Color plane groups

Lev Kekalo, Maksym Chaplanov, Tymofii Kolisnyk

Mentor: Andrei Zabolotskii

Yulia's Dream 2024 Conference

June 14, 2024

Table of contents

Introduction to wallpaper groups

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Color groups

Enumeration results

Section 1

Introduction to wallpaper groups

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Dihedral group

Definition

Dihedral group, denoted D_n , is the group of symmetries of a regular *n*-gon, which includes rotations and reflections.

Consider regular triangle and its symmetries:

rotational symmetries of order 3
reflections about dotted lines
Thus, it is D₃.
Dihedral group D_n is a group of order 2n.

Cyclic group

Definition

Cyclic group is the group of symmetries of a regular *n*-gon without reflections, denoted C_n .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lattice

Definition

Lattice spanned by vectors \vec{a} and \vec{b} is the set of linear combinations $x\vec{a} + y\vec{b}$, where x, $y \in \mathbb{Z}$.

There are 5 types of lattices in 2-dimensional plane:

H exagonal

Wallpaper pattern

Definition

A **wallpaper pattern** is a graphical pattern covering the whole Euclidean plane and generated by translation of a pattern by two independent translations.

Wallpaper has certain symmetries, which are keeping it unchanged. Let us consider following example:

Wallpaper pattern

Each such pattern has certain symmetries. For example:

- reflection about x and y axes
- rotational symmetry of order 3 around the center of each hexagon
- translations by vectors τ_1 and τ_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wallpaper group

Definition

Wallpaper group is a group of symmetries of wallpaper pattern.

- Wallpaper group is a subgroup of E₂ (group of plane isometries)
- Its translation subgroup (T, a lattice) is generated by two independent translations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples of wallpaper groups

- two rotation centres of order four (red squares)
- four distinct reflections (green and blue lines)
- glide reflections (green dotted lines)
- rotations of order 2 in magenta rhombuses
- D₄ point group, square lattice, p4m wallpaper group

Martin von Gagern, https://en.wikipedia.org/wiki/File:SymBlend_p4m.svg,

https://en.wikipedia.org/wiki/File:Wallpaper_group_diagram_p4m_square.svg, CC BY-SA 3.0

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Examples of wallpaper groups

no rotations

- all parallel reflection axes
- > D_1 point group, rectangular lattice, pm wallpaper group

Martin von Gagern, https://en.wikipedia.org/wiki/File:SymBlend_pm.svg, CC BY-SA 3.0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wallpaper groups

There are 17 wallpaper groups:

pmm	p4	p3m1
pmg pgg	p4m p4g	p31m p6 p6m
	pmm pmg Pgg	pmm p4 pmg p4m pgg p4g

Now a word about notation.

"p" and "c" refer to primitive and centered lattice resp. Symbol for reflection is m (mirror) and g denotes glide reflection. 1, 2, 3, 4 and 6 are rotation orders.

0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Point group

Definition

Let G be a wallpaper group, T - its translation subgroup. Then **point group** (denoted as H) will be defined as: H = G/T.

Wallpaper groups are classified according to its point group. The order of rotation in a wallpaper group is 2, 3, 4 or 6. So, a point group of a wallpaper pattern can only be $C_1, C_2, C_3, C_4, C_6, D_1, D_2, D_3, D_4, D_6$. Their orders are:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

1, 2, 3, 4, 6, 2, 4, 6, 8, 12.

Wallpaper groups: recap

- Wallpaper pattern is a pattern covering the whole plane and generated by two independent translations.
- Wallpaper group is the group of symmetries of a wallpaper pattern.
- There are 17 wallpaper groups.
- Each wallpaper group has a translation subgroup T (one of 5 lattices) and a point group H (one of 10 of the form C_n , D_n)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Section 2

Color groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition of a color groups

A **color group** consists of a wallpaper group G and its subgroup G_1 of a finite index N.

Two such pairs $G_1 \subset G$ and $G'_1 \subset G'$ are equivalent if there is an isomorphism $G \to G'$ which maps G_1 to G'_1 .

Our goal is to enumerate the color groups of given index.

Figure: Coloring in 2 colors

Class and lattice equal color groups

- A color group $G_1 \subset G$ is called **class-equal** if $H_1 = H$, where H_1, H are point groups of G_1, G respectively.
- A color group $G_1 \subset G$ is called **lattice-equal** if $T_1 = T$, where T_1 , T are translation subgroups of G_1 , G respectively.

