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Abstract. Zero-knowledge virtual machines (zkVMs) are an up-and-coming solution to
the problem of verifiable computation: they allow a prover to generate a proof showing
the correct execution of a computer program. A verifier can then quickly verify this
proof without knowing certain potentially private details about the program. zkVMs
stand out for how they combine the math of traditional verifiable computation schemes
with the user-friendly functionality of standard compilers, such as Clang and Rust-C,
and widely used programming languages like C++ and Rust. Traditional approaches
often require translating programs into low-level domain-specific languages by hand,
a process that is both labor-intensive and error-prone. zkVMs solve this issue by
accepting programs in the native assembly of the chosen virtual processor (rather than
an esoteric DSL). This convenience, however, comes at the cost of additional overhead,
particularly in memory emulation, and makes zkVMs generally less performant than
traditional techniques.
Using the prominent zkVM Jolt as an example, we seek to reconcile this gap in
performance by optimizing Jolt’s memory proofs, primarily by mirroring the memory
access patterns of physical CPUs in the virtual setting. Just like physical CPUs
have been improved by various hardware optimizations, our improvements – multiple
in-flight instructions, batched memory reads, caching, and faster registers – seek to
improve Jolt’s performance. In this report, we outline our implementation plan for
these optimizations and give some preliminary predictions of their results.

1 Introduction
zkVMs are a new technology in a long line of zkSNARKs, which solve the problem of
“Verifiable Computation” [YY]. In the standard scenario, one entity, a “prover” (P), claims
that he has correctly executed a computation with a certain result, and another entity, a
“verifier” (V), determines whether the claim is true. In essence, the verifier needs to verify
the computation done by the prover.

Perhaps most simply, V can just verify the computation by asking P for the program
inputs and re-running the computation himself. However, this trivial method is not just
a waste of computing power but also infeasible and privacy-leaking: in some cases, V is
computationally bounded, and in others, P does not want to reveal certain details about
the program.

Zero-Knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs)
[Pet19] solve this issue by both greatly reducing verifier overhead while also allowing
the program’s inputs to stay private. These zkSNARK schemes leverage various number
theoretic properties to generate condensed proofs of the program’s correct execution.
Though these proofs require extra work from the prover, they are succinct, meaning small
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in size (reducing communication costs) and fast to verify (reducing V ’s costs). Furthermore,
if P desires, these proofs can also be made “zero-knowledge” [BSMP], meaning that verifying
the proof will grant V no knowledge about the program beyond its correct execution. (See
1.1 for more details about zkSNARKs and zkSNARK construction). Since this powerful
zero-knowledge property is optional, zkSNARKs are commonly referred to as (zk)SNARKs
or just SNARKs.

This combination of succinctness and zero-knowledge lend zkSNARKs to many real-
world applications. There’s the traditional cloud computing example where P is running a
computation on behalf of its client, V , who does not want to blindly trust the cloud but also
does not have the capabilities to re-run the program himself. The zero-knowledge property
does not apply here as V provides P the inputs. Zero-knowledge becomes useful, however,
when P wants to say something about his private information. This scenario commonly
happens on blockchains: Zcash [Zca24] is a fork of the Bitcoin chain with augmented
zkSNARK technology that allow for sender, receiver, and transaction size anonymity.

Most notably, these schemes are a powerful paradigm for scaling blockchains. On
networks that allow for smart contracts and decentralized applications (e.g., Ethereum,
Solana, Avalanche), there are often large computations or datasets that must be verified
or stored on the network. These complex actions not only incur high gas fees for users
initiating them but also require validation by all participating nodes, consuming the
network’s bandwidth. zkSNARKs allow this complex task to be taken off-chain and
replaced with a succinct proof. This scaling solution saves computational resources for
all participating nodes, and the “zero-knowledge” property enables additional use cases
involving sensitive information, such as financial transactions or identity verification.

