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Abstract. We develop a general framework for the computer-aided discovery of extremal unit-distance

graphs (UDGs) in Euclidean spaces and on spheres, motivated by problems in Euclidean Ramsey the-
ory and quantum contextuality. Our methods aim to construct UDGs with large edge-density. We

introduce two main computational paradigms: approximation-based methods, which relax unit-distance

constraints via (ε, δ)-graphs, and lattice-based methods, which reduce the infinite search space using
number-theoretic lattices. We implement and compare three algorithmic approaches—reinforcement

learning, simulated annealing, and numerical optimization—demonstrating their effectiveness in con-

structing dense planar UDGs and offering promising pathways toward new bounds in quantum con-
textuality. Our framework adapts to higher-dimensional spaces via the Raiskii spindle and naturally

embeds into the sphere Sd
1/

√
2
, discovering novel UDGs in both cases. This work lays the foundation for

computational discovery of many types of extremal UDGs.

1. Introduction

Computer assistance has become increasingly prevalent in mathematical research and scientific research
in general. There have been breakthrough results proven with computer assistance, such as the four-color
theorem in 1976 by Appel and Haken [3]. More recently, Google DeepMind researchers introduced Fun-
Search, a framework for mathematical discovery using large language models and reinforcement learning,
in their monumental 2023 paper [27]. They use FunSearch to make significant advances regarding multiple
problems, most notably the cap-set problem. In addition, there have been major recent developments in
the field of artificial intelligence for theorem proving, see [35, 33, 34, 2]. Using interactive proof assistants
such as Lean [10] or Coq [31], paired with Large Language Models, these approaches aim to automatically
prove mathematical theorems.

We consider a new, less direct approach to automated solving of research-level mathematical problems,
one that may align better with human experience. The idea is that in order to gain intuition about a
mathematical conjecture of the form “for all X, property Y holds”, we have our machine first attempt to
construct counterexamples X to the conjecture. If the machine successfully constructs a counterexample,
then the conjecture is disproven. If the machine fails to successfully construct a counterexample, the hope
is that it has either gained intuition about why a counterexample likely exists or why it likely doesn’t
(and hence why the conjecture is likely true). We hence focus on coming up with a computational aid
that can construct counterexamples to various conjectures.

Wagner’s approach [32] to discovering counterexamples in combinatorics pioneered this domain. Using
the deep cross-entropy method, Wagner constructs counterexamples to various theorems in combinatorics,
mostly from graph theory. He details a general procedure for using the deep cross-entropy method to
discover combinatorial counterexamples. Charton et al. expand on this approach in [7] with their novel
PatternBoost framework. These approaches have been applied to conjectures in many different domains,
from Ramsey Theory [14] to Algebraic Geometry [8].
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2 EXTREMAL UNIT-DISTANCE GRAPHS AND QUANTUM CONTEXTUALITY

In this paper, our aim is to construct computer-aided methods that can discover counterexamples to
a unique class of problems that is more “continuous” than in previous work. In particular, we focus
on Euclidean Ramsey Theory: a field that studies coloring and various other extremal problems on
continuous (generally Euclidean) spaces.

A famous open problem posed by Edward Nelson in 1950 that is a prototypical example of what we
wish to study is the Hadwiger-Nelson problem: that of determining the chromatic number χ(R2) [17].
In other words, determining the minimum number of colors that are needed to color the points of the
plane so that no two points unit distance apart are assigned the same color. One may also study natural
generalizations, such as computing χ(Rd) for d > 2 [13] and χ(Kd) for certain fields K, particularly when

K = Q(
√
3,
√
11) [20]. Another problem in this area asks whether, for any triangle T , one can color R2

with two colors such that no monochromatic copy of T exists. We refer the reader to [15] for information
on this problem, along with other prominent problems in Euclidean Ramsey Theory.

A useful theorem that allows us to reduce such “continuous” problems to discrete ones is the following:

Theorem 1.1 (Compactness Principle). Let H = (V,E) be a hypergraph where all X ∈ E are finite (but
V need not be). Suppose that, for all W ⊆ V , W finite, χ(HW ) ≤ r. Then χ(H) ≤ r.

We refer the reader to [16] for the proof of this theorem as well as its broader implications in Ramsey
Theory. For our purposes, this theorem reduces problems in Rd and Kd to producing finite constructions.
This motivates the following definition.

Definition 1.2. The unit-distance graph of a set of points in Rd (or a subfield) is the undirected graph
having those points as its vertices, with an edge between two vertices whenever their Euclidean distance
is exactly one.

Hence the Hadwiger-Nelson problem is equivalent to finding the largest r such that there exists a
finite unit-distance graph that is r-colorable. This reduction to finite constructions makes such problems
great candidates for computer-based approaches. We aim to construct unit distance graphs with extremal
properties, such as large chromatic number and high edge density. Such work can be extended naturally
to other problems in Euclidean Ramsey Theory.

Currently, it is known that 5 ≤ χ(R2) ≤ 7 [25]. We focus on the lower-bound, which comes from
constructions of unit-distance graphs with large chromatic number. The Moser Spindle [22] (depicted
below) has chromatic number 4, showing χ(R2) ≥ 4. In 2018, de Grey introduced the first unit-distance
graph with chromatic number 5 [9], improving the bound to its current state. This graph has 1581
vertices and was discovered with computational aid. One of the goals of the Polymath16 project [25] was
to discover smaller unit-distance graphs. In 2022, Jaan Parts discovered the current record, a unit-distance
graph with chromatic number 5 on only 509 vertices [23].

