conditional on discrete structure, and (ii) Metropolis-style stochastic search over discrete structures guided
by a variational score. This procedure is designed to yield scalable MAP structure estimates and calibrated uncer-
tainty summaries under a variationally defined surrogate distribution, rather than exact posterior samples under the
true marginal likelihood.

Variational objective for fixed structure. Fix a discrete structure S := (T , G), where G = {G(ℓ)}Lℓ=1. Let
Y := (Z,U,Θ) denote all continuous variables. We approximate the conditional p(Y | X,S) by a tractable family
q(Y ) and maximize the evidence lower bound (ELBO)

L(q;S) = Eq[log p(X,Y | S)]− Eq[log q(Y )] , (32)

where p(X,Y | S) is the joint density of observations and continuous variables induced by the full model in Section 5.5
after conditioning on fixed discrete structure S = (T , G); equivalently, log p(X,Y | S) = log p(X,Y, S) − log p(S),
and log p(S) is handled separately in (35).
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Variational family. We use a mean-field family

q(Y ) =

(
L∏
ℓ=1

Mℓ∏
m=1

q
(
U (ℓ)
m

))( L∏
ℓ=2

Mℓ∏
m=1

q
(
Z(ℓ)
m

))

×

(
L∏
ℓ=1

∏
(j→m)∈E(ℓ)

q
(
A

(ℓ)
j→m

))( L∏
ℓ=2

Mℓ∏
m=1

q
(
B

(ℓ)
pa(m,ℓ)→m

))

×

(
p∏
i=1

q(wi) q(ψi)

)(
L∏
ℓ=1

q(σ2
η,ℓ) q(σ

2
ξ,ℓ)

)
.

(33)

The top-level states Z
(1)
m are not assigned variational factors because they are deterministically identified with

U
(1)
m by the model definition. We take q(U

(ℓ)
m ) and q(Z

(ℓ)
m ) to be matrix-normal, q(A), q(B), and q(wi) to be Gaussian,

and q(ψi), q(σ
2
η,ℓ), q(σ

2
ξ,ℓ) to be inverse-gamma.

Blocked coordinate ascent for continuous variables. For fixed S, coordinate ascent updates satisfy the
standard mean-field optimality condition

log q⋆(y) = Eq(Y \y)[log p(X,Y | S)] + const. (34)

Because all continuous conditionals in Section 5.5 are conjugate Gaussian or inverse-gamma, these updates reduce
to closed-form Bayesian multivariate linear regression updates. In implementation we perform a small number of
sweeps per outer iteration and exploit locality so that after a discrete structure move only factors in the affected
Markov blanket are refreshed.

A variational score for discrete structure. Define the structure score

F(S; q) = L(q;S) + log p(T ) +

L∑
ℓ=1

log p̃
(
G(ℓ) | T

)
, (35)

which is a lower bound on log p(X,S) = log p(S) + log p(X | S) because L(q;S) ≤ log p(X | S). We restrict scoring
and proposals to admissible structures: T must satisfy (14) and each G(ℓ) must lie in Gℓ. Equivalently, F(S; q) = −∞
for inadmissible S, matching the indicator factors in (30). Let

F⋆(S) := max
q

F(S; q),

and write q̂S for the approximate maximizer obtained by running a bounded number of variational sweeps. MT-BN
uses F(S; q̂S) as a scalable surrogate for comparing structures. Here p̃(G(ℓ) | T ) denotes the unnormalized graph
potential in (17), consistent with the joint discrete prior in (16).

Metropolis-style stochastic search over structure. We explore the discrete space S = (T , G) using local
proposals with proposal kernel Q(S → S′). Given a current state (S, q̂S), we propose S′ ∼ Q(S → ·), run a short
local variational refresh to obtain q̂S′ , and accept S′ with probability

α = min

{
1, exp

(
F(S′; q̂S′)−F(S; q̂S)

)
· Q(S′ → S)

Q(S → S′)

}
. (36)

Equation (36) defines a Markov chain targeting the surrogate distribution proportional to exp(F⋆(S)) in the idealized
limit where q̂S achieves the exact maximizer and scores are computed exactly. In practice, because q̂S is obtained
by truncated variational optimization and F uses an ELBO rather than the exact marginal likelihood, the chain is
an approximate exploration procedure. We therefore use it primarily for (i) locating high-scoring structures (MAP
estimation under F) and (ii) producing uncertainty summaries with respect to this variationally defined surrogate.

Within-level DAG updates

For each level ℓ, we update G(ℓ) using single-edge add/delete/reverse proposals subject to acyclicity and the in-degree
cap dmax. Each proposal changes only one node’s parent set in the within-level SEM, hence it modifies only the
corresponding conditional factors in the innovation model and the degree-dependent components of the graph prior.
We exploit this locality by refreshing only the affected variational factors in q̂S′ (the Markov blanket of the modified
node in level ℓ) before evaluating F(S′; q̂S′).
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Hierarchy updates

We update T through local reassignment moves on nCRP paths. For an observed variable i, we propose modifying one

level assignment z
(ℓ)
i at a time conditional on its parent assignment z

(ℓ−1)
i , preserving nestedness and enforcing the

minimum-size constraint. The proposal distribution is proportional to the nCRP predictive probabilities restricted
to admissible moves, and the score change is evaluated by recomputing only the likelihood terms and proximity-bin
counts impacted along the affected ancestor chain.

Overall schedule and outputs

MT-BN alternates between batches of within-level graph proposals across ℓ = 1, . . . , L, batches of hierarchy proposals,
and a bounded number of global variational refinement sweeps. The primary point estimate reported by the method
is the highest-scoring structure encountered,

Ŝ = arg max
S∈Svisited

F(S; q̂S),

together with its corresponding variational approximation q̂Ŝ . For uncertainty summaries, we retain a sequence of
visited structures and report edge and co-assignment frequencies with respect to the surrogate exploration distribution
induced by (36), as formalized in Section 5.8.

5.7 Implementation Complexity and Local Update Costs

This subsection analyzes the computational cost of the blocked inference procedure in Section 5.6 and specifies
implementation choices that make MT-BN practical at large p. Throughout, n denotes the number of samples, p the
number of observed variables, L the hierarchy depth, Mℓ the number of modules at level ℓ, rℓ the latent dimension
at level ℓ, and dmax the maximum in-degree enforced for each within-level DAG G(ℓ). We write s̄ℓ ≈ p/Mℓ for the
average number of observed variables associated with a level-ℓ module. Complexity is stated for one outer iteration of
the procedure in Section 5.6, which alternates (i) discrete proposals in (T , G) and (ii) bounded variational refinement
to evaluate the variational structure score F(S; q̂S).