For instance, sidechains like Mina [Min24] and zk-rollups like zkSync [Mat24], StarkNet
[Sta24], and Polygon zkEVM [Pol24] allow for proofs of solvency, private trading and
auditing, identity verification, and data validation. Though zk-rollups generally focus on
batch transactions and smart contracts (swaps, lending, staking), these frameworks are all
flexible. Beyond these major blockchain applications, there has also been work in verifiable
machine learning and voting systems [Ano24].

For all these great use cases of zkSNARK technology, traditional zkSNARK design
levies a huge barrier to entry. As we explain in 1.1, zkSNARKs require programs to be
hand-written in esoteric domain-specific languages (DSLs), making the process messy and
error-prone. In 1.2, we discuss how zkVMs, a16z’s Jolt in particular, solve this accessibility
hurdle via generating proofs for CPU abstractions, though this accessibility comes with
additional emulation overhead (mainly in regard to memory checking). 1.3 describes this
overhead in greater detail. 2 provides technical background needed to understand our
optimizations, and 3 covers our optimizations themselves.

1.1 Traditional zkSNARK design
zkSNARK proofs generally consist of a few polynomial equality checks that confirm the
program’s correct execution. This reduction from the computed statements we want
to prove to the algebraic statements zkSNARKs actually prove is a process known as
arithmetization. Since this reduction from code to algebra is often nontrivial, these
programs are traditionally written in an arithmetic circuit format (circuits with either + or
× gates). Niche DSLs such as Circom [BMIMT+] are used to make this translation process
easier, but since these toolchains are not very well-developed, much of the compilation is
still done by hand and the process remains quite low-level and error-prone.

In addition, these translations into algebra are extremely costly for certain “unfriendly”
circuits. Translations can be messy when the programs involve non-algebra-native opera-
tions, most notably bitwise operations (AND, XOR, OR), bound checks, and comparisons,
as they require breaking the variable into bits. Furthermore, programs must be unrolled
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to synthesize the circuit, so complex loops and branches (conditions) often result in lots of
work for the translator and larger-than-practical circuits.

Overall, though the math behind traditional zkSNARK schemes is quite clean, the
process of converting programs into a usable format remains messy and labor-intensive.
This barrier to entry has prevented traditional zkSNARK schemes from being employed in
many real-world problems of verifiable computation.

1.2 zkVMs and Jolt

Zero-Knowledge Virtual Machines (zkVMs) clear this accessibility hurdle by verifying
actions for an abstracted processor. Most CPU abstractions (aka Virtual Machines) emulate
a normal processor’s “fetch-decode-execute” cycle (see 2.2 for details). Zero-Knowledge
Virtual Machines generate zkSNARKs that ensure the correctness of this emulation.

As opposed to traditional schemes where the computer program must first be hand-
compiled into a low-level DSL, zkVMs allow developers to write programs in standard
languages such as Rust and C++. Well-established compiler toolchains then compile the
program into the zkVM’s native instruction set architecture (ISA) and the verification
scheme proves correct fetching, decoding, and executing. Under this new paradigm for
zkSNARK design, developers no longer need to learn any additional knowledge pertaining
to zkSNARKs, nor do they need to spend additional time with a messy arithmetization
process.

Jolt [AST23] by a16z, is currently the most performant zkVM. It generates proofs for
the correct execution of a binary file on an emulated RISC-V CPU [WLPA]. This new
scheme allows standard compilers such as clang or rustc to take care of the previously
messy and labor-intensive translation to a SNARK-friendly input format. Furthermore, by
handling all instructions using lookup tables (see 2.7 for details), Jolt can handle bitwise
operations much more efficiently. In addition, the VM model handles loops and branches
in a streamlined manner, allowing for a wider range of applications than is possible with
traditional zkSNARKs.

Though Jolt allows for an excellent developer experience, this CPU emulation adds
significant overhead to the prover’s computation time, mainly in generating proofs for
memory accesses. Jolt abstracts memory as a single address space that data can be read
from and written to one index at a time, where each index stores a single byte. This
design, covered in more detail in 2.4, is relatively primitive compared to the memory
hierarchy system employed in physical computer hardware (the computer uses multiple
different memories, some faster than others). As a result, Jolt’s memory checking protocols
dominate the proof time (see Figure 1 for a breakdown).

