
PRIMES 2024: ENTRANCE PROBLEM SET

Notation. We let Z and R denote the set of integers and the set of real numbers, respectively. Also,
we let P, N, and N0 denote the set of primes, positive integers, nonnegative integers, respectively.

General Math Problems

Problem G1 (General). Hogwarts has quite peculiar habits and games.

(a) Gryffindor fans tell the truth when Gryffindor wins and lie when it loses. Fans of Hufflepuff,
Ravenclaw, and Slytherin behave similarly. After two matches of quidditch with the participa-
tion of these four teams (with no draws), among the wizards who watched the broadcast, 500
answered positively to the question “Do you support Gryffindor?”, 600 answered positively to
the question “Do you support Hufflepuff?”, 300 answered positively to the question “Do you
support Ravenclaw?”, and 200 answered positively to the question “Do you support Slytherin?”.
How many wizards support each of the teams? Note: Each wizard is fan of exactly one of the
teams.

(b) There is a bucket of N candies leftover from Halloween (N ≥ 2). Two friends, Hermione Granger
and Ron Weasley, take turns to disappear candies from the bucket as follows. The first turn,
Hermione must disappear at least one candy and cannot disappear all of the candies. Then
taking turns, each of them must disappear at least one candy and at most 9/4 times the number
of candies disappeared by her/his friend in the previous turn. The winner is the one disappearing
the last candy. Assume that Hermione and Ron play optimally.
(i) For which numbers N does Hermione have a winning strategy? Justifying your answer.

(ii) Answer the previous question replacing 9/4 by 3.

Comments: Proposed by Leonid Rybnikov (part (a)) and Nitya Mani (part (b)).

Solution.

(a) Let A and B be the winning teams, and let a and b be the numbers of fans of A and B,
respectively. Similarly, let C and D be the losing teams, and let c and d be the numbers of fans
of C and D, respectively. When a wizard is asked “Do you support A?”,

• the wizard will answer positively if he/she is an A fan (because A won, and so he/she will
tell the truth),

• the wizard will answer positively if he/she is either a C or a D fan (because C and D lost,
and so he/she will lie), and

• the wizard will answer negatively if he/she is a B fan (because B won and so he/she will
tell the truth).

Therefore the total number of positive answers to the question “Do you support A?” is a+c+d.
Similarly, the total number of positive answers to the question “Do you support B?” is b+c+d.
On the other hand, when a wizard is asked “Do you support C?”,

• the wizard will answer negatively if he/she is either an A or a B fan (because A and B
won, and so he/she will tell the truth),

• the wizard will answer negatively if he/she is a C fan (because C lost, and so he/she will
lie), and
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• the wizard will answer positively if he/she is a D fan (because D lost, and so he/she will
lie).

Thus, the total number of positive answers to the question “Do you support C?” is d. In
a similar manner, we see that the total number of positive answers to the question “Do you
support D?” is c. Now observe that both numbers a + c + d and b + c + d are greater than or
equal to both numbers c and d. Therefore we conclude that Ravenclaw and Slytherin lost and
had, respectively, 200 and 300 fans. This means that there were 500− 200− 300 = 0 Gryffindor
fans and there were 600− 200− 300 = 100 Hufflepuff fans. □

(b) (i) Here is the general strategy for 9/4. Compute the Zeckendorf representation of N ; that is,
write N as a sum of nonconsecutive Fibonacci numbers, which can be done uniquely. The
first player wins unless N is a Fibonacci number; the optimal strategy involves computing
the Zeckendorf representation of the current number and then removing the smallest part
of the Zeckendorf representation (i.e. the smallest Fibonacci number in the sum).

(ii) When we replace 9/4 by 3, the strategy is similar except that we compute the generalized
Zeckendorf representation of N with respect to the recurrence Pn = Pn−1 + Pn−4 with
initial conditions 0, 1, 2, 3, 4, 6. Player 2 wins if N = Pn for some n, and player 1 has a
similar winning strategy.

□

Problem G2 (Elementary Geometry). Suppose that each edge of a given convex hexagon has
distance 1 to the origin (this means, each edge is contained in a line whose distance to the origin
equals 1). What is the minimum possible area enclosed by this hexagon? Justify your answer.

Comments: Proposed by Jingze Zhu.

Solution. The space of hexagon is compact, so the minimizer exists and is non-degenerate (i.e the
intersection point between consecutive edges are points within finite distance.)