Unit of computation and update schedule. One outer iteration consists of a batch of within-level graph
proposals, a batch of hierarchy proposals, and a bounded number of variational coordinate-ascent sweeps. Concretely,
we perform SG single-edge proposals for each level-ℓ graph G(ℓ), ST local hierarchy proposals (single-variable, single-
level reassignment moves) distributed over variables, and Sq variational sweeps. Importantly, during the discrete
proposal phases we do not rerun full variational optimization from scratch; instead we perform a localized refresh
to obtain q̂S′ sufficient to stably evaluate score differences in (36). Full sweeps are performed only in the variational
refinement block.

Locality of structure moves and what is recomputed. Both graph and hierarchy proposals are implemented
so that score updates and subsequent variational refreshes involve only localized recomputation. A single edge move
in G(ℓ) changes only one node’s parent set in the within-level SEM (23) and only the corresponding terms in the
graph priors (sparsity/proximity counts and degrees). A single hierarchy move for one observed variable changes only
a constant-size neighborhood in T (the affected child/parent modules along the variable’s ancestor chain), and only
measurement terms for the variable together with vertical-inheritance factors for affected modules. In both cases, we
refresh only the variational factors in the Markov blanket of the modified components before re-evaluating F(S; q̂S).

Acyclicity enforcement and admissible edge moves

Each G(ℓ) is maintained as a DAG under add/delete/reverse proposals subject to the in-degree cap dmax. BecauseMℓ

is typically far smaller than p, exact cycle checks are feasible. We use a reachability-based check for edge additions
and reversals. For each node a ∈ V (ℓ), maintain a bitset reachℓ(a) ⊆ V (ℓ) representing nodes reachable from a. A
proposed edge addition u → v is admissible if and only if u ̸= v and u /∈ reachℓ(v). This check is O(1) in bitset
lookup time. If admissible, we update reachability using bitset unions. In the worst case, an incremental closure
update can cost O(M2

ℓ /w) bit operations per accepted addition, where w is the machine-word size, although in the
sparse regime it is typically much smaller.

Edge deletions (and reversals implemented as delete-plus-add) are more delicate because reachability can de-
crease. We therefore handle deletions by postponing exact reachability maintenance and periodically recomputing
{reachℓ(a)}a from the current adjacency structure after every R accepted proposals at level ℓ. A full recomputation
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using bitset-based transitive closure costs O(M3
ℓ /w), which is negligible for the module-graph sizes encountered in

typical MT-BN settings. Proposals that violate maxm d
(ℓ)
in (m) ≤ dmax are rejected immediately.

Caching variational sufficient statistics for fast local scoring

Score evaluation under F(S; q̂S) requires ELBO terms L(q̂S ;S) and log-prior terms. Graph-prior differences are
computable in constant time per proposal because the sparsity and proximity priors depend only on counts and the
hub prior depends only on degrees. The dominant remaining work is the local variational refresh needed to obtain
q̂S′ after a proposal.

The local refreshes reduce to Bayesian multivariate linear regressions induced by (23), (25), and (27). To compute
these updates efficiently, we cache expectations under the current variational factors. For a matrix-normal factor

q(U
(ℓ)
m ) = MN (µ

(ℓ)
U,m, In,Σ

(ℓ)
U,m), the required second moment satisfies

Eq
[
U (ℓ)⊤
m U (ℓ)

m

]
= µ

(ℓ)⊤
U,mµ

(ℓ)
U,m + nΣ

(ℓ)
U,m. (37)

For distinct modules j ̸= m, mean-field independence implies

Eq
[
U

(ℓ)⊤
j U (ℓ)

m

]
= µ

(ℓ)⊤
U,j µ

(ℓ)
U,m. (38)

Analogous cached moments are maintained for each q(Z
(ℓ)
m ). These cached moments are sufficient to form the expected

Gram matrices and cross-products appearing in coordinate updates without repeatedly scanning all n samples.

Cost of local variational refreshes

We summarize the dominant computational cost of the local regressions induced by each model component.
For the within-level SEM (23), updating the factors associated with a single child module m at level ℓ involves

regressions of U
(ℓ)
m ∈ Rn×rℓ on its parents {U (ℓ)

j }j∈Pa(m). With |Pa(m)| ≤ dmax, the effective predictor dimension
is dmaxrℓ. Using cached moments (37)–(38), the dominant per-refresh cost is solving a linear system of size dmaxrℓ,
together with forming the corresponding expected cross-products:

O
(
n(dmaxrℓ)

2 + (dmaxrℓ)
3
)
, (39)

where the n(dmaxrℓ)
2 term reflects forming cross-products when cached moments are not yet available or must be

updated, and the cubic term reflects solving the small system. In practice, most proposals update cached moments
incrementally, so the per-proposal constant factors are small.

For vertical inheritance (25), updating a module factor q(Z
(ℓ)
m ) and its associated q(B

(ℓ)
pa→m) is a regression of

Z
(ℓ)
m on (Z

(ℓ−1)
pa(m,ℓ), U

(ℓ)
m ), with predictor dimension (rℓ−1 + rℓ). The corresponding local refresh cost is

O
(
n(rℓ−1 + rℓ)

2 + (rℓ−1 + rℓ)
3
)
. (40)

The top level uses the deterministic identification Z
(1)
m := U

(1)
m and therefore does not introduce an additional

regression factor.
For the measurement model (27), each observed variable X:,i updates (q(wi), q(ψi)) via regression on the assigned

bottom-level state Z
(L)
m(i). Given cached module moments Eq[Z(L)⊤

m Z
(L)
m ], the per-variable cost is

O
(
nr2L + r3L

)
, (41)

and computing the module-level moment Eq[Z(L)⊤
m Z

(L)
m ] costs O(nr2L) per module. Since many variables share the

same bottom module, we compute module moments once per module and reuse them across the s̄L variables in that
module.