1.3 Deficiencies in naive implementation

Although Jolt is already heavily optimized in various areas, it does not implement many
of the optimizations generally applied to physical CPUs. For example, unlike most
processors, which implement some form of instruction pipelining or process multiple in-
flight instructions, Jolt currently only handles one instruction at a time. In addition,
registers are stored in the same address space as RAM, so storing a value in a register
doesn’t bring any benefit over storing it in RAM. This also means that every instruction has
to perform at least one, and up to seven, loads or stores from memory. On a separate note,
Jolt uses a 254-bit field, but all instruction operands and outputs are only 64 bits. This
results in some excess capacity that we can capitalize on to optimize the memory-checking
protocol.



4 Using Ideas From Hardware To Accelerate Zero-Knowledge Virtual Machines

Figure 1: Offline memory checking dominates Jolt prover time.

2 Technical preliminaries
This section provides much of the context and background knowledge behind our optimiza-
tions in Section 3. The first three subsections (2.1, 2.2, and 2.3) focus on various computer
hardware and computer architecture systems. 2.4 covers the architecture of Jolt in more
detail, and the last three subsections (2.5, 2.6, 2.7) include background relating to the
zk-space that is relevant to Jolt’s architecture.

2.1 Caching
In most programs, the processor operates on certain memory values more than others.
Intuitively, this non-uniformity occurs because the inputs of future operations tend to
be the outputs of previous ones. On physical CPUs, caching [KLW94] uses this fact to
accelerate memory accesses by introducing a smaller, faster auxiliary unit called a cache.

The cache temporarily stores frequently accessed data, and when the processor needs
to access certain values, it will first search the cache. A ”cache hit” is when the cache does
contain the necessary information (resulting in a faster memory access). In the case of a
”cache miss” (desired data not in cache), however, the processor moves on to search larger,
slower memory units. On modern CPUs there are multiple cache layers, each around an
order of magnitude faster than the next. There exist a variety of algorithms for actually
managing the cache (i.e. loading and evicting values), the details of which are beyond the
scope of this section.

2.2 Fetch-decode-execute cycle
The fetch-decode-execute cycle, or the instruction cycle [KMS11], is followed by the CPU
to process instructions. When a program is run as a virtual machine (VM) abstraction,
the VM interprets the program one instruction at a time, repeatedly running the fetch-
decode-execute cycle of a CPU (once for each instruction.) To ensures correct execution of
CPU actions, Jolt verifies each step of the fetch-decode-execute cycle.

During the fetch stage, the address of the next instruction to be executed is copied
from the program counter (PC) to the memory address register (MAR). Eventually, the
instruction itself (not its address) is copied into the current instruction register (CIR).
Finally, the PC is incremented to the address of the instruction to be read in the next
cycle.
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Figure 2: The four steps of Jolt

During the decode stage, the opcode of the instruction is decoded by binary decoders
in the CPU’s control unit. Then, the opcode is moved to the appropriate registers. Note
that if the current instruction is a memory instruction, the execute step will occur during
the next clock pulse.

During the execute stage, the CPU sends the instruction as a set of control signals to
any components required to carry out the instruction, and thus performs the requested
computation (e.g. produces the sum of two numbers).

2.3 RISC-V

In the RISC-V ISA, the machine consists of a CPU and a read-write memory. This
memory is composed of three separate parts: 32 integer registers, program inputs/outputs
(including the sequence of instructions), and the byte-addressable RAM. Note that in the
zkVM model, the instructions are data and must be parsed from memory, following the
von Neumann architecture [VN45]. In addition, since RISC-V supports byte-addressable
memory, so must Jolt. However, byte-addressable memory is inefficient in the context
of zkVMs, since offline memory checking natively operates on much larger (254-bit) field
elements.