Suppose that we take the minimizer and label the vertices as A1, . . . , A6 in clockwise fashion and
each corresponding interior angles are α1, . . . , α6, respectively. We can draw a line from O to each
segment AiAi+1 with the intersection point to be Hi. Let |AiHi| = Li and |HiAi+1| = Ri. We assume
that Li, Ri are nonnegative, for other cases the proof will be similar. We will rotate the vertex AiAi+1

counterclockwise around H1 by an angle θ and see how the area changes. By drawing pictures and
inspecting the triangles, we find that the area change is

∆Area =
L2
i sin(θ) sin(αi)

sin(αi + θ)
− R2

i sin(θ) sin(αi+1)

sin(αi+1 − θ)

Note that we will take |θ| small enough. If Li > Ri, then we can find small θ > 0 such that ∆Area > 0.
this will contradict the fact that we have taken the minimizer. If Li < Ri, in the same way we can find
θ < 0 and |θ| is small enough such that ∆Area > 0, a contradiction again. So Li = Ri. By Pythagoras
theorem, it is not hard to see that

L2
i + |OHi|2 = |OA2

i |, R2
i + |OHi|2 = |OA2

i+1|

Thus, Li = Ri−1. Inductively, we will see that L1 = L2 = · · · = L6 = R1 = · · · = R6. Then all edges
are of the same length and all angles αi are the same. So the minimum area is achieved by the regular
hexagon, whose area is 2

√
3. □

Problem G3 (Number Theory). For any positive a, b ∈ Z, we define pow(a, b) inductively in the
following way: pow(a, 1) = a and pow(a, b) = apow(a,b−1) if b ≥ 2.
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(a) Prove that for any positive k, n ∈ Z with gcd(k, n) = 1, there exists c ∈ Z with 0 ≤ c < n and
M ∈ N such that pow(k,m) ≡ c (mod n) for all m ∈ Z such that m ≥ M : we denote c by
fn(k).

(b) Prove that for every positive integer n, the inclusion (Z/nZ)× ⊆ Im(fn) holds, where Im(fn) is
the image of the function fn : Z → Z.

Comments: Proposed by Benjamin Li.

Solution.

(a) We proceed by induction on n. The case n = 1 is obvious. Now fix k, n ∈ Z with n > 1, and
assume that the statement we wish to prove holds for any pair (n′, k′) of positive integers such
that n′ < n. Since φ(n) < n, there exists c′ ∈ Z with 0 ≤ c′ < φ(n) such that pow(k,m) ≡ c′

(mod φ(n)) for all sufficiently large m. Thus, pow(k,m′) ≡ kpow(k,m′−1) ≡ kc
′
(mod n) for all

sufficiently large m′, as desired. Note: Also, we have obtained the following fn(k) ≡ kfφ(n)(k)

(mod n). □

(b) To easy notation, we use L(n) to denote the least common multiple of n, φ(n), φ(φ(n)), . . ., while
we use P (n) to denote the largest prime factor of n. Note that the value of fn(k) only depends
on k (mod L(n)), and P (φ(n)) ≤ P (n). To solve this problem, we use induction on n to prove a
stronger statement: for any b such that gcd(n, b) = 1, there exists k such that gcd(k, L(n)) = 1
and fn(k) = b. For n = 1, the corresponding statement is obviously true. Now assume n > 1.
Set p = P (n), and write n = n0p

t, where P (n0) ≤ p. We split the rest of the solution into the
following two cases.

Case 1: t = 1. Take any b1 and b2 such that gcd(n0, b1) = gcd(p, b2) = 1. We want to find k
such that fn0

(k) = b1, fp(k) = b2, and gcd(k, L(n)) = 1.

Claim: For any positive n1, n2, b ∈ Z with gcd(n1, b) = 1, there exists a positive k ∈ Z such that
k ≡ b (mod n1) and gcd(k, n2) = 1.

Proof of Claim: Set d := gcd(n1, n2), and write n2 = n′
2d, where all prime factors of d are also

factors of n1, and n′
2 shares no common factor with n1. Then gcd(b, d) = 1, and we want to find

ℓ such that gcd(ℓn1 + b, n′
2d) = 1. First, we must have gcd(ℓn1 + b, d) = 1, so it suffices to find

ℓ such that gcd(ℓn1 + b, n′
2) = 1, which is possible because gcd(n′

2, n1) = 1. The claim is now
established.