The Moser Spindle in R2
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One is also interested in other open problems regarding unit-distance graphs, such as Erdős’ unit-distance
problem [30], which asks about the maximum number of edges a unit-distance graph on n vertices can
have. These problems have been attacked computationally, e.g. in [11]. In this paper, we develop a general
framework for computer-aided discovery of extremal unit-distance graphs (UDGs) in the language of this
problem.

An interesting application of such examples is in quantum contextuality. The Kochen–Specker theorem
asserts that in dimension three and higher, it is impossible to assign definite truth values (0 or 1) to all
propositions about quantum measurements in a way that preserves functional relationships, ruling out
non-contextual hidden variable theories [19]. This result is often proved via explicit configurations of
vectors with specific orthogonality constraints. The initial proof boils down to a 117-vector construction,
called a Kochen–Specker set. This 117-vector construction has been brought down to 33 vectors in R3

by Peres [24] (the current record in 3 dimensions). Fewer vectors are required in higher dimensions, e.g.
Cabello’s construction [6] in R4 only needs 18. Other extremal Kochen-Specker sets may provide for
interesting quantum systems. See for example [28], which introduces a metric q on Kochen-Specker sets.
Sets with high q values provide useful insight in the field of quantum logic.

There is a natural correspondence between Kochen-Specker sets and UDGs on the d-sphere with radius
1/
√
2, denoted Sd

1/
√
2
. With a set of vectors v1, v2, . . . , vn ∈ Rd, we may construct corresponding points

p1, p2, . . . , pn ∈ Rd by projecting onto the sphere with radius 1/
√
2. Two vectors are orthogonal if and

only if the corresponding points are at distance 1, and so Kochen-Specker sets with the orthogonality
relations are in direct bijection with UDGs. Because of this connection, we are motivated to study the
problem of finding dense UDGs on the sphere.

The blueprint for the paper is as follows. In Section 2, we will prove mathematical properties of UDGs
that will allow us to formulate possible computational frameworks for discovering extremal UDGs (in
particular, UDGs with high edge density). We will focus on R2. In Section 3, we extend this framework
to Rd and Sd

1/
√
2
. We introduce computational methods in Section 4 and combine the framework with

these methods in Section 5.

2. Framework

The explicit problem we tackle is, given some search space S (generally Rd for some d), and a positive
integer n, efficiently discover dense UDGs on n vertices that can be embedded in S. This problem
extends to other useful problems in Euclidean Ramsey Theory, such as finding the chromatic number of
S or solving Erdős’ unit-distance problem.

When one tries to exploit the entire continuous search space to find UDGs, there is a problem. The
probability of the distance between two randomly chosen points being exactly 1 is 0. Hence, one option
is relax the notion of UDGs, and consider approximation-based methods. The other type of approach is
to use algebraic properties of UDGs to somehow reduce the search space to a finite “lattice”. We call
these lattice-based methods. We will discuss both types of approaches, specifically focused on finding
dense UDGs, but this naturally adapts to other types of problems (e.g. maximizing chromatic number).
We will begin our study in R2. For approximation-based methods, this generalizes naturally to higher
dimensions. For lattice-based methods, we will discuss how to generalize to Rd in the next section.

2.1. Approximation-Based Methods. In order to remove some of the “continuity” in the search space,
we may consider the relaxation of the notion of a UDG. In particular, we refer to the following definition.

Definition 2.1 ([12]). Given a set of points P = (pi)
n
i=1, we may define the ε-unit distance graph of P

as the graph GP on the points in P with two points connected by an edge if their Euclidean distance lies
in the interval [1− ε, 1 + ε].
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In the literature, these graphs have mostly been studied through the lens of the chromatic number.
Here, the idea is to search for ε-UDGs and hope that they are bona fide UDGs. However, not all ε-UDGs
are bona fide UDGs. In fact, we may construct ε-UDGs that are much denser than any bona fide UDGs,
and this is quickly learned in practice by computational methods.

Lemma 2.2. Let ε > 0. Then there exist graphs that are ε-UDGs, yet not bona fide unit-distance graphs.

Proof. We will prove that there exist much denser ε-UDGs on n vertices that bona fide unit-distance
graphs. In particular, we may obtain an edge density of Ω(n2) with the following construction. Consider
⌊n/2⌋ distinct points clustered around (0, 0) within a radius of ε/2. Consider ⌈n/2⌉ distinct points
clustered around (1, 0) within a radius of ε/2. The resulting graph is on n vertices and has at least
⌊n/2⌋⌈n/2⌉ = Ω(n2) edges, as desired. This graph is illustrated below. The result follows because
unit-distance graphs on n vertices have O(n4/3) edges [30].

□

Hence, in order to make approximation-based methods work, we need to be able to modify approximate
UDGs so that they are bona fide UDGs. In particular, we wish to avoid the type of construction in Lemma
2.2. This motivates the following definition.

Definition 2.3. Let G be an ε-UDG. Let δ > 0 and suppose that for all u, v ∈ V (G), ||u− v|| ≥ δ. Then
we call G an (ε, δ)-unit-distance graph.