Per-iteration complexity

We now state the dominant costs per outer iteration under bounded dmax and fixed latent dimensions {rℓ}. The
total cost decomposes into (i) discrete-structure proposals with local variational refresh and (ii) global variational
refinement sweeps.
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For graph proposals, we perform SG proposals per level. Each proposal requires an acyclicity check and a local
refresh affecting only a constant number of module factors at that level (typically the modified child module and its
incident parameter factors). Thus the graph-proposal cost per iteration satisfies

O

(
L∑
ℓ=1

SG

(
acycℓ + n(dmaxrℓ)

2 + (dmaxrℓ)
3
))

, (42)

where acycℓ denotes the amortized cost of maintaining the acyclicity data structure at level ℓ, bounded by O(M2
ℓ /w)

per accepted addition in the worst case and O(M3
ℓ /wR) per proposal for periodic recomputation of reachability.

For hierarchy proposals, we perform ST local reassignment moves. Each move affects a constant number of
modules along the ancestor chain and triggers a constant number of local vertical-inheritance refreshes (40) plus
measurement updates (41) for the moved variable and any newly created or removed bottom-module bookkeeping.
A conservative bound is

O

ST( ∑
ℓ∈A(i)

(
n(rℓ−1 + rℓ)

2 + (rℓ−1 + rℓ)
3
)
+ nr2L + r3L

) , (43)

where A(i) denotes the set of affected levels on the ancestor chain for the moved variable and is bounded by L. In
typical usage, only a small number of levels are modified per proposal, so the effective constant is modest.

For variational refinement, one global sweep updates all SEM regressions across all levels and modules, all vertical-
inheritance regressions across all non-root modules, and all measurement regressions. Under bounded dmax, the cost
of one sweep is

O

(
L∑
ℓ=1

Mℓ

(
n(dmaxrℓ)

2 + (dmaxrℓ)
3
)
+

L∑
ℓ=2

Mℓ

(
n(rℓ−1 + rℓ)

2 + (rℓ−1 + rℓ)
3
)
+MLnr

2
L + pr2L

)
, (44)

and Sq sweeps multiply (44) by Sq. When dmax and rℓ are treated as small constants, (44) is approximately linear
in
∑
ℓMℓ and in p, with dependence on n entering through cross-product formation.

Memory footprint. The dominant stored quantities are the variational means µ
(ℓ)
U,m ∈ Rn×rℓ , µ(ℓ)

Z,m ∈ Rn×rℓ (for

ℓ ≥ 2), and the column-covariances Σ
(ℓ)
U,m ∈ Rrℓ×rℓ , Σ(ℓ)

Z,m ∈ Rrℓ×rℓ . This yields memory O(n
∑
ℓMℓrℓ) for means

plus O
(∑

ℓMℓr
2
ℓ

)
for covariances, with the understanding that the top level uses Z(1) := U (1).

Parallelization. Conditional on current parent sets, SEM updates for {U (ℓ)
m }Mℓ

m=1 are independent across m within

each level and can be parallelized. Vertical-inheritance updates for {Z(ℓ)
m } are independent across modules given the

parent-level moments and are parallelizable within each level after a top-down pass to compute parent expectations.
Measurement updates for {wi, ψi} are independent across observed variables given module moments and can be
parallelized across i. Graph proposals are parallelizable across levels because the graphs are updated independently
conditional on T .

Practical defaults and stopping criteria. We initialize T from the nCRP prior and initialize each G(ℓ) as the
empty DAG. Continuous variables are warm-started by running a short variational phase with empty graphs and then
alternating discrete proposals with local refreshes. We monitor F(S; q̂S) across iterations, along with acceptance rates
of discrete proposals. Because the discrete exploration uses the surrogate accept rule (36), convergence is interpreted
operationally as stability of the best-scoring structure and stability of edge and co-assignment summaries under the
induced exploration distribution.

5.8 Posterior Summaries and Outputs

MT-BN returns (i) a hierarchy T of nested modules, (ii) within-level DAGs {G(ℓ)}Lℓ=1 defined on innovation latents,
and (iii) variational summaries of continuous latents and parameters. Because discrete structure is explored using
Metropolis–Hastings moves scored by the variational structure objective F(S; q̂S) (Section 5.6), the retained iterates
of (T , G) are not exact posterior samples from p(T , G | X). Accordingly, we report uncertainty as algorithm-induced
stability metrics (frequencies under the retained iterates) and as variational uncertainty for continuous quantities
conditional on a fixed structure. This subsection defines the concrete outputs reported in experiments.
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Retained discrete iterates and point summaries. Let {(T (t), G(t))}Tt=1 denote the retained discrete iterates
after burn-in and thinning, where G(t) = {G(ℓ,t)}Lℓ=1. We emphasize that these iterates are generated by the
acceptance rule (36) and therefore reflect exploration of high-scoring structures under F , not draws from the exact
posterior. We use them in two ways.

First, we form a best-scoring point estimate

(T̂ , Ĝ) = arg max
t∈{1,...,T}

F
(
S(t); q̂S(t)

)
, (45)

where S(t) = (T (t), G(t)). Second, when multiple structures have similar scores, we report stability summaries that
quantify how frequently features recur across the retained iterates. These summaries can be interpreted as heuristic
confidence measures and are used only as such.

Edge-stability scores across levels. Fix a level ℓ and a reference hierarchy T̂ . Let V (ℓ)(T̂ ) = {1, . . . ,Mℓ(T̂ )}
denote its level-ℓ modules. Because module labels and even module identities can vary across iterates when T
changes, edge-stability must be defined with a mapping from each sampled hierarchy T (t) to the reference T̂ .

We define a module matching map ϕ
(ℓ)
t : V (ℓ)(T (t)) → V (ℓ)(T̂ ) by maximum overlap:

ϕ
(ℓ)
t (u) = arg max

v∈V (ℓ)(T̂ )

∣∣∣C(ℓ)
u (T (t)) ∩ C(ℓ)

v (T̂ )
∣∣∣, (46)

breaking ties arbitrarily. Using ϕ
(ℓ)
t , we map each iterate-level DAG G(ℓ,t) onto the reference node set by pushing

edges forward. For any ordered pair (a, b) ∈ V (ℓ)(T̂ )× V (ℓ)(T̂ ), define the edge-stability score

π̂
(ℓ)
a→b =

1

T

T∑
t=1

1
{
∃ (u→ v) ∈ E

(
G(ℓ,t)

)
s.t. ϕ

(ℓ)
t (u) = a, ϕ

(ℓ)
t (v) = b

}
. (47)

We interpret π̂
(ℓ)
a→b as the fraction of retained iterates in which an edge consistent with a→ b appears after mapping

to T̂ . When T is fixed (e.g., if one runs MT-BN with a fixed hierarchy), ϕ
(ℓ)
t is the identity and (47) reduces to a

simple frequency.