Figure: Lattice-equal color group

・ロト・日本・日本・日本・日本・日本・日本

"Two-level theorem"

Theorem

Any color group $G_1 \subset G$ can be expressed uniquely as the composition of a lattice-equal color group $G' \subset G$ and a class-equal color group $G_1 \subset G'$.

Visualization of color groups

Following Wieting, wallpaper group G can be visualized as a tiling, on which the group G acts simply transitively.

Color group $G_1 \subset G$ is visualized as a colored subset of tiles on which G_1 acts transitively.

Figure: $G \cong \text{cmm}, G_1 \cong \text{pmg}, [G : G_1] = 10$

Visualization of color groups

Following Wieting, wallpaper group G can be visualized as a tiling, on which the group G acts simply transitively.

Color group $G_1 \subset G$ is visualized as a colored subset of tiles on which G_1 acts transitively.

Figure: $G \cong p4, G_1 \cong p4, [G : G_1] = 5$

Section 3

Enumeration results

Procedure

What did we do?

We counted the number of inequivalent colorings (i.e. color groups) in N colors for all 17 wallpaper groups.

How did we do it?

By looking at all possible valid colorings and identifying which are equivalent and which are not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Invalid coloring

Symmetry group G₁ must act **transitively** on the set of colored tiles.

Not equivalent

Note: non-colored tiling has symmetry $G \cong$ cm, colored tiling has symmetry $G_1 \cong$ pm, index $N = [G : G_1] = 14$.

Equivalent

These two colorings are equivalent

Note: non-colored tiling has symmetry $G \cong pm$, colored tiling has symmetry $G_1 \cong cm$, index $N = [G : G_1] = 14$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

N = 2 class-equal (enumeration of class-equal color groups $G_1 \subset G$ of index N = 2)

Group G	Class-equal
p1	1
p2	1
р3	0
p4	1
рб	0
cm	2
pm	4
pg	1
cmm	3

Table: for N = 2

Group G	Class-equal
pmm	3
pmg	2
pgg	0
p3m1	0
p31m	0
p4m	2
p4g	0
рбт	0

Table: for N = 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

N = 2 lattice-equal

Group	Lattice-equal		Group	Lattice_equal
p1	0	:	Group	Lattice-equal
r- n)	1		pmm	2
μz			pmg	3
р3	0		ngg	2
p4	1		Pgg	2
- n6	1		p3m1	1
μu			p31m	1
cm			n4m	3
pm	1		р т іп	5
nor	1		p4g	3
PБ			рбт	3
cmm	2		•	1
Tabl	e: for $N = 2$		Tabl	e: for $N = 2$

N = p class-equal (no lattice-equal colorings)

Group	Class-equal	
p1	1	
p2	1	
p3 ($p = 6k + 1$)	1	
p4 ($p = 4k + 1$)	1	
p6 ($p=6k+1$)	1	
cm	2	
pm	2	
pg	2	
cmm	1	

Table: for N = p

Group	Class-equal
pmm	1
pmg	2
pgg	1
p3m1	0
p31m	0
p4m	0
p4g	0
рбт	0

Table: for N = p

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

N = 2p class-equal

Group	Class-equal
p1	1
p2	1
р3	0
p4 ($p = 4k + 1$)	1
рб	0
cm	4
pm	8
pg	2
cmm	4

Table: for N = 2p

Group	Class-equal
pmm	5
pmg	4
pgg	0
p3m1	0
p31m	0
p4m	0
p4g	0
рбт	0

Table: for N = 2p

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─ 目

Two-level theorem example

N = 2p neither lattice-equal nor class-equal

Group	Neither	Group	Neither
Gloup	Neither	pmm $(p = 4k + 1)$	(n+3)/4+3
p1	0	p(1) = (p - 1(p + 2))	(p + 3)/(1 + 3)
n2	1	$pmm \ (p = 4\kappa + 3)$	(p+1)/4+3
	0	pmg	(p+1)/2+5
p3	0	pgg(p = 4k + 1)	(n+3)/4+3
p4 ($p = 4k + 1$)	(p+3)/4+1	P88(P + 1(+2))	(p + 3)/(1 + 3)
p4(p = 4k + 3)	(p+1)/4+1	$pgg(p=4\kappa+3)$	(p+1)/4+3
p = (p = 1, 1)		$p3m1 \ (p = 6k + 1)$	1
po $(p = 0k + 1)$		p31m (p = 6k + 1)	1
cm	(p+1)/2+1	p = (p + 1)	2
pm	(n+1)/2 + 1	p4m(p = 4k + 1)	3
P	(p + 2)/2 + 2	p4m ($p = 4k + 3$)	2
pg	(p+1)/2+1	p4g $(p = 4k + 1)$	3
$\operatorname{cmm}(p=4k+1)$	(p+3)/4+3	p + 0 (p - 4k + 2)	2
cmm(p = 4k + 3)	(p+1)/4 + 3	p4g(p = 4k + 5)	Ζ
(p + c)		p6m ($p=6k+1$)	1
Table: for A	I = 2p	Table: for N	l = 2p