A RISC-V instruction can be expressed in the following form: (opcode, rs1, rs2, rd,
imm), where opcode uniquely identifies the function of the specific instruction, rs1 and
rs2 are the source registers (which commonly hold the operands of the instruction), rd is
the destination register, and imm is a constant provided in the bytecode that sometimes
acts as an operand. For example, the instruction (AND, 3, 8, 10, imm) performs the
bitwise AND operation on the values stored in registers 3 and 8, and stores the result of
this operation in register 10. Each RISC-V instruction is 4 bytes long, so for instructions
that do not perform branches or jumps, incrementing the PC by 4 moves to the next
instruction.

Note that RISC-V instructions can come in many forms – some take rs1 and imm as
the two operands, some take only rs1 as an operand, etc. However, all RISC-V instructions
share the properties of having at most two operands and writing one output.

2.4 Architecture of Jolt

Jolt proves zkVM execution using four cryptographic steps: the bytecode proof, the
instruction lookup proof, the read-write memory proof, and the R1CS proof.
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Bytecode proof (“bytecode” in Figure 2) The first step of Jolt is the bytecode proof,
which is done in preprocessing. First, the ELF file [You95] for the program is converted to
preprocessed bytecode, which is available in full to both P and V . Then this preprocessed
bytecode is converted to a bytecode trace, which contains decoded information about
the sequence of RISC-V instructions to be executed. Taking the preprocessed bytecode
as input, the bytecode proof uses read-only offline memory checking (see 2.6) to ensure
that the bytecode trace was generated correctly. In other words, the bytecode proof
ensures that the sequence of instructions in the program was correctly decoded into a
more usable format for the rest of Jolt. This corresponds to the “decode” step of the
fetch-decode-execute cycle.

Instruction lookup proof (“Lasso lookup argument” in Figure 2) The instruction lookup
proof ensures that all instructions in the bytecode were executed correctly. Jolt executes
instructions using several large lookup tables (see 2.7), one for each RISC-V instruction.
The lookup table for a certain instruction stores the output of that instruction for each
possible pair of 64-bit inputs, resulting in a table of size greater than 2128. The instruction
lookup proof makes sure that all lookups into this table were performed correctly, therefore
ensuring that the purported “outputs” of each instruction are correct. In addition, the
instruction lookup proof employs a read-only offline memory checking argument (see 2.6)
to ensure that all reads to the large lookup table were done correctly. The instruction
lookup proof corresponds to the “execute” step of the fetch-decode-execute cycle.

Read-write memory proof (“registers/RAM” in Figure 2) Like on physical computers,
instructions often read or write to a memory address space. The other proofs operate
assuming that the values read and written to this memory are correct, so an additional
proof is needed for this. In Jolt, this address space contains the 32 RISC-V registers,
program inputs and outputs, and RAM, and the read-write memory proof ensures that
reads and writes to any of this data is done correctly. This proof employs a read-write
variant of offline memory checking (see 2.6), which scales with the total number of memory
accesses.

R1CS proof (“R1CS constraints” in Figure 2) The R1CS proof uses a small constraint
system (see 2.5) to enforce certain rules about instruction execution; for example, it ensures
that the two operands of the instruction were fetched correctly based on the instruction
type. In addition, the R1CS proof ensures consistency between the other proofs; for
example, it checks that corresponding values passed to all proofs are actually equal. There
are two types of constraints used in the R1CS proof: uniform and non-uniform constraints.
Uniform constraints are checked once per VM step, and take inputs from only one step. Non-
uniform constraints are checked between VM steps, and can take inputs from different steps.

As stated previously, the most time-consuming parts of Jolt are offline memory checking
protocols, specifically the protocols accompanying the instruction lookup proof and the
read-write memory proof.

2.5 Constraint systems
As implied by the name, constraint systems “constrain” relationships between variables. In
zkSNARKs, Rank-1 Constraint Systems (R1CS) [BSCG+13] help determine linear (rank-1)
arithmetic relationships between values of a computation. Mathematically, for a vector of
computation variables z, an r1cs enforces the relationships between z’s elements with the
equation:

A · z ⊙ B · z = C · z.
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Here, A, B, and C are matrices, the · performs matrix-vector multiplications, and ⊙
denotes element-wise (Hadamard) multiplication.