Consensus graph construction. To report a sparse directed summary graph at each level ℓ, we provide two
selection rules based on π̂(ℓ).

(i) Thresholded consensus graph. For τ ∈ (0, 1),

Ĝ(ℓ)(τ) =
(
V (ℓ)(T̂ ), {a→ b : π̂

(ℓ)
a→b ≥ τ}

)
. (48)

(ii) Top-K stability graph. Choose Kℓ and include the Kℓ edges with largest π̂
(ℓ)
a→b, breaking ties arbitrarily. This

avoids tuning a probability threshold when the scale of π̂ depends on mixing of the discrete exploration.
In all cases, these graphs are summaries of the retained iterates and do not constitute calibrated posterior credible

sets.

Co-assignment stability for hierarchy uncertainty. Uncertainty in the hierarchy is summarized through co-
assignment stability of observed variables. For any pair i, j ∈ {1, . . . , p}, define the level-ℓ co-assignment score

ρ̂
(ℓ)
ij =

1

T

T∑
t=1

1
{
z
(ℓ,t)
i = z

(ℓ,t)
j

}
. (49)

The matrix ρ̂(ℓ) is a similarity kernel that can be used to form a consensus partition at level ℓ (e.g., by spectral
clustering on ρ̂(ℓ)). This yields a stable hierarchy summary even when module labels permute across retained
iterates.

Variational summaries of latent module states and innovations. For any fixed structure S = (T , G),
variational inference returns q̂S over continuous latents and parameters. We report posterior-mean summaries under
q̂S :

Û (ℓ)
m = Eq̂S

[
U (ℓ)
m

]
, Ẑ(ℓ)

m = Eq̂S
[
Z(ℓ)
m

]
,
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together with variational covariances (e.g., the column-covariances in the matrix-normal factors). When reporting

these quantities alongside the best-scoring discrete estimate (T̂ , Ĝ), we take S = Ŝ := (T̂ , Ĝ).
The innovation decomposition (25) provides a direct measure of resolution-specific variation. For a module m at

level ℓ, we report the fraction of state energy attributable to innovation,

κ(ℓ)m =
∥Û (ℓ)

m ∥2F
∥Ẑ(ℓ)

m ∥2F + ϵ0
, (50)

where ϵ0 > 0 is a fixed numerical constant. Large κ
(ℓ)
m indicates that the module exhibits substantial level-ℓ behavior

not explained by inherited signal.

Directed effect magnitudes on innovation latents. Beyond edge existence, MT-BN reports effect magnitudes

derived from SEM maps {A(ℓ)
j→m}. For a directed edge j → m at level ℓ, define the variational strength summary

s
(ℓ)
j→m = Eq̂S

[
∥A(ℓ)

j→m∥F
]
, (51)

and a confidence-weighted score that combines effect magnitude with edge stability under the retained iterates,

s̃
(ℓ)
j→m = π̂

(ℓ)
j→m s

(ℓ)
j→m. (52)

When rℓ = 1, these reduce to absolute scalar coefficients and their variational expectations. Because latent coordi-
nates are not identifiable up to general invertible transforms, we interpret (51) as a relative, model-internal magnitude

and emphasize invariants such as edge direction and presence in Ĝ(ℓ)(τ).

Node-level hub and centrality summaries. For each level ℓ and reference node a ∈ V (ℓ)(T̂ ), we report stability-
based expected degrees

d̂(ℓ),out(a) =
∑
b̸=a

π̂
(ℓ)
a→b, d̂(ℓ),in(a) =

∑
b̸=a

π̂
(ℓ)
b→a,

and rank modules accordingly. At the bottom level, these rankings correspond to candidate regulators or drivers
(biological or financial) whose influence is repeatedly supported by high-scoring discrete structures and whose effect
magnitudes are large under q̂Ŝ .

These summaries provide a standardized set of reported outputs: a best-scoring hierarchy and multi-scale directed
graphs, stability scores for edges and co-assignments across retained iterates, and variational summaries of latent
states and innovations conditional on a fixed structure. Subsequent experiments use these outputs to evaluate
accuracy, interpretability, and scalability across domains.

6 Search-Space Reduction and Computational Guarantees

The primary computational bottleneck in Bayesian network structure learning is the combinatorial explosion of
candidate directed edges and admissible DAGs as the node count grows. MT-BN mitigates this bottleneck by
learning directed structure on module-level innovation variables across multiple resolutions rather than on the full
set of p observed variables. This section formalizes (i) reductions in the discrete search space induced by hierarchical
modularization and (ii) the locality properties that make score updates and acceptance ratios computable via small,
localized refreshes. We also formalize a statistical consequence of the innovation-based design: shared inherited signal
can induce strong within-level correlations among full module states, but MT-BN removes this inheritance before
learning within-level directed structure, preventing a systematic source of spurious edges.

6.1 Reduction in candidate edges across resolutions

A flat p-node DAG has p(p− 1) possible directed edges (excluding self-loops). In MT-BN, directed edges are learned

only among modules at each level ℓ, so the relevant edge universe is
∑L
ℓ=1Mℓ(Mℓ − 1), where Mℓ is the number of

modules at level ℓ.
Proof. (Module-count bound under minimum size) Assume the minimum module size constraint (14) holds at every
instantiated module and every level. Then for every ℓ ∈ {1, . . . , L},

Mℓ ≤
⌊

p

mmin

⌋
.
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Proof. At level ℓ, the sets {C(ℓ)
m }Mℓ

m=1 form a partition of {1, . . . , p} and each has size at least mmin. Therefore

p =
∑Mℓ

m=1 |C
(ℓ)
m | ≥Mℓmmin, which implies Mℓ ≤ p/mmin. Taking floors yields the claim.

Proof. (Edge-universe reduction) Under the minimum module size constraint (14), the total number of possible
within-level directed edges across all resolutions satisfies

L∑
ℓ=1

Mℓ(Mℓ − 1) ≤ L

⌊
p

mmin

⌋(⌊
p

mmin

⌋
− 1

)
.

Consequently, for fixed L, the MT-BN within-level edge universe is smaller than the flat p-node edge universe by a
factor on the order of m2

min in the leading p2 term. ■

Proof. Apply Lemma 6.1 to each Mℓ and bound termwise. The asymptotic statement follows by comparing the
leading p2 terms: p(p− 1) versus L(p/mmin)(p/mmin − 1).