The main result is as follows:

Theorem 2.4. There exist functions ε(n), δ(n) > 0 such that any (ε(n), δ(n)) unit-distance graph in Rd

on n vertices is a unit-distance graph.

Proof. The idea is that the (ε, δ) unit-distance graph condition is polynomial. Assume that the graph
is connected and not a path graph. For points p1, p2, . . . , pn ∈ Rd that are the vertices of an (ε, δ)
unit-distance graph G = (V,E), consider the function

f(p1, . . . , pn) =
∑
ij∈E

(||pi − pj ||2 − 1)2
∏

1≤i̸=j≤n

(n2 − ||pi − pj ||2).

This function satisfies the property that

f(p1, . . . , pn) < (n2 − δ2)(
n
2)(ε2 + 2ε)|E|.

Additionally, f(p1, . . . , pn) = 0 if and only if all ||pi − pj || = 1, i.e. G is a unit-distance graph. This is
because, by the triangle inequality, ||pi − pj || ≤ n, and equality cannot hold because we assumed that G
is not a path graph. Therefore, the result follows by Theorem 1 of [18]. □

Remark 2.5. The ε given by the proof of the above theorem for a fixed δ is doubly exponentially small

(of the form c−dpoly(n)

), so it isn’t feasible to use in practice directly. Nonetheless, this makes way for a
potential approximate approach, as one may consider such a graph for a relaxed value of ε and exhibit a
process involving moving the points around small neighborhoods to reduce ε.

Using this, we may define a framework for finding dense UDGs in Rd:

(1) Specify the number n of vertices of our UDG.
(2) Define a parameter H such that our graph lies in the box [−H,H]d. This tells us how large

the space that our graph lives in is. The choice H = n is always satisfactory (by the triangle
inequality), but for more efficient search one may choose smaller values of H.
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(3) Our search space S is the set of all subsets of [−H,H]d of size at most n. Our action space
consists of all actions that correspond to adding a point of norm 1 to a point in our state (if
possible) or removing a point in our state (if possible), such that all points are at distance at
least δ from each other.

(4) For a given state s we may specify the reward function (depending on the computational method
used) to be the edge density of the corresponding ε-UDG Gs: |E(Gs)|/|V (Gs)|.

Step 4 may be modified based on the problem we’re studied. For example, if we’re trying to optimize for
high chromatic number, we may specify a reward function correlated with the chromatic number of Gs.

2.2. Lattice-Based Methods. In order to reduce the action space even further (and hence reduce the
complexity of the problem), we may exploit algebraic structure of UDGs. The key observation is the
following theorem, allowing us to reduce from the uncountable R to a countable number field.

Theorem 2.6. Let G be a finite unit-distance graph G in Rd. Then there exists a number field K ⊂ R
such that there exists a finite unit-distance graph G′ in Kd such that G is a subgraph of G′.

Proof. Let (x1,1, x1,2, . . . , x1,d), (x2,1, . . . , x2,d), . . . , (xn,1, . . . , xn,d) be the vertices of G, with all xi,j in R.
The edges of G are defined by relations of the form

d∑
i=1

(xa,i − xb,i)
2 = 1.

The union ϕ of these relations over all edges of G forms a system of polynomial equations in the xi,j . By
assumption this system has a solution over R. It is enough to show that it also has a solution over some
number field K ⊂ R. Then, we can map the vertices of G to vertices of a graph G′ in Kd such that each
edge of G has a corresponding edge in G′, and the result follows.

Note that while R is not algebraically closed, it is a real closed field, and the theory of real closed
fields is complete. The existence of real solutions to ϕ is a first-order property in the language of ordered
fields. Hence by the argument behind the Lefschetz Principle, ϕ has a solution over the real algebraic
numbers, R ∩Q. Because G is finite, a solution lies in a subfield of R ∩Q, which is a finite extension of
Q. This is our desired number field K, and we’re done. □

Therefore, instead of searching over the uncountable Rd, we can select K and search over the countable
Kd. We can show that the action space is actually finite if we specify a denominator with the following
theorem.

Theorem 2.7. Let K be a totally real number field which is finite over Q. Let m ∈ N and OK be the

ring of integers of K. Then there are finitely many vectors v ∈
(

1
m ·OK

)d
such that ||v|| = 1.

Proof. It is enough to show that

x2
1 + x2

2 + · · ·+ x2
d = r

has finitely many solutions for x1, x2, . . . , xd ∈ OK . Let ω1, ω2, . . . , ωn be an integral basis for OK .
Let xj =

∑n
i=1 αjiωi, and let αj = (αj1, αj2, . . . , αjn)

⊺, where all the αji are integers. Additionally, if
σ1, σ2, . . . , σn are the embeddings of K, then define the matrix

M =

σ1(ω1) · · · σn(ω1)
...

. . .
...

σ1(ωn) · · · σn(ωn)

 ,
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so that

Maj =


σ1(xj)
σ2(xj)

...
σn(xj)

 .

For each embedding, we have that

σi(x1)
2 + σi(x2)

2 + · · ·+ σi(xd)
2 = r,

so σi(xj) ≤
√
r for each j and all i. This means that ||Maj ||∞ ≤

√
r for all j. But then, because M is

invertible,

||aj ||∞ = ||M−1(Maj)||∞ ≤ ||M−1||∞→∞||Maj ||∞ ≤ ||M−1||∞→∞
√
r.