Jolt’s R1CS consists of many small sections (one for each instruction cycle) that
ensure correct instruction fetching (see 2.4 for more details). Below is an example R1CS
construction constraining the variables of an if-statement.

Example Consider encoding a conditional statement where we multiply u and v if the
boolean b is 0, and we add u and v if b is 1:

b · (u + v) + (1 − b) · (uv) = w.

This statement can be broken down into the following equations:

1. b binary: b · (1 − b) = 0,

2. t1 first intermediate value: b · (u + v) = t1,

3. t2 second intermediate value: u · v = t2,

4. t3 third intermediate value: (1 − b) · t2 = t3,

5. w correct output: t1 + t3 = w.

Since z is the vector of variables (with 1 as a constant value preserved for additions), it
will be of the form:

z =



1
b
u
v
t1
t2
t3
w


.

Then the following matrices A, B, C can be constructed. Each row encodes one of the
five non-constant products, and the columns represent variables:

(1) b · (1 − b) = 0
(2) b · (u + v) = t1

(3) u · v = t2

(4) (1 − b) · t2 = t3

(5) t1 + t3 = w


−→

A =



1 b u v t1 t2 t3 w

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 1 0 1 0

 ,

B =



1 b u v t1 t2 t3 w

1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0

 ,

C =



1 b u v t1 t2 t3 w

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
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Altogether, the R1CS can be written as follows:



b u v t1 t2 t3 w

0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 −1 0 0 0 0 0
0 0 0 0 1 0 1


︸ ︷︷ ︸

A

·



1
b
u
v
t1
t2
t3
w


︸ ︷︷ ︸

z

⊙



1 b u v t1 t2 t3 w

1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0


︸ ︷︷ ︸

B

·



1
b
u
v
t1
t2
t3
w


︸ ︷︷ ︸

z

=



1 b u v t1 t2 t3 w

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

C

·



1
b
u
v
t1
t2
t3
w


︸ ︷︷ ︸

z

.

Now, for whatever values the variables in z take, the constrain system’s equality
condition holds only if b, t1, t2, t3, and w satisfy the five constraint relations above. Jolt’s
R1CS uses around 60 constraints per instruction cycle, and employs the Spartan zkSNARK
scheme [Set19] to prove that z (the witness vector) does indeed satisfy its R1CS.

2.6 Offline memory checking
Offline memory checking [BEGN94] is a protocol that allows a prover to prove to a verifier
that a sequence of memory accesses (reads and/or writes) were handled correctly. In
offline memory checking, unlike other memory checking protocols, all memory accesses are
verified at once, after all memory operations have been performed.

Offline memory checking is usually carried out using four multisets, which contain the
initial and final memory states, and all reads and writes done to memory. Each read is
accompanied by a write which updates a timestamp associated with the memory address.

Because every memory value read must have been written at some point, we can observe
two properties about memory: 1) every value in memory is either from initialization or
written into memory. 2) every value in memory is either read or part of the final memory
state. These two properties form the basis for the memory checking, as we can check that
the unions of these two pairs of multisets (initial ∪ writes and reads ∪ final) are equivalent.

This check is accomplished by Reed-Solomon fingerprinting each multiset [VSG02]. The
fingerprints are computed using an optimized version of a large grand product argument
[Tha17].

In Jolt, read-only offline memory checking is used in the bytecode proof and the memory
proof accompanying the instruction lookup proof. Additionally, a read-write variant of
offline memory checking called Spice [SAGL18] is used in Jolt’s read-write memory proof.