Remark. The reduction in Theorem 6.1 is purely combinatorial and holds before introducing additional constraints
such as the in-degree cap dmax, which further reduces the set of admissible graphs at each level.

6.2 Reduction in the number of admissible DAG structures

Beyond edge counts, the discrete search space is governed by the number of admissible DAGs. Let DAG(d) denote
the set of labeled DAGs on d nodes. A flat BN structure learner searches over DAG(p), whereas MT-BN searches over

the product space
∏L
ℓ=1 DAG(Mℓ) (subject to constraints such as in-degree caps and hierarchy-dependent potentials).

Proof. (A counting upper bound for DAGs) For any d ≥ 1,

|DAG(d)| ≤ d! 2(
d
2).

Proof. Fix a topological ordering σ of the d nodes. Relative to σ, edges may only point forward in the order, so there

are at most 2(
d
2) edge subsets consistent with σ. There are d! possible orderings, so counting all forward-edge subsets

across all orderings yields d! 2(
d
2) graphs. This overcounts because a given DAG may admit multiple topological

orderings, hence it is an upper bound.

Proof. (DAG search-space reduction under modularization) Under the minimum module size constraint (14), the
number of possible multi-resolution within-level DAG configurations satisfies

L∏
ℓ=1

|DAG(Mℓ)| ≤
(⌊

p

mmin

⌋
!

)L
2L(

⌊p/mmin⌋
2 ).

In particular, the logarithm of the MT-BN DAG configuration count scales at most as

O

(
L

(
p

mmin

)2
)

in the leading term, whereas a flat p-node DAG search has a corresponding upper bound scaling as O(p2) in the
leading term. ■

Proof. Apply Lemma 6.2 at each level with d =Mℓ, multiply across ℓ, and then apply Lemma 6.1 to bound each Mℓ

by ⌊p/mmin⌋. Taking logarithms yields the stated scaling, since log(d!) = O(d log d) is lower order than
(
d
2

)
in the

leading term.

Remark. The bound in Theorem 6.2 is conservative. The effective search space is smaller in practice because
MT-BN further restricts graphs to Gℓ via acyclicity, optional in-degree caps, and topology-aware priors (Section 5.4),
and because discrete proposals explore only local neighborhoods rather than enumerating the full space.
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6.3 Innovation-based structure removes inherited correlation as a driver of within-
level edges

The preceding results are computational. MT-BN’s innovation design also has a direct structural consequence: it
prevents inherited shared signal from being mistaken for within-level directed dependence. The following proposition
formalizes the mechanism in the Gaussian case.

Proposition 6.1 (Siblings share inherited dependence through parents, not innovations). Fix a level ℓ ≥ 2 and
let m and m′ be two distinct level-ℓ modules with the same parent a = pa(m, ℓ) = pa(m′, ℓ). Suppose the vertical
inheritance model holds with zero inheritance noise for simplicity,

Z(ℓ)
m = Z(ℓ−1)

a B(ℓ)
a→m + U (ℓ)

m , Z
(ℓ)
m′ = Z(ℓ−1)

a B
(ℓ)
a→m′ + U

(ℓ)
m′ ,

and suppose that conditional on the coarser-scale variables (in particular Z
(ℓ−1)
a ), the innovations U

(ℓ)
m and U

(ℓ)
m′ are

independent and mean-zero:

U (ℓ)
m ⊥ U

(ℓ)
m′ | Z(ℓ−1)

a , E[U (ℓ)
m | Z(ℓ−1)

a ] = 0, E[U (ℓ)
m′ | Z(ℓ−1)

a ] = 0.

Then Z
(ℓ)
m and Z

(ℓ)
m′ may be strongly dependent marginally, but their residual dependence after conditioning on the

parent is entirely captured by the innovations, in the sense that

Cov
(
Z(ℓ)
m , Z

(ℓ)
m′ | Z(ℓ−1)

a

)
= 0, Cov

(
Z(ℓ)
m , Z

(ℓ)
m′

)
= B(ℓ)⊤

a→m Cov
(
Z(ℓ−1)
a

)
B

(ℓ)
a→m′ .

Proof. Condition on Z
(ℓ−1)
a . By the assumed inheritance equations, Z

(ℓ)
m −Z

(ℓ−1)
a B

(ℓ)
a→m = U

(ℓ)
m and similarly for m′.

The conditional covariance is therefore

Cov
(
Z(ℓ)
m , Z

(ℓ)
m′ | Z(ℓ−1)

a

)
= Cov

(
U (ℓ)
m , U

(ℓ)
m′ | Z(ℓ−1)

a

)
= 0

by conditional independence. For the marginal covariance, expand using bilinearity and the mean-zero assumptions:

Cov(Z(ℓ)
m , Z

(ℓ)
m′ ) = Cov

(
Z(ℓ−1)
a B(ℓ)

a→m, Z
(ℓ−1)
a B

(ℓ)
a→m′

)
+Cov(U (ℓ)

m , U
(ℓ)
m′ ),

and Cov(U
(ℓ)
m , U

(ℓ)
m′ ) = 0 under the unconditional implication of the conditional independence with mean-zero resid-

uals. The remaining term yields the stated expression.

Remark. Proposition 6.1 formalizes a systematic failure mode of learning within-level edges on full module states
Z(ℓ): sibling states can appear strongly dependent even when there is no within-level interaction, purely because they
inherit from the same parent. MT-BN’s modeling choice to define within-level DAGs on innovations U (ℓ) targets
directed structure after removing inherited shared signal, which both improves interpretability and reduces pressure
toward dense within-level graphs.

6.4 Local score updates and computational gains from decomposability

MT-BN evaluates discrete proposals using the variational structure score F(S; q̂S) in (35). The feasibility of exploring
(T , G) hinges on the fact that single-edge and local reassignment moves change only localized terms.
Proof. (Constant-time updates for topology-aware priors) Fix a level ℓ. Consider a single-edge add/delete/reverse
proposal that modifies E(ℓ) by changing at most one directed edge. Then the log prior potential contribution

log p̃
(
G(ℓ) | T

)
= log psp

(
G(ℓ)

)
+ log pprox

(
G(ℓ) | T

)
+ log phub

(
G(ℓ)

)
can be updated in O(1) arithmetic time given cached sufficient statistics consisting of |E(ℓ)|, the proximity-bin counts

{Eℓ,b}3b=1, and the out-degrees {d(ℓ)out(u)}
Mℓ
u=1.