Therefore, ||aj ||∞ is bounded, so there are finitely many solutions for each αji and hence finally many
solutions to the original equation. □

In the case of R2, we detail a method for algorithmically computing the unit-distances. First, we need
to prove Theorem 2.7 in a new way that gives us a tighter bound.

Theorem 2.8. Let K ⊂ R be a number field which is finite over Q. Let m ∈ N and OK be the ring of

integers of K. Then there are finitely many vectors v ∈
(

1
m ·OK

)2
such that ||v|| = 1. The number of

vectors is bounded above by IK(i)(m
rank(OK))|Tors(O×

K(i))|.

Proof. For every m ∈ N, we prove that there are finitely many v ∈ (OK)2 such that ||v|| = m.

We begin by proving this for m = 1. Let us embed v ∈ OK(i). Consider the natural norm function

N : K(i) → K. The norm N(x+ yi) is given by x2 + y2, so we have N(v) = 1. These elements of norm
1 are all invertible and hence form a group, as x+ yi has inverse x− yi. In particular, this group is the
kernel of the natural map φ : O×

K(i) → O×
K . We have that

rank(ker φ) = rank(O×
K(i))− rank(O×

K) + rank(coker φ).

Note that if u ∈ O×
K is the norm of w ∈ O×

K(i), then u2 is also a norm, namely that of w2. Hence the

image of φ is a finite index subgroup of O×
K and the cokernel has 0 rank. Because K ⊂ R, K is totally

real. Each real embedding of K corresponds to a complex embedding of K(i), so we get by Dirichlet’s
unit theorem that the rank of the kernel is finite, and hence our theorem is proved for m = 1.

Now, a solution to ||v|| = m generates an ideal in K(i). This ideal has finite norm, in particular
norm mrank(OK). Consider all principal ideals of norm mrank(OK). There are finitely many such ideals.
It follows from the m = 1 case that each ideal has finitely many generators: if two elements generate
the same ideal, they differ by multiplication by a unit under the norm map, but there are finitely many
units. Therefore there are finitely many vectors v with magnitude m, and we’re done. In particular, the
number of such vectors is bounded above by

IK(i)(m
rank(OK))|ker φ|,

where IK(d) denotes the number of ideals in the ring of integers of K with norm d. Because ker φ is a
finite subgroup of O×

K(i)
∼= Tors(O×

K(i)) × Zr for some r, where Tors(G) denotes the torsion subgroup of

an abelian group G, we can improve this bound to

IK(i)(m
rank(OK))|Tors(O×

K(i))|.

□
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Now, all we must do is specify a number field K and a common denominator m to embed our unit-
distance graph in. Then, our action space is finite (even if our observation space is a dense subset of R2)
and the problem is amenable to computational methods. Notice that this idea aligns with the known
constructions of unit-distance graphs, as the Moser Spindle corresponds to K = Q(

√
3,
√
11) and some

m | 2, and Parts’ 509-vertex graph corresponds to K = Q(
√
3,
√
5,
√
11) and some m | 96. In both these

cases, the vectors corresponding to actions are embedded in particular subrings of OK : for the Moser
Spindle this is Z[

√
3,
√
11] and for Parts’ graph this is Z[

√
3,
√
5,
√
11]. With this information, we can

significantly reduce our search space by only considering ideals of order mrank(R), where R is the given
subring. Either way, one can use Sage [29], a mathematical software system, to quickly generate the
(now-finite) action space. Based on past constructions, when inputting K and m it seems that we should
set K = Q(

√
p1,

√
p2, . . . ,

√
pn) for odd primes p1, . . . , pn and m = 2a · 3b for some a, b ∈ N.

Remark 2.9. The case of the Moser Spindle is particularly fruitful because the resulting lattice, the Moser
Lattice, is the location of the densest possible UDGs with at most 21 vertices, and the densest known
UDGs with between 22 and 30 vertices (see [11] and [1]). Eventually there must be some threshold point
where a different lattice produces denser UDGs, but this is likely for some reasonably large n.

Hence, the following steps allow us to generate a lattice in R2. We will discuss lattices in higher
dimensions in the next Section.

(1) Specify a number field K = Q(
√
p1,

√
p2, . . . ,

√
pn) for odd primes p1, . . . , pn and a common

denominator m = 2a · 3b for some a, b ∈ N.
(2) In Sage, compute the torsion subgroup of the group of units of OK(i). This effectively gives us

the “roots of unity” in K2. The code for this is in Appendix C.
(3) Compute in Sage all principal ideals of OK(i) with norm mrank(OK) (or mrank(R) for a subring R),

identifying a generator for each one. The code is again in Appendix C.
(4) Test each of these generators, making sure they satisfy ||v|| = m and removing the ones that

don’t.
(5) We should at this point have a list of generators v1,v2, . . . ,vn. For each generator create an

“orbit” of vectors with ||v|| = m by multiplying by the precomputed roots of unity. The union
of all of our resulting orbits will give us our action space.

Given a lattice L ∈ Rd, we may detail a framework for computational discovery of dense UDGs embedded
in the lattice.

(1) Specify the number n of vertices of our UDG.
(2) Our search space is a subset of [−n, n]d ∩ L . For our purposes, we may simply let it be [−n, n]d

– this doesn’t matter in terms of complexity.
(3) Let g1, g2, . . . , gm where m = rank(L ) generate L . Then our set of possible actions consists of

adding some gi to some point in our current state (if this keeps the number of vertices at most
n) or removing a vertex (if possible).