2.7 Lookup tables and Lasso
A lookup table is a data structure that precomputes and stores the results of certain
operations, so they can be quickly retrieved when needed instead of performing the
computation each time. In the zk-space, “lookup arguments” generate proofs showing that
a correct array indexing operation was performed on a lookup table. In Jolt’s case, the
Lasso lookup argument [STW24] proves lookups the lookup tables for RISC-V instructions.
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This lookup-based design for proving instruction execution offloads verifying complex
structures of + and × gates to extensive memory checking procedures (note the parallel to
how traditional lookup tables trade computation overhead for memory overhead). For this
reason, lookup arguments (Lasso in particular) are much faster than traditional zkSNARK
schemes for bit-related operations (and RISC-V instruction executions in general). Lookup
tables allow more expressivity in circuit descriptions, resulting in more efficient proofs.

For each RISC-V instruction (ADD, XOR, etc.), Lasso generates a lookup proof for
the following statement:

# rows = # lookups

# columns = size of T︷ ︸︸ ︷


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 ·


5
7
6
9


 N (2128 in Jolt) =


5
7
6
9
9


 # rows = # lookups

M · T = a

lookup indices · lookup table = lookup results

Figure 3: Looking up indices M of table T gives a.

Since T is so large (2128) Lasso does not actually fully materialize the lookup table.
Instead, it uses the Sum-Check Protocol [LFKN92] to reduce the statement into many
smaller memory checks. This explainer video ([Tha]) breaks the scheme down quite well.

Lookup tables can be combined to improve efficiency. For this reason, Jolt combines
all of the lookups for the RISC-V instructions into one large lookup table, which gives it
its name, Just One Lookup Table.

3 Our Work
In this section, we outline the various directions we are taking to optimize Jolt’s mem-
ory checking, and provide support for the idea that these changes will increase Jolt’s
performance.

3.1 Multiple in-flight instructions
Implementing multiple in-flight instructions means that the Jolt prover will handle multiple
instructions at once. Specifically, this means that the Jolt prover will prove multiple
instructions in the same proof cycle. This should bring an increase in efficiency, because it
takes advantages of any shared memory accesses that these instructions may have. This
is especially helpful due to the large volume of memory accesses performed with each
instruction. In fact, there is no significant difference in time between proving a load/store
instruction and a non-load/store instruction (see Figure 4), and this is likely because
registers and RAM are stored in the same address space. Because of this, each instruction
performs anywhere from one to seven memory accesses, so it is likely that for consecutive
instructions, there will be overlap in these accesses.

However, there are some challenges associated with implementing this optimization,
and many of them are similar to problems that occur in instruction pipelining in physical
CPUs.
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Figure 4: For a fixed trace length, having more load/store instructions does not introduce
any additional overhead.

Pipeline stall In some cases, consecutive instructions are “dependent” on each other
and cannot be executed together. For example, if one instruction adds x + y and stores
the result in z, and the next instruction adds x + z and stores the result in w, these two
instructions cannot be handled at the same time. Some other examples of this are branches
and jumps – we do not know ahead of time what the “next” instruction will be, so we
cannot make a block of instructions in this case. In both of these cases, we must split the
block of instructions so that no instructions in the same block are dependent. We must
also create a set of constraints to determine whether a block of instructions is dependent
and handle the set accordingly.

Nop insertion Additionally, oftentimes we cannot make a valid block of k instructions
to handle together. This may happen as a result of dependent instructions, since that
involves splitting a block of k instructions into multiple smaller blocks. In physical CPUs,
this is handled by inserting “nop” (no operation) instructions into both instruction blocks
to make up the difference. Nop insertion is also sometimes necessary at the end of the
trace, when there may not be enough instructions left to create a full block.

Inter-proof dependency Since many of Jolt’s proofs are structured by the instruction,
combining multiple instructions into one proof cycle requires changing all parts of the
proof system (except the bytecode proof) in tandem. In particular, the read-write memory
proof and the R1CS proof both need to be modified in an internally consistent manner.