Proof. A single-edge modification changes |E(ℓ)| by at most one, and therefore changes the Beta function arguments
in (18) by constant increments. It changes exactly one proximity bin count Eℓ,b (determined by κℓ(u, v) for the
modified edge u → v) by at most one, and therefore changes exactly one factor in (20) by constant increments.
Finally, it changes the out-degree of exactly one node (the tail of the modified edge) by ±1, so only one factor in
(21) changes. All updates therefore require a constant number of arithmetic operations when the sufficient statistics
are cached.
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Proof. (Per-proposal cost under bounded in-degree) Fix a level ℓ and assume maxm d
(ℓ)
in (m) ≤ dmax. Consider a

single-edge proposal in G(ℓ) together with the local variational refresh described in Section 5.6. If latent dimension
rℓ is fixed, then the dominant cost of updating the affected innovation-regression block is

O
(
n(dmaxrℓ)

2 + (dmaxrℓ)
3
)
,

plus an amortized acyclicity-maintenance cost that depends on the chosen data structure. The prior contribution
updates in O(1) time by Lemma 6.4. ■

Proof. A single-edge change modifies only one node’s parent set in the within-level SEM (23). Under mean-field
inference, the required local refresh for that node reduces to a Bayesian multivariate regression with predictor
dimension at most dmaxrℓ. Forming the local normal equations and solving the corresponding linear system yields
the stated bound. The prior update claim follows from Lemma 6.4.

Remark. Theorem 6.4 should be contrasted with flat BN structure learning in which a single-edge move can require
recomputing or updating statistics involving p variables and high-order conditional dependencies, often leading to
poor scaling when p≫ n. In MT-BN, the discrete moves occur on module graphs withMℓ ≪ p, and the local refresh
costs depend on dmax and latent dimensions rather than directly on p.

7 Case Studies and Empirical Evaluation

This section evaluates MT-BN on (i) a benchmark setting with known ground truth for edges, and (ii) a large
real-world transcriptomic dataset without an accepted gold-standard regulatory graph. Across both settings, we em-
phasize two outputs of MT-BN: multi-resolution modular organization (the learned hierarchy) and within-resolution
directed structure defined on innovation latents.

7.1 Benchmark with Ground Truth: DREAM Network Inference

We benchmark MT-BN on the DREAM network inference challenge setting, which provides simulated gene-expression
data together with a revealed gold-standard network after prediction submission. Performance is evaluated using
area under the precision–recall curve (AUPR) and area under the receiver operating characteristic curve (AUROC),
which are standard for gene network inference due to severe class imbalance between true and false edges. The
DREAM network inference challenge and its scoring protocol are described in prior work.[23, 29]

Evaluation protocol. For each network instance, MT-BN produces a ranked list of directed edges with associated
confidence scores, obtained from the stability-weighted edge summaries described in Section 5.8. We compare these
ranked edge lists to the gold-standard adjacency and report AUPR and AUROC. We also compare to a set of
flat Bayesian network baselines (denoted BN1–BN6), which correspond to runs submitted in the network inference
challenge, holding the evaluation pipeline fixed.

Table 1: DREAM benchmark performance (AUPR/AUROC). MT-BN achieves higher AUPR and AUROC than the
flat BN baselines on Networks 1 and 3, and matches or modestly improves performance on Network 4.

Method Net1 AUPR Net1 AUROC Net3 AUPR Net3 AUROC Net4 AUPR Net4 AUROC

MT-BN (ours) 0.325 0.733 0.071 0.597 0.020 0.556

Bayesian networks 1 0.218 0.636 0.041 0.539 0.018 0.501
Bayesian networks 2 0.191 0.647 0.043 0.540 0.018 0.502
Bayesian networks 3 0.042 0.678 0.021 0.549 0.020 0.516
Bayesian networks 4 0.080 0.683 0.021 0.551 0.020 0.516
Bayesian networks 5 0.080 0.683 0.021 0.551 0.020 0.516
Bayesian networks 6 0.043 0.519 0.021 0.559 0.019 0.512

Interpretation. The improvements on Networks 1 and 3 are consistent with the hypothesis that multi-scale mod-
ularization and topology-aware graph priors reduce the effective search space and yield better edge ranking under
limited samples. On Network 4, MT-BN is competitive with the strongest BN baselines in AUPR and improves
AUROC, suggesting that the main gains arise in regimes where flat learners are more sensitive to local optima and
spurious dependencies induced by high dimensionality.
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7.2 Large-Scale Transcriptomics without Ground Truth: Tuberculosis

We next apply MT-BN to a tuberculosis (TB) gene-expression dataset after batch-effect removal. Unlike DREAM,
there is no accepted gold-standard directed regulatory network at this scale. The purpose of this case study is
therefore not to compute edge-accuracy metrics, but to test whether MT-BN learns modules and directed inter-
module structure that align with well-established host-response biology.

Data and objective. We analyze a matrix

X ∈ Rn×p, p = 6503, n = 2722,

where columns are genes and rows are samples. MT-BN is run to infer a hierarchy of nested gene modules across
multiple resolutions, together with within-level directed graphs on innovation latents as defined in Section 5.5. We
summarize results using (i) learned modules, (ii) hub structure and directed module-to-module dependencies, and
(iii) external functional enrichment support.

External functional support via STRING. For each learned module, we evaluate enrichment of known func-
tional relationships using STRING, which integrates heterogeneous evidence sources and reports interaction confi-
dence scores on a 0–1 scale.[30, 31] Because STRING confidence scores represent likelihood of association rather than
interaction strength, we use them only as independent corroboration that module gene sets correspond to coherent
biological programs, not as validation of directionality.

7.2.1 Finding 1: Interferon/ISG program captured as a coherent module

MT-BN identifies a module enriched for canonical interferon-stimulated genes (ISGs) organized around transcription
factors including STAT1 and IRF7, with prominent members including ISG15, IFIT1–3, OASL, MX1, MX2, and
GBP family genes. This structure matches established blood transcriptional signatures of active TB that emphasize
upregulation of type I interferon signaling and downstream ISG programs.[32, 33]

In the MT-BN within-level graph summaries, this module exhibits a hub-dominated pattern in which STAT1/IRF-
centered nodes have high outgoing influence scores and large stability-weighted edge strengths, consistent with a
cascade-like activation structure within the module under the innovation-based SEM.