N = 2p total

Group	Total	Group	Total
Gloup	Total	pmm $(p = 4k + 1)$	(n+3)/4+8
p1	1	p(1) = (p - 1) + 2	(p + 3)/(1 + 0)
n2	2	pmm $(p = 4\kappa + 3)$	(p+1)/4+8
μ <u>2</u>	2	pmg	(p+1)/2+9
p3	0	ngg(n-4k+1)	(n+3)/4+3
p4 ($p = 4k + 1$)	(p+3)/4+2	pgg(p - 4k + 1)	(p + 3)/(+ 3)
pA(p - Ak + 3)	$(n \pm 1)/(1 \pm 1)$	pgg ($p = 4k + 3$)	(p+1)/4+3
$p \neq (p = 4k + 3)$	(<i>p</i> +1)/++1	p3m1 (p = 6k + 1)	1
p6 ($p = 6k + 1$)	1	$n^{31}m(n-6k+1)$	1
cm	(p+1)/2 + 5	$p_{2111}(p = 0k + 1)$	1
	(n + 1)/2 + 0	p4m ($p = 4k + 1$)	3
рш	(p+1)/2+9	p4m (p = 4k + 3)	2
pg	(p+1)/2+3	= 4 = (1 + 1)	-
cmm(p = 4k + 1)	(n+3)/4+7	p4g ($p = 4k + 1$)	5
(p - 1(r + 2))	(p + 3)/(1 + 7)	p4g (p = 4k + 3)	2
cmm $(p = 4k + 3)$	(p+1)/4 + 7	$p_{0} = (n - 6k + 1)$	1
T 11 6 1		point $(p = 0k + 1)$	1
Table: for /	I = 2p	Table: for N	l = 2p

Our results vs Senechal (1979)

G	2	3	4	6	2p
p1	1	1	2	1	1
p2	2	1	3	2	2
p3	0	2	1	1	0
p4	2	0	5	2	$\frac{1}{4}(p+11)$ if $p=4n+1$,
					$\frac{1}{4}(p+5)$ if $p=4n+3$
p6	1	2	1	5	1 iff $p = 6n + 1$
pm	5	2	16	11	$\frac{1}{2}(p+1)+9$
pg	2	2	4	5	$\frac{1}{2}(p+1)+3$
cm	3	2	7	7	$\frac{1}{2}(p+1)+5$
pmm '	5	1	13/	10	$\frac{1}{4}(p+39)$ if $p=4n+1$,
_		•	22		$\frac{1}{4}(p+37)$ if $p=4n+3$
pmg	5	2	11	11	$\frac{1}{2}(p+1)+10$
PRR	2	1	4	4	$\frac{1}{4}(p+15)$ if $p=4n+1$,
					$\frac{1}{4}(p+13)$ if $p=4n+3$
cmm	5	1	115	8	$\frac{1}{2}(p+39)$ if $p = +n + 1.5$
_		•	77	Ľ	$\frac{1}{2}(p+37)$ if $p=4n+3$
p3m1	1	2	1	4	1 iff $p = 6n + 1$
p31m	1	2	1	5	1 iff $p = 6n + 1$
D4m	5	0	13	2	2, +1 if $p = 4n + 1$
p4g	3	Ō	7	2	2, +1 if $p = 4n + 1$
p6m	3	2	2	11	1 iff $p = 6n + 1$

Thomas Wieting did the computation for the $N \leq 60$ and those results match with the generalized formula that we obtained.

References

- R. L. E. Schwarzenberger (1984) Colour Symmetry, Bulletin of the London Mathematical Society, Volume 16, Issue 3, pages 209-336
- Marjorie Senechal (1979) Color groups, Discrete Applied Mathematics, Volume 1, Issues 1–2, pages 51-73
- Thomas W. Wieting (1982) The Mathematical Theory of Chromatic Plane Ornaments, Marcel Dekker Inc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 M. A. Armstrong (1980) Groups and Symmetry, Springer-Verlag