3.2 Larger memory reads
An observation critical to this optimization is that Jolt uses a 254-bit prime field, while the
operands of the instructions (and therefore the inputs to the memory proof) are only 64
bits. This indicates that multiple memory tuples can be packed together and then fed into
the memory proof. However, it is not immediately obvious whether or not this packing
will result in a speedup. Although packing memory tuples together would result in fewer
total memory tuples and a smaller input to the memory proof, therefore speeding up the
memory proof, there may be overhead introduced with each nonzero bit per field element.
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Figure 5: An example of the benefits of larger memory reads

Figure 6: The effect of increasing input size on memory checking proof is negligible.

If such overhead does exist, it may overshadow the benefits of packing. To test whether
this is the case, we created a unit test to test only the memory checking proof, and fed
increasingly large field elements as inputs into the proof. Since this unit test only ran offline
memory checking on the inputs, we were not concerned with implementing a valid program.
Fortunately, as shown in Figure 6, we found that there was no relationship between the
speed of the memory proof and the size of each input (up to a field element). Therefore,
the effect of decreasing the number of inputs dominates over the effect of increasing the
size of the field elements passed as input. Because of this, packing should result in a faster
memory proof, since performing the packing itself should take negligible time.

In addition, since registers and RAM are in the same memory space, simply fetching
k values from memory at once and placing them in k separate registers will not bring
a speedup, because all values would still need to be fetched from memory. Instead, the
benefit would come from packing multiple values into the same register with each memory
access. If one instruction (or multiple in-flight instructions) happened to use consecutive
memory values stored in the same register, as is often the case, packing memory values
into the same register would reduce the number of register accesses for that instruction or



12 Using Ideas From Hardware To Accelerate Zero-Knowledge Virtual Machines

group of instructions.

3.3 Caching
In a physical computer, cache memory is faster because of both a difference in physical
distance to the CPU and a difference in material compared to standard memory. However,
in a virtual machine there is no literal concept of “distance” or “material” to be taken
advantage of, so instead we can perform the read-write memory proof for the cache in
a different fashion. Instead of storing values in the address space used for registers and
RAM, we can store a small number of cached values in the constraint system as (address,
value) pairs.

In our model, the cache algorithm will be transparent to the processor. Instead, for
each cache load or store, the prover will provide as advice which cache index to access.
However, the prover cannot be automatically trusted to provide accurate cache indices,
so constraints will be required to ensure accuracy and consistency of cache handling.
Specifically, constraints would be needed to ensure that stale values are not read from the
cache and that cache values are not ignored.

Similarly to in physical CPUs, using a cache reduces the number of accesses to RAM.
In the context of Jolt, each memory access is either done to registers/RAM or to the cache.
Since the cache is stored in the constraint system, each access to the cache would reduce
the size of the read-write memory proof. Since the memory proof brings a much larger
overhead than the R1CS proof does, this would therefore bring an overall speedup.

3.4 Faster registers
As stated previously, in Jolt the registers and RAM occupy the same memory space.
Therefore, storing a value in a register does not bring any actual benefit in terms of
the total number of memory accesses verified by the read-write memory proof. Figure
4 supports this assessment, as it shows that non-load/store instructions (that read from
registers instead of RAM) do not eliminate memory checking overhead as compared to
load/store instructions (that read from RAM).

One way to improve on this model of one unified memory space is to “move” the
registers from the RAM space to the constraint system. Similarly to in caching, each
memory access is either handled through RAM or registers, so each access to registers
stored in the constraint system reduces the total number of memory accesses handled
through the memory proof. This register model may be simpler in some ways than caching,
because caching requires compiler assistance and advice from the prover, while registers
do not. Unlike caching, the “logic” for registers is already implemented: it just needs to
be moved from RAM to the constraint system. In addition, the register model does not
require proving access consistency, because there isn’t the same notion of a “stale” value
in registers that there is in a cache – this issue is handled automatically during program
compilation.

Because Jolt stores registers in memory, it does not implement any specific proof
machinery for registers. Specifically, Jolt has no constraints to handle values read from
registers and no ready-made way of ensuring consistency of the registers between proof
steps. Ensuring consistency of the registers involves adding additional inputs to the
constraint system that are maintained between different iterations of the proof system.
The only value currently maintained in this manner is the program counter register, and
we can partially model our handling of the registers off of Jolt’s handling of the program
counter.