Let L(n) = pN , then P (N) < p and φ(n) | N . From our induction hypothesis, we can
find k0 coprime with L(n0) such that fn0(k0) = b1. Thus, the established claim guarantees the
existence of k1 such that k1 ≡ k0 (mod L(n0)) and gcd(k1, NL(n0)) = 1. Now let fφ(n)(k1) =

b ∈ (Z/φ(n)Z)×. Consider the homomorphism (Z/pZ)× → (Z/pZ)× given by the assignments
x 7→ xb. This map is an isomorphism with inverse map (Z/pZ)× → (Z/pZ)× defined via the

assignments x 7→ xb−1

, where b−1 is the inverse of b in (Z/(p − 1)Z)×. Therefore we can pick
x ∈ (Z/pZ)× such that xb ≡ b2 (mod p). Now we can find k such that k ≡ k1 (mod NL(n0))
and k ≡ x (mod p), which is the desired k.

Case 2: t > 1. Take any b1 and b2 such that gcd(n0, b1) = gcd(p, b2) = 1. We want to
find k such that fn0(k) = b1, fpt(k) = b2, and gcd(k, L(n)) = 1. Our induction hypothesis
ensures the existence of k0 such that gcd(k0, L(n0p

t−1)) = 1, fn0(k0) = b1, and fpt−1(k0) ≡ b2
(mod pt−1). Now let L(n0) = N0, L(n0p

t−1) = pt−1N1, and L(n0p
t) = ptN2. Then p ∤ N0N1N2.

Write N = N0N1N2, and set b′2 := fpt(k0). Observe that b′2 ≡ b2 (mod pt−1). Now consider
k := k1 + ℓpt−1N . We have

fpt(k) ≡ (k + pt−1Nℓ)b2 ≡ kb21 + b2Npt−1ℓ ≡ b′2 + pt−1(b2Nℓ) (mod pt).
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As ℓ runs through Z/pZ, the right-hand side of the displayed expression will also touch b2
because b′2 ≡ b2 (mod pp−1) (note that p ∤ b2N), so we have found the desired k. □

Problem G4 (Algorithm with flavor of number theory).

(a) Describe an algorithm, with proof, to compute all possible ways to write a given positive integer n
as the sum of squares of consecutive positive integers. For example, for n = 25, we can write
25 = 52 and 25 = 32 + 42. Include your code as part of your solution (feel free to use your
favorite programming language).

(b) What is the time complexity of your algorithm?

(c) What is the first number that is NOT a perfect square which can be written as the sum of
consecutive squares in three different ways? Hint: it is less than 150000.

Comments: Proposed by Arun Kannan.

Solution.

(a) Suppose that n can be written as the sum of l consecutive squares starting at k. Let us see what
we can reason about l and k. We can write

n = k2 + (k + 1)2 + · · ·+ (k + l − 1)2

= k2 + (k2 + 2k + 12) + · · ·+ (k2 + 2k(l − 1) + (l − 1)2)

= lk2 + 2k(1 + 2 + · · ·+ (l − 1)) + (12 + 22 + · · ·+ (l − 1)2)

= lk2 + 2k
l(l − 1)

2
+

(l − 1)l(2l − 1)

6
.

We can rewrite this as a quadratic equation in k and then solve for k.

0 = k2 + (l − 1)k +

(
(l − 1)(2l − 1)

6
− n

l

)

=⇒ k =

−(l − 1)±
√
(l − 1)2 − 4

(
(l−1)(2l−1)

6 − n
l

)
2

.

The discriminant must be nonnegative because k is real, so we need the following inequality to
hold:

(l − 1)2 − 4

(
(l − 1)(2l − 1)

6
− n

l

)
≥ 0

=⇒ n ≥ (l − 1)l(l + 1)

12
.

Moreover, for k to be positive, we need the following inequality to hold:

−(l − 1) +

√
(l − 1)2 − 4

(
(l−1)(2l−1)

6 − n
l

)
2

> 0

=⇒ n >
(l − 1)l(2l − 1)

6
.

It is easy to see that the second inequality is stronger than the first inequality as 2l−1
6 ≥ l+1

12
for all l ≥ 1. We deduce that for each value of l, there is at most one value of k that works
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and moreover it suffices to consider l such that l ≥ 1 and (l−1)l(2l−1)
6 < n. We can then iterate

through all possible values of l and check if the corresponding value of k is an integer. If so,
then we can list out the l consecutive squares that sum up to n starting at k2.