7.2.2 Finding 2: Upstream cytokine signaling module consistent with JAK–STAT control

MT-BN also identifies a distinct module centered on cytokine signaling components, including JAK kinases and
multiple STAT family transcription factors. At the inter-module scale, the learned directed structure places arrows
from this signaling-control module into the ISG module, consistent with the biological pathway logic in which cytokine
stimulation activates JAK kinases, which in turn activate STAT transcription factors that drive ISG expression. This
aligns with the model’s goal of learning within-resolution directionality on innovation latents, where inherited shared
signal is conditioned out by higher-level latents.

Implications for biomarker nomination. Although causality claims depend on modeling assumptions, MT-BN
yields a practical biomarker-discovery workflow: identify robust modules corresponding to disease-relevant programs,
then nominate compact gene panels using stability-weighted hub centrality and edge-strength summaries within
those modules. The TB results suggest that MT-BN concentrates candidate biomarkers into interpretable, pathway-
coherent subnetworks rather than diffuse edge sets, which is particularly valuable at p ≈ 6500 where flat graph
learners often produce unstable structure.

Limitations of this case study. Because the TB dataset does not provide a gold-standard directed network, we
treat these results as biological plausibility evidence supported by external enrichment and prior knowledge, rather
than as a definitive validation of directed edges. In future work, these module-derived biomarker candidates should
be validated on independent cohorts and, where possible, linked to protein-level assays and prospective outcomes.

8 Discussion and Future Work

MT-BN is intended as a general framework for multi-resolution directed dependence modeling in the high-dimensional
regime. The current formulation establishes a coherent probabilistic model, introduces the innovation-based causality
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principle, and demonstrates that the resulting outputs align with ground-truth benchmarks and biologically plausible
structure in large transcriptomic data. This section outlines several concrete directions that would strengthen MT-BN
both methodologically and empirically.

8.1 Information-theoretic objectives for principled partitioning

In the current paper, the hierarchy T is learned under a truncated nCRP prior coupled to the global variational
structure score F(S; q̂S). This couples modularization and structure learning, but the partitioning mechanism is still
primarily prior-driven (through the nCRP) and score-driven indirectly through improvements in the ELBO when
modules and graphs better explain the data. A natural next step is to incorporate an explicit information-theoretic
objective that encourages partitions to be optimal with respect to a measurable tradeoff between compression and
predictive structure.

One principled approach is to interpret module latents as a compressed representation of the observed variables
and enforce that, at each resolution, modules preserve information relevant to predicting other modules while dis-
carding redundant within-module signal. Concretely, for a partition at level ℓ with module index random variable
M (ℓ) and module latents Z(ℓ), one can introduce a term of the form

J (ℓ)
IT = I

(
X;Z(ℓ)

)
︸ ︷︷ ︸

representation fidelity

− βℓ I
(
Z(ℓ);Z

(ℓ)
\·

)
︸ ︷︷ ︸

redundancy across modules

+ γℓ I
(
U (ℓ);U

(ℓ)
\·

)
︸ ︷︷ ︸

predictive cross-module structure

, (53)

where I(·; ·) denotes mutual information, Z
(ℓ)
\· denotes latents of other modules, and U (ℓ) are the innovation latents at

level ℓ. The first term favors partitions whose module latents retain information about observed variables, the second
penalizes redundant representations across modules (encouraging cleaner separation), and the third rewards partitions
that preserve the cross-module dependence structure that MT-BN aims to model causally at that resolution.

Operationally, (53) would be implemented through tractable variational bounds on mutual information, yielding
additional terms in the ELBO. The tuning parameters βℓ and γℓ would control the tradeoff between compressing
within-module variation and preserving useful cross-module predictive structure. The expected outcome is a hierarchy
that is less sensitive to the nCRP concentration parameters {αℓ} and more directly optimized for the downstream
goal of stable directed structure learning.

8.2 Causal hierarchy learning beyond structural nesting

MT-BN currently enforces a structural hierarchy through nested partitions and a vertical inheritance model. A
further direction is to make the hierarchy itself explicitly causal rather than merely structural. The conceptual
goal is to treat coarser-resolution latents as causal summaries that mediate shared signal across their descendants,
while enforcing that fine-resolution innovations represent genuinely new mechanisms emerging at that resolution.
This could be formalized by introducing explicit interventions at higher levels in the generative model and requiring
invariance of within-level innovation structure across environments or conditions.

Concretely, one could extend MT-BN to multi-environment data by indexing samples with an environment variable
e ∈ {1, . . . , E} and enforcing that the within-level innovation SEMs share structure across e, while inherited latents
and noise distributions may vary:

G(ℓ) and {A(ℓ)
j→m} are shared across environments, p

(
Z(ℓ−1) | e

)
may vary. (54)

If edges among innovations are stable across environments after conditioning on higher-level latents, the resulting
directed structure admits a stronger causal interpretation, and the hierarchy becomes not only a convenient multiscale
representation but also an explicit causal abstraction.

8.3 Alternative latent parameterizations and identifiability

The current formulation uses linear Gaussian SEMs on innovation latents and linear inheritance maps across levels.
This choice yields conjugacy and tractable variational updates, which is essential for scalability. Nonetheless, several
extensions may improve expressiveness while preserving the key modeling principle of innovation-based causality.

First, one can replace the linear SEM in (23) with a nonlinear additive-noise SEM,

U (ℓ)
m =

∑
j∈Pa(m)

f
(ℓ)
j→m

(
U

(ℓ)
j

)
+ η(ℓ)m ,
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with neural or kernel parameterizations for f
(ℓ)
j→m. Second, one can introduce sparsity-inducing priors directly on

A
(ℓ)
j→m (e.g., spike-and-slab or hierarchical shrinkage) to improve edge selection when dmax is not sufficiently restrictive.

Third, one can improve identifiability of latent coordinates by enforcing constraints such as orthonormality of module
loadings, whitening of innovation covariances, or anchoring on observed marker variables when available. These
additions would strengthen interpretability of effect magnitudes and improve comparability across runs.

8.4 Tuberculosis: biomarker nomination and validation pipeline

The TB case study demonstrates that MT-BN recovers modules corresponding to biologically prominent immune
programs, including interferon/ISG signatures and JAK–STAT signaling control. The next stage is to convert these
qualitative findings into a rigorous biomarker identification and validation program.