3. UDGs in Higher Dimensions and Spheres

In this section, we’ll focus on how to adapt the lattice approach detailed in the previous section to Rd

and Sd
1/

√
2
.

3.1. Action Spaces in Rd. First, we will discuss the problem of finding a suitable action space for
UDGs in Rd for d > 2. These results are of independent interest, as they will allow us to compute small
extremal UDGs, just as was done in R2. We do this by considering the lattice generated by the Raiskii
Spindle [26], a generalization of the Moser Spindle to higher dimensions.
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Definition 3.1. Let P be the object formed by gluing two regular unit simplices in Rd to each other
on a face. Join P with a copy of P , say P ′, at a vertex v. Let vP and vP ′ be the vertices of P and P ′

(respectively) which are not connected to v by an edge. Rotate P ′ until ||vP − vP ′ || = 1. The resulting
object is the Raiskii Spindle in Rd. We call any lattice L ⊂ Rd containing a Raiskii Spindle a Raiskii
Lattice. It is not hard to see that the chromatic number of the Raiskii Spindle in Rd is d+ 2.

The Raiskii spindle in R3

Clearly we may find a Raiskii Lattice with rank at most 2(d− 1) with algebraic generators. The question
is, in what number field can these generators lie in? When d = 2, we get the Moser Lattice Lmoser ⊂
Q[

√
3,
√
11]2. We may generalize this with the following theorem.

Theorem 3.2. For all d ≥ 2, there exists a Raiskii Lattice Ld ⊂ Q[
√
7d2 + 8d,

√
2,
√
d+ 1]d with rank

at most 2(d− 1).

Proof. We will detail how to construct such a Raiskii Spindle. Let v1, v2, . . . , vd be vectors such that the
tips of the vectors along with the origin forms a regular unit simplex. We may take

vi =
1√
2

(
ei −

(
1 +

√
d+ 1

d

)
· (1, 1, . . . , 1)

)
for an orthonormal basis ei. It is not hard to check that these vectors satisfy the require condition. Then

the last vertex to form P is the tip of 2(v1+···+vn)
d . It is easy to see that the height of the simplex is√

d+1
2d . Therefore the angle between v⃗P and v⃗P ′ , θ, satisfies (by the Law of Cosines)

4(d+ 1)

d
− 4(d+ 1)

d
cos θ = 1,

so cos θ = 3d+4
4d+4 . Now we may construct P ′ by rotating the vi an angle θ about the origin in some plane.

We may do this by applying the Givens matrix

G(1, 2, θ) =


cos θ − sin θ 0 · · · 0
sin θ cos θ 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1

 ,

i.e. v′i = G(1, 2, θ)vi. The vectors vi and v′i generate the lattice Ld in question. Since sin θ =
√
7d2+8d
4d+4 ,

this implies that

Ld ⊂ Q[
√

7d2 + 8d,
√
2,
√
d+ 1]d,

as desired. □
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Remark 3.3. Complexity of extremal UDG discovery is expected to scale exponentially with the rank of
the lattice. Hence it is vital that we keep our lattice of small rank.

3.2. Action Spaces on the Sphere. Another natural setting to search for extremal UDGs is on high-
dimensional spheres. For example, Kochen-Specker sets are generally written as orthogonality graphs
in high dimensions, but these are equivalent to UDGs on spheres in Rd with radius 1/

√
2. Because the

sphere is a subset of Rd, it is a corollary of Theorem 2.7 that the search space is again a lattice, so the
reader may ask why we are treating this case separately. The reason is that with the lattice approach we
must ensure that every point we’re adding is indeed on the sphere (and this is a rare occurrence). There

is a more natural way to find UDGs on the sphere, especially the sphere with radius 1/
√
2, that exploits

the sphere’s structure.

First, let us address the natural question of whether UDG embeddings in Rd and Sd
1/

√
2
behave similarly.

After all, both spaces are equivalent by stereographic projection (though this does not preserve unit
distances). However, it turns out that their UDGs are in fact quite different. We may see this for d = 2,
for example, with relatively simple counterexamples.

Proposition 3.4. There exist graphs G which

(a) cannot be embedded as UDGs in S2
1/

√
2
, but can be embedded as UDGs in R2

(b) cannot be embedded as UDGs in R2, but can be embedded as UDGs in S2
1/

√
2
.

Proof.

(a) Let G be the unit-distance graph formed by 6 vertices of a unit hexagon along with its center.
Let A be the center vertex and label the outer vertices B,C,D,E, F,G in that order. We claim
that if this graph were to be embedded in S2

1/
√
2
, the images of B and D are antipodes. This

yields a contradiction, because this implies B = −F = D = −B. The reason that this is true is
simple: the space of vectors on the sphere at a unit-distance from a point on the sphere is a great
circle. Hence B and D both lie at an intersection of the corresponding great circles of A and C.
Because A and C are a unit-distance apart, these two great circles have exactly 2 intersections.
By assumption, the images of B and D are distinct, yielding the result. Note that, by the same
reasoning, the Moser Spindle is another example of such a graph.

(b) Take G = K2,2,2. This can be embedded on the sphere as the unit octahedron. But it has no
UDG embedding in the plane: the vertices in two of the three partitions must form a square, but
the other two vertices must both be the circumcenter of this square.