Below is a Python program that does just that:

from math import sq r t

de f c on s e cu t i v e s qua r e s (n ) :

l = 1

csum = ( l −1)∗(2∗ l −1)/6

whi l e n > l ∗csum :

d = ( l −1)∗∗2 − 4∗( csum − n/ l )

k = (−( l −1) + sq r t (d ) )/2

i f k == in t (k ) :

k = in t (k )

squares = ”” . j o i n (

[ s t r ( i n t ( i ) ) + ”ˆ2+” f o r i in range (k , k+l ) ]

)

output = s t r (n) + ” = ” + squares [ : −1 ]

p r i n t ( output )

l=l+1

csum = ( l −1)∗(2∗ l −1)/6

□

(b) The time complexity is O(n1/3) because the number of values of l that we need to check is

bounded above by n1/3 because (l−1)l(2l−1)
6 < n and l ≥ 1. □

(c) The first number that is not a perfect square which can be written as the sum of consecutive
squares in three different ways is 147441.

147441 = 852 + 862 + · · ·+ 1012

= 292 + 302 + · · ·+ 772

= 182 + 192 + · · ·+ 762.

This can be found in a matter of seconds by checking each number between 1 and 150000 using
the program above. □

Remark: There can be different solutions to this problem. For instance, there is a dynamic program-
ming approach that can compute the answer in O(n4/3) time complexity by computing the answer for
all k ≤ n.

Problem G5 (Elementary Algebra and Sequences). A nonempty set S consisting of positive real
numbers is called an additive set if x + y ∈ S when x, y ∈ S. Let S be an additive set. An element
of S is called indecomposable if it is not the sum of two (not necessarily distinct) elements of S, and S
is called decomposable if every element of S can be written as a finite sum of indecomposable elements
(allowing repetitions and sums consisting of only one summand). Prove that if S is an additive set and
there exists a strictly decreasing sequence (xn)n≥1 such that {xn, xn − xn+1 : n ∈ N} ⊆ S, then there
exists an additive set contained in S that is not decomposable.

Comments: Proposed by Felix Gotti.
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Solution. Let us introduce some useful terminology. For m,n ∈ Z with m ≤ n, we set Jm,nK := {i ∈
Z : m ≤ i ≤ n}. Let S be an additive set. We let A (S) denote the set consisting of all indecomposable
elements of S. For s, t ∈ S such that t − s = 0 or t − s ∈ S, we write s |S t and say that s divides
t in S. A sequence (sn)n≥1 of elements of S is called ascending if sn+1 |S sn for every n ∈ N, while
(sn)n≥1 is said to stabilize if there exists N ∈ N such that sn = sN for every n ≥ N . Finally, if R is a
set consisting of positive real numbers, we let ⟨R⟩ denote the set consisting of all finite sums of elements
in R (allowing repetitions), which is precisely the smallest additive set containing the set R.

Let S be an additive set containing a sequence described in the statement of the problem. If S is
not decomposable we are done. So we assume that S is decomposable. Let us first verify that there is a
sequence (qn)n≥0 of elements of S such that qn− qn+1 ∈ A (S) for every n ∈ N. To do so, let (ℓn)n≥0 be
a sequence with terms in S as described in the statement of the problem. Take q0 = ℓ0. Since q0−ℓ1 ∈ S
and S is decomposable, we can take a1 ∈ A (S) such that a1 |M q0−ℓ1. After setting q1 := q0−a1, we see
that ℓ1 |S q1. Now suppose that we have found q0, . . . , qn ∈ S such that qj−1 − qj ∈ A (S) and ℓj |M qj
for every j ∈ J1, nK. As ℓn+1 |S ℓn and ℓn |S qn, we can choose an+1 ∈ A (S) so that an+1 |S qn − ℓn+1.
Then we can set qn+1 := qn − an+1. From an+1 |S qn − ℓn+1 and qn+1 := qn − an+1, we can readily
deduce that ℓn+1 |S qn+1. So we can assume the existence of a sequence (qn)n≥0 with terms in S and
a sequence (an)n≥1 with terms in A (S) such that qn := qn+1 + an+1 for every n ∈ N0. Note that the
series

∑
n∈N an converges as its sequence of partial sums is bounded by q0; indeed, q0 = qn +

∑n
i=1 ai

for every n ∈ N.
Now we will construct a strictly increasing sequence (kn)n≥1 of positive numbers with a1 > ak1

+ ak2

and satisfying that, for every n ∈ N, the following conditions hold:

(1) q0 /∈
〈
ak2i−1

+ ak2i
| i ∈ J1, nK

〉
, and

(2) the set of indecomposable elements of
〈
ak2i−1

+ ak2i
| i ∈ J1, nK

〉
is

{
ak2i−1

+ ak2i
| i ∈ J1, nK

}
.