A concrete pipeline is as follows. First, run MT-BN across multiple random seeds and, where possible, across
repeated subsamples of the cohort to produce stability-based edge and hub summaries (Section 5.8). For each learned

module, compute stability-weighted hub scores s̃
(ℓ)
j→m and degree summaries to identify genes that act as consistent

drivers within disease-relevant modules. Second, select compact candidate panels by optimizing a predictive criterion
subject to interpretability constraints. For example, one can select a panel P ⊆ {1, . . . , p} of size k by maximizing
predictive accuracy of TB status or clinically relevant endpoints while regularizing toward MT-BN hubs and module
coverage:

max
|P |=k

Perf(P ) − λ1
∑
i∈P

Pennonhub(i) − λ2 Penredundancy(P ), (55)

where Perf(P ) can be AUPR or AUROC for classification, and penalties enforce that selected genes are stable drivers
and not redundant within the same submodule.

Third, validate panels on independent cohorts, including geographically and demographically distinct cohorts
where batch effects and confounding differ. Fourth, where longitudinal data exist, evaluate whether MT-BN-derived
panels track treatment response dynamics, which would be consistent with the interpretation that the learned modules
reflect causal immune programs rather than static correlational signatures. Finally, connect candidate biomarkers to
protein-level assays when feasible and evaluate whether the MT-BN-directed structure suggests testable intervention
hypotheses, such as perturbing upstream signaling components to modulate downstream ISG responses.

A key advantage of MT-BN for biomarker discovery is that it provides a structured search space. Rather than
selecting biomarkers from p ≈ 6500 genes in an unstructured manner, MT-BN concentrates attention on coherent
modules supported by external enrichment and yields a directed, innovation-based notion of control at the module
and gene level. This enables biomarker panels that are not only predictive but also mechanistically interpretable and
amenable to experimental follow-up.

8.5 Additional empirical directions

Several empirical extensions would further clarify MT-BN’s operating regime. First, ablations should isolate the
contributions of (i) hierarchical modularization, (ii) innovation-based structure learning, and (iii) topology-aware
priors, by removing each component and measuring changes in edge recovery and stability. Second, domain transfer
should be evaluated by running MT-BN on additional biological datasets with partial ground truth (e.g., curated
pathway databases) and on financial datasets where regime shifts provide natural multi-environment variation for
causal invariance testing.

9 Conclusion

This paper presents MT-BN, a multi-resolution Bayesian network framework for learning directed structure in the
high-dimensional regime p≫ n. The motivating obstacle in this regime is not only estimation error, but the geometry
of the hypothesis space: the number of candidate DAGs and edge orientations grows super-exponentially in p, while
finite-sample evidence is typically insufficient to distinguish direct effects from indirect correlations. MT-BN responds
by changing the object of inference. Rather than attempting to learn a single flat DAG on p variables, MT-BN learns
a hierarchy of nested modules and a directed influence network at each resolution, thereby aligning the representation
with the empirical modular and hub-dominated structure observed in many scientific domains.

The primary novelty is a new principle for multi-scale directed modeling: within-resolution directed structure
should be defined on what is newly expressed at that resolution, not on signal inherited from coarser scales. MT-BN
enforces this through an explicit decomposition of each module state into inherited signal and a resolution-specific
innovation, and it places the within-level DAG exclusively on innovation latents. This innovation-based formulation
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is the mechanism by which MT-BN avoids a fundamental confounding that arises in hierarchical representations:
if directed edges are learned on full latent states that share inherited components, sibling modules can appear
strongly coupled purely due to common ancestry, producing spurious within-level edges and unstable orientations.
By conditioning on higher-level structure and learning directed dependencies only among innovations, MT-BN targets
directed relationships among mechanisms that emerge at that scale. This is the conceptual point a reader should
take away: MT-BN treats multi-resolution causality as resolution-conditional causality, where each level’s arrows
describe directed influence among new residual dynamics after accounting for all coarser-scale variation.

A second contribution is that MT-BN turns this principle into a unified probabilistic model that couples three
tasks that are often separated in practice: hierarchical modularization, latent representation learning, and directed
structure discovery. The hierarchy T is not a preprocessing artifact; it is a random object under an explicit prior
and is learned jointly with within-level graphs and latent variables. The resulting outputs are not a single edge list
but a coherent multi-scale object: nested modules, innovation trajectories at every level, and a directed network of
within-level influence at every resolution. This coupling is essential both statistically and interpretably: it allows
modularization to be guided by structure-learning utility and allows structure learning to be stabilized by modular
organization and shared-signal removal.

A third contribution is tractability without abandoning Bayesian structure learning. MT-BN reduces the effective
search space by operating on module graphs whose sizes Mℓ are far smaller than p and by restricting attention
to sparse, hub-dominated, hierarchy-consistent structures through topology-aware priors. These priors provide a
principled mechanism for shrinking posterior mass away from implausible graphs while retaining flexibility to discover
domain-specific structure. Combined with local score decomposability and a blocked hybrid inference strategy, MT-
BN supports scalable approximate posterior inference and MAP-style structure estimation, with localized updates
under single-edge and local hierarchy proposals.

Empirically, MT-BN improves edge-ranking performance relative to flat Bayesian network baselines on a bench-
mark setting with ground-truth edges and produces biologically coherent, externally supported organization on
large-scale tuberculosis transcriptomics without an accepted gold-standard regulatory DAG. In the TB setting, MT-
BN recovers interpretable immune programs, including interferon/ISG structure and upstream cytokine/JAK–STAT
control, and it concentrates candidate drivers into pathway-coherent modules suitable for downstream biomarker
nomination and experimental follow-up. These results illustrate the intended role of MT-BN: to generate stable,
multi-resolution, mechanistically interpretable directed hypotheses in regimes where flat structure learning is brittle.

In summary, MT-BN contributes a new formulation of multi-scale directed learning in which causality at each
resolution lives on innovations rather than inherited signal, together with a complete Bayesian framework that jointly
learns partitions, latent representations, and within-level DAGs under topology-aware priors. This innovation-based
perspective is not a minor modeling choice; it is what makes the multi-resolution directed graphs meaningful rather
than artifacts of hierarchical aggregation. By making that principle explicit and implementable, MT-BN provides
a practical and conceptually clean path toward scalable directed structure discovery in modern high-dimensional
domains.
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