□

So, to specify an action space on the sphere, it will be helpful to get away from the idea of linearly
adding unit-distance offsets to the current set of points (as is done for Rd). Instead, we may specify a
symmetric set of “angles” on the great circle perpendicular to a given vector in the current set of vectors.
This set of angles serves as the generator of our “lattice”. The framework is as follows:

(1) Let S be a finite subset of R/2πZ initially specified.
(2) For each point p in the current set of points, consider the subset qS ⊂ GC(p) of the great circle

on the sphere perpendicular to p, where q is a chosen vector from the current set.
(3) The action space is

⋃
p qS.

In essence, our action space given a base point p is a set of points on the great circle perpendicular to p.
This set of points is characterized by an anchor point q and a set of rotations S. One may compute qS
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p

GC(p)

q

qs1
qs2

qs3

qs4 qs5

The Process for S = {s1, s2, s3, s4, s5} = {π/3, 2π/3, π, 4π/4, 5π/3}

using Rodrigues’ rotation formula. If we wish to compute the rotation of q an angle θ about the axis p,
we may use

Rp,θ(q) = q cos θ + (p̂× q) sin θ + p̂(p̂ · q)(1− cos θ),

where p̂ = p
||p|| is the unit vector in the direction of p. In this case, p̂ · q = 0 by assumption, so we only

need

Rp,θ(q) = q cos θ + (p̂× q) sin θ.

The question of choosing the lattice on the sphere is not as straightforward as Rd. One may choose to use
angles that are simple rational multiples of π. For example, S = {0, π/2, π/3, 2π/3, π, 4π/3, 3π/2, 5π/3}.
One may also choose to go with angles that show up in popular constructions, such as [24]. We will see
in Section 5 that it is hard to predict the result.

4. Computational Approaches

There are three main computational approaches that we use. The current state of the art, [11], uses a
diverse beam search. Through stochastic and machine learning methods, we attempt to improve this.

4.1. Reinforcement Learning. Reinforcement learning (RL) is a framework for sequential decision-
making where an agent interacts with an environment to learn a policy that maximizes cumulative
reward. Formally, this setting is modeled as a Markov Decision Process (MDP), defined by a tuple
(S ,A , P,R, γ), where S is the state space, A is the action space, P represents transition probabilities,
R the reward function, and γ a discount factor.

In combinatorial optimization problems, RL provides a flexible and model-free approach for constructing
feasible solutions incrementally. The agent learns a policy π(a | s) that maps states to actions, gradually
building up structures such as graphs, sets, or sequences. Unlike traditional heuristics, RL methods can
adaptively learn problem-specific strategies and generalize across problem instances.

Among policy gradient methods, Proximal Policy Optimization (PPO) has proven particularly effective



A. AGGARWAL 11

due to its balance of stability and efficiency. PPO updates the policy by maximizing a clipped surrogate
objective:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio and Ât is an estimator of the advantage function. The

clipping mechanism constrains the policy updates, preventing overly large steps that destabilize learning.

PPO is particularly well-suited to combinatorial domains because it can handle large, discrete action
spaces, tolerate sparse or delayed rewards, and benefit from rich neural architectures to model policies
over complex structures. This makes it a strong candidate for learning constructive heuristics in problems
where the search space is vast and non-differentiable.

4.2. Simulated Annealing. Simulated annealing is a probabilistic optimization technique inspired by
the annealing process in metallurgy, where a material is heated and then slowly cooled to reduce defects
and reach a state of minimum energy. In the context of optimization, simulated annealing explores the so-
lution space of an objective function by probabilistically accepting both improving and worsening moves.
The probability of accepting a worse solution decreases over time, governed by a temperature parameter
T that gradually cools according to a predefined schedule.

At each step, a candidate solution x′ is generated from the current solution x by a local perturbation.
The new solution is accepted with probability

P (x → x′) =

{
1, if f(x′) ≤ f(x),

exp
(
− f(x′)−f(x)

T

)
, otherwise,

where f is the objective function to be minimized. This mechanism allows the algorithm to escape local
minima early on, with convergence to a global minimum more likely if the cooling schedule is sufficiently
slow. We refer the reader to [4] for more details.

4.3. Numerical Optimization. The website [21] employs a gravity simulation to discover small dense
unit distance graphs. We attempt to do something similar using our notion of (ε, δ)-UDGs. In particular,
we wish to construct a smooth function between two points that is large when the points are very close
to 1, and tapers off quickly when they deviate from 1 even slightly. We want this function to have a
“repelling” property in the sense that it should be negative when two points are at distance ≤ δ. We
may do this using the smooth bump functions

f(x) =


exp

(
− 1

ε2 − (x− 1)2

)
, if |x− 1| < ε

0, otherwise

and

h(x) =


− exp

(
− 1

δ2 − x2

)
, |x| < δ

0, |x| ≥ δ

For a point set p1, p2, . . . , pn ∈ Rd we may define the “reward function”

Rε,δ(p1, p2, . . . , pn) =
∑
i,j

f(||pi − pj ||) + h(||pi − pj ||).

We may then employ gradient descent and other numerical maximization methods to find a global max-
imum for this function. One may also modify this approach in a way that is similar to [21] to instead
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involve particles in space and forces between particles based on the distance between them (repelling
force at distance ≤ δ and equilibrium at distance 1), then simulate the trajectories of the points in order
to minimize the potential energy of their state.