Because of this, like the program counter, registers need a combination of non-uniform
and uniform constraints to ensure security. Specifically, about 32 extra non-uniform
constraints and some small number (at most 20) of uniform constraints are needed per
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Figure 7: Adding a small number of non-uniform constraints has negligible effect on proof
time.

step to implement 32 registers. To get a preliminary measure of the overhead of adding
these constraints, we tested the time it would take to add a varying number of additional
uniform and non-uniform constraints. We found that adding 32 non-uniform constraints
has a negligible effect on the total proof time (see Figure 7), and we found that the time
to prove uniform constraints scales quadratically (see Figure 8). This makes sense because
adding one constraint per step increases the size of the constraint matrix for each step,
resulting in superlinear growth. This quadratic growth means that adding a small number
of uniform constraints per step has a small effect on total proof time. Specifically, for two
sample programs of trace length less than 700, adding 20 extra uniform constraints per
step results in an increased proof time of less than 0.000005%.

Since uniform constraints are checked once per trace step, it is natural that the slowdown
of adding some number of extra uniform constraints per step is more significant in larger
programs (with a longer trace). For example, for a sample program of trace length 23000,
adding 20 extra uniform constraints per step results in an increased proof time of about
0.007%. However, this should not affect the effectiveness of our register optimizations
(and memory optimizations in general), because the benefits from these optimizations also
scale with trace length. For example, a longer program uses registers more than a shorter
program does, and therefore would benefit more from this optimization.

4 Conclusion and future work
We have analyzed the performance bottlenecks of Jolt and determined that it is most
efficient to focus optimizations on the memory checking protocol. In hardware, memory is
optimized through strategies such as instruction pipelining, memory batching, and some
form of memory hierarchy, so we hypothesize that mirroring these optimizations in the
zkVM setting would bring similar benefits.

So far, in terms of multiple in-flight instructions, we’ve gained familiarity with ma-
nipulating constraints, and we have implemented logic to verify two copies of a single
instruction in one R1CS proof cycle. Although for now this simply introduces (minimal)
overhead, it is an intermediate step towards verifying two consecutive instructions in the
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Figure 8: The time to prove uniform constraints scales quadratically.

same cycle. In addition, we have begun to manipulate the instruction lookup proof’s
witness generation function to handle larger chunks of instructions.

In terms of faster registers, we’ve generated variables from the bytecode that hold the
register state at each step, and we’ve passed these variables as inputs to the R1CS proof.
Since in most programs, 50-97% of memory accesses involve registers, and the overhead of
adding a small number of constraints is minimal, we expect that this optimization speeds
up the read-write instance of offline memory checking by about 50-97%.

By improving the performance of zkVMs like Jolt to make these technologies competitive
with traditional zkSNARKs, we improve accessibility and usability for those wishing to
use zkSNARKs and enable new performant applications for use with circuits with lots of
bitwise operations, loops, and branches.

After implementing our optimizations, we expect that the read-write memory timestamp
validity proof (an additional step necessary for read-write offline memory checking) will
be the performance bottleneck for Jolt. To address this new bottleneck, we will continue
to investigate more complicated hardware optimizations like caching and out-of-order
execution, which involves rearranging the instruction execution ordering to reduce the
overhead of the timestamp validity proof.
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A Register frequencies in several sample programs

Figure 9: How much each register is used in the Fibonacci sample program
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Figure 10: How much each register is used in the SHA3 sample program

Figure 11: How much each register is used in the sample program consisting of a single
multiplication followed by a single division

Of the three sample programs, SHA3 is the longest (with trace length about 23000). SHA3
is also the only sample program of the three to use all registers except registers 3 and 4.
This indicates that for larger programs, all registers may be used, so since the overhead
of adding registers is small, we plan to move to the constraint system all registers except
registers 3 and 4, which are not used in any of the three sample programs.
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