We proceed inductively. Take k1 = 2. The set Q>0∩{q0/n−a2 | n ∈ N} is clearly finite. Since (an)n≥1

converges to zero, there is an i ∈ N with i ≥ 3 such that a1 > a2 + ai and ai /∈ {q0/n − a2 | n ∈ N}.
After taking k2 = i > k1, we see that a1 > ak1

+ ak2
and q0 /∈ ⟨ak1

+ ak2
⟩. In addition, it is clear that

ak1
+ ak2

is the only indecomposable of ⟨ak1
+ ak2

⟩. Now suppose that we have already found for some
n ∈ N, positive integers k1, . . . , k2n with k1 < · · · < k2n satisfying conditions (1) and (2) above. Take
k2n+1 = k2n + 1, and consider the set

Q := q0 −
〈
ak2i−1

+ ak2i
| i ∈ J1, nK

〉
.

It is clear that Q>0 is finite, and so after defining

Q′ :=
{ q

n
− ak2n+1

∣∣∣ q ∈ Q and n ∈ N
}
,

we obtain that Q′
>0 is also a finite set. So there exists j1 ∈ N such that aj /∈ Q′ for any j ∈ N with

j ≥ j1. Now consider the set

T :=

n⋃
i=1

(
ak2i−1 + ak2i −

〈
ak2j−1 + ak2j | j ∈ Ji+ 1, nK

〉)
.

Observe that T>0 is finite, and so if we set

T ′ :=
{ t

n
− ak2n+1

∣∣∣ t ∈ T and n ∈ N
}
,

we obtain that T ′
>0 is also finite. As a result, there exists j2 ∈ N such that aj /∈ T ′ for any j ≥ j2. So

we can take j ∈ N large enough so that j > k2n+1 and ak2n−1
+ ak2n

> ak2n+1
+ aj and aj /∈ Q′ ∪ T ′.

Now set k2n+2 = j. Because aj /∈ Q′, it follows that Q is disjoint from ⟨ak2n+1 , ak2n+2⟩, which implies
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condition (1): q0 /∈
〈
ak2i−1

+ ak2i
| i ∈ J1, n+ 1K

〉
. On the other hand, the fact that aj /∈ T ′ guarantees

that T is disjoint from ⟨ak2n+1 , ak2n+2⟩. In turn, this implies that

ak2i−1+ak2i
/∈
〈
ak2j−1

+ ak2j
| j ∈ Ji+ 1, n+ 1K

〉
for any i ∈ J1, nK. This, together with the fact that ak1 + ak2 > · · · > ak2n+1 + ak2n+2 , guarantees

condition (2): the set of indecomposable elements of
〈
ak2i−1

+ ak2i
| i ∈ J1, n+1K

〉
is
{
ak2i−1

+ ak2i
| i ∈

J1, n+ 1K
}
. Hence we have constructed a strictly increasing sequence (kn)n∈N of positive integers such

that conditions (1) and (2) above hold.

Finally, for each n ∈ N set a′n := ak2n−1
+ ak2n

and s′n :=
∑n

i=1 a
′
i. For every n ∈ N, it is clear that

sn |S sm for some m ∈ N. Since k1 = 2, from q0 ≥
∑∞

n=1 an we obtain that

(0.1)

∞∑
n=1

a′n =

∞∑
n=1

ak2n−1 + ak2n ≤
∞∑

n=2

an ≤ q0 − a1.

Let (q′n)n≥1 be the sequence of rational numbers defined as follows: take q′0 = q0 and take q′n = q0 − s′n
for every n ∈ N. Fix n ∈ N, and then take an m ∈ N such that sm = t + s′n for some t ∈ S. Now we
see that q′n = q0 − s′n = (q0 − sm) + (sm − s′n) = (q0 − sm) + t ∈ S. Then the terms of the sequence
(q′n)n≥1 are indeed in S. Therefore the additive set N := ⟨q′n, a′n | n ∈ N⟩ is contained in S. Since
q′n = q0 − s′n = (q0 − s′n+1) + a′n+1 = q′n+1 + a′n+1, it follows that A (N) ⊆ A := {a′n | n ∈ N}. In
addition, for each m ∈ N, in light of (0.1), we see that

q′m = q0 −
n∑

i=1

a′i ≥ q0 −
∞∑

n=1

a′n ≥ q0 − (q0 − a1) = a1 > a′n

for every n ∈ N. As a result, none of the elements in the set A is divisible by any qm in N . Then
condition (2) above ensures that every element of A belongs to A (N). Thus, A (N) = {a′n | n ∈ N}.
Therefore it follows from condition (1) above that q0 /∈ ⟨A (N)⟩, and so N is not decomposable. Thus,
we have constructed an additive set contained in S that is not decomposable, which concludes our proof.
□
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