5. Empirical Results

For reinforcement learning, we use the OpenAI Gym environment [5] for implementation. OpenAI Gym
requires a static action space, so we set our action space to be the union of all universally acceptable
actions, then mask based on the current state. The approximation-based framework underperforms the
lattice-based framework. The results are best for the Moser Lattice. In practice, the RL agent ends up
learning to consistently come up with decently dense UDGs, but tends to fail to come up with optimally
dense UDGs after short amounts of training. Below is a graph showing roughly how well the agent
performs when working with n = 30 vertices on the Moser Lattice over 5 · 105 episodes of training on a
Macbook Pro. The vertical axis represents the agents average reward (with irrelevant scale) and time is
on the horizontal axis.

This approach was unfruitful as it requires significantly more compute and produces worse results than
simulated annealing.

Numerical optimization performed poorly as a consequence of the fact that the input space is high
dimensional, and the problem is not naturally continuous. This and the complexity of the reward function
made it hard to learn the landscape of UDGs. In addition, the UDG landscape has a plethora of local
extrema that it is hard for many numerical optimization methods to escape from to find global extrema
(even for methods like stochastic gradient descent). The results found were not much better than [21] for
large graphs.

In R2, simulated annealing was able to reproduce the results in [11] with much less compute power. In
particular, multithreaded among 11 cores on a 2019 MacBook Pro, all the densest unit-distance graphs
up to 30 vertices were reproduced in just under 30 minutes. The Python code for the main functions are
in Appendix A. Below is the densest UDG on 18 vertices, found by simulated annealing.
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Similarly, with the Raiskii Spindle in R3 and the same hardware, simulated annealing finds with high
certainty the densest UDGs in three-dimensions for small numbers of vertices. Below are the densest
UDGs on 9 and 12 vertices.

Below is a table of the lower bounds found for u3(n), maximum number of edges of a UDG in R3 with n
vertices, for small n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
u3(n) ≥ 0 1 3 6 8 12 15 18 21 25 28 32 36 39 43

The process of upper-bounding these values to find exact counts for u3(n) is tedious yet straightforward,
as it is for u2(n). The idea is to find small forbidden UDGs and then run a brute-force search. We refer
the reader to [1] for details on how to perform this project.
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Like R2 and R3, simulated annealing worked just as well on the sphere in 3 dimensions. The Python
code for the main functions are in Appendix B. However, there was counter-intuitive behavior when
choosing angle sets S. Unlike in previous cases, where the Moser and Raiskii spindles are likely the most
efficient choices for generators of the action space, there is not a simple choice for S. One may decide
to choose simple rational angles, for example with S1 = {0, π/2, π/3, 2π/3, π, 4π/3, 3π/2, 5π/3}. For S1,
below is the densest UDG found on 9 vertices.

If one decides to make a more complicated choice, the results are not what one would expect. Choosing
a 372 angle set that contains all the angles in Peres’ construction for example, below is the densest UDG
found on 9 vertices.
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Because simulated annealing is so definitive in its final answer, the discrepancy is likely not a result of
simulated annealing finding suboptimal UDGs but rather a limitation of the generating set. Hence we
ask the question: what generating set produces the densest small UDGs on the sphere?

6. Conclusion

This work develops a unified framework for the computational discovery of extremal unit-distance
graphs. The central difficulty, the pathological sparsity of exact unit distances in continuous spaces, was
addressed in two complementary ways: approximation-based methods that relax the metric constraints
in a controlled fashion, and lattice-based methods that exploit the intrinsic algebraic properties of UDGs.
Together, these approaches transform an a priori intractable continuous search problem into one that is
both finite and computationally navigable.

This framework was tested computationally and, even with the author’s compute limitations, produced
novel results about UDGs in 3-dimensions and on the sphere. It paves the way for future work in this
direction.

This task is not only important because of Erdös’ problem on dense UDGs, but because we can use
information about dense UDGs to solve important problems about other types of extremal UDGs, as was
done famously by de Grey in [9]. Because of the flexibility of the framework developed in this work, many
generalizations (to higher dimensions, to number fields, etc.) are now tractable to study by observing
computational results.

The Github repository for this paper can be found here.
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Appendix A. Simulated Annealing Code in Rd

Below is the Python function to generate the action space in R2. The corresponding function in R3

and higher dimensions is essentially the same.

def generate neighbor(points: List[Point], min vertices: int = MIN,
max vertices: int = MAX) −> List[Point]:

new points = points.copy()

n = len(new points)

# Decide to add or remove −− 0.2 p ro ba b i l i t y of j u s t removing anyway
if n <= min vertices:

action = ’add’

elif n >= max vertices or np.random.rand()<0.2:
action = ’remove’

else:
action = random.choice([’add’, ’remove’])

if action == ’remove’:
new points.pop(random.randint(0, n − 1))

else:
validpt = False

while validpt == False:
base point = random.choice(new points)

dx, dy = random.choice(UNIT DISTANCE OFFSETS)

new point = (base point[0] + dx, base point[1] + dy)

validpt = True

for p in points:
if(euclidean distance(p, new point) < 0.001):

validpt = False

new points.append(new point)

return new points

Note the parameter p = 0.2 of removing a vertex anyway. This can be tuned for optimal results. The
simulated annealing function is as follows (make note of the parameters used in the definition).

def simulated annealing(
initial points: List[Point],

max iterations: int = 1000000,
initial temp: float = 100.0,
cooling rate: float = 0.999995,
min vertices: int = MIN,
max vertices: int = MAX

) −> Tuple[List[Point], int]:
current points = initial points.copy()

current edges = count edges(current points)

best points = current points.copy()

best edges = current edges

temp = initial temp
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for i in range(max iterations):
neighbor points = generate neighbor(current points , min vertices ,

max vertices)

neighbor edges = count edges(neighbor points)

# Acceptance p ro bab i l i t y (maximizing edges )
if neighbor edges > current edges or
random.random() < math.exp((neighbor edges − current edges) / temp):

current points = neighbor points

current edges = neighbor edges

if current edges > best edges:

best points = current points.copy()

best edges = current edges

# Cool down
temp ∗= cooling rate

return best points , best edges

Appendix B. Simulated Annealing Code on the Sphere

Below is the Python code to perform a Rodrigues rotation in R3.

def rodrigues rotation(point: Point, axis: Point, angle: float) −> Point:

# Convert to numpy arrays for vector operations
v = np.array(point)

k = np.array(axis)

# Normalize the ax is
k = k / np.linalg.norm(k)

# Rodrigues ’ formula
cos theta = np.cos(angle)

sin theta = np.sin(angle)

v rot = (v ∗ cos theta +
np.cross(k, v) ∗ sin theta +
k ∗ np.dot(k, v) ∗ (1 − cos theta))

return (v rot[0], v rot[1], v rot[2])

Below are the functions to compute the action space for the sphere in three dimensions.

def build perpendicularity graph(points: List[Point], tolerance: float = 0.001)
−> dict:
perp graph = {i: [] for i in range(len(points))}
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for i in range(len(points)):
for j in range(len(points)):

if i != j:
dot prod = np.dot(np.array(points[i]), np.array(points[j]))

if abs(dot prod) < tolerance:

perp graph[i].append(j)

return perp graph

def generate neighbor spherical(points: List[Point], angle set: List[float],
min vertices: int = MIN, max vertices: int = MAX)
−> List[Point]:

new points = points.copy()

n = len(new points)

# Decide to add or remove
if n <= min vertices:

action = ’add’

elif n >= max vertices or np.random.rand() < 0.2:

action = ’remove’

else:
action = random.choices([’add’, ’remove’], weights=[60, 40])[0]

if action == ’remove’:
# Try removing a random point , but check i f i t disconnects the graph
remove idx = random.randint(0, n − 1)

test points = new points[:remove idx] + new points[remove idx+1:]

# I f removal would leave us with 0 edges , don ’ t do i t
if count edges(test points) == 0:

return points # Return or ig ina l , no change
else:

new points = test points

else:
# Build perpendicu lar i ty graph once
perp graph = build perpendicularity graph(new points)

# Find a l l P that have at l e a s t one perpendicular point
valid P indices = [i for i in range(n) if len(perp graph[i]) > 0]

if len(valid P indices) == 0:
return points # Can ’ t add , return or i g ina l

validpt = False

attempts = 0

max attempts = 100

while not validpt and attempts < max attempts:
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attempts += 1

# Choose base point P that has perpendicular points
P idx = random.choice(valid P indices)

P = new points[P idx]

# Choose Q from pre−computed perpendicular points
Q idx = random.choice(perp graph[P idx])

Q = new points[Q idx]

# Choose rota t ion angle from angle se t
theta = random.choice(angle set)

# Rotate Q around axis P by angle theta
new point = rodrigues rotation(Q, P, theta)

# Check i f t h i s point i s too c lose to e x i s t i n g points
validpt = True

for p in new points:
if euclidean distance(p, new point) < 0.04:

validpt = False

break

if validpt:
new points.append(new point)

else:
return points

return new points

Appendix C. Sage Code to Compute Offsets

Below is the Sage Code corresponding to Theorem 2.8.

def roots of unity(K):
G = K.unit group()

T = G.torsion generator()

order = (T.value()).multiplicative order()

torsion subgroup = [T^k for k in range(order)]
torsion subgroup values = [x.value() for x in torsion subgroup]
return torsion subgroup values

def ideals of norm(K, n):
ideals list = []

for p, k in factor(n):
Jp = K.ideal(p)

p ideals = Jp.factor()
prime ideals = [P for P, e in p ideals]
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residue degrees = [P.residue class degree() for P in prime ideals]

def find exponents(degrees, target):
if not degrees:

return [[]] if target == 0 else []
current degree = degrees[0]

remaining degrees = degrees[1:]

solutions = []

for e in range(0, target // current degree + 1):
for sol in find exponents(remaining degrees ,

target − e∗current degree):
solutions.append([e]+sol)

return solutions

exponent combinations = find exponents(residue degrees , k)

ideals for pk = []

for exponents in exponent combinations:
ideal product = K.ideal(1)

for P, e in zip(prime ideals , exponents):
ideal product ∗= P^e

ideals for pk.append(ideal product)

ideals list.append(ideals for pk)

from itertools import product
all ideals = list(product(∗ideals list))
final ideals = [prod(ideals) for ideals in all ideals]
return final ideals

def action space(K, n):
return list(set([w ∗ t for w in roots of unity(K) for t in ideals of norm(K, n)]))
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