Counting spanning trees with linear algebra

Denis Liabakh, Maksym Skulysh, Maryna Lubimova

June 2024
Definitions

Definition 1 (Graph)
A simple undirected graph G is a pair (V, E), where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 2 (Path)
A path is a non-empty subgraph $P = (V_P, E_P)$ of the graph G of the form $V_P = \{x_0, x_1, \ldots, x_k\}$, $E_P = \{x_0x_1, x_1x_2, \ldots, x_{k-1}x_k\}$, where the x_i are all distinct.

Definition 3 (Connected graph)
A non-empty graph G is called connected if any two of its vertices are linked by a path in G.

Denis Liabakh, Maksym Skulys, Maryna Lubimova
Counting spanning trees with linear algebra
2
Definitions

Definition 1 (Graph)
A simple undirected graph G is a pair (V, E), where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 2 (Path)
A path is a non-empty subgraph $P = (V_P, E_P)$ of the graph G of the form

$$V_P = \{x_0, x_1, \ldots, x_k\} \quad E_P = \{x_0x_1, x_1x_2, \ldots, x_{k-1}x_k\},$$

where the x_i are all distinct.
Definitions

Definition 1 (Graph)
A simple undirected graph G is a pair (V, E), where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 2 (Path)
A path is a non-empty subgraph $P = (V_P, E_P)$ of the graph G of the form

$$V_P = \{x_0, x_1, \ldots, x_k\} \quad E_P = \{x_0x_1, x_1x_2, \ldots, x_{k-1}x_k\},$$

where the x_i are all distinct.

Definition 3 (Connected graph)
A non-empty graph G is called connected if any two of its vertices are linked by a path in G.
Definition 4 (Tree)

A simple connected graph T is called *tree* if it is minimally connected, i.e., T is connected but $T - e$ is disconnected for every edge $e \in T$.

Definition 5 (Spanning tree)

If G is a connected graph, we say that T is a *spanning tree* of G if G and T have the same vertex set, and each edge of T is also an edge of G.

Definition 4 (Tree)
A simple connected graph T is called tree if it is minimally connected, i.e. T is connected but $T - e$ is disconnected for every edge $e \in T$.

Definition 5 (Spanning tree)
If G is a connected graph, we say that T is a spanning tree of G if G and T have the same vertex set, and each edge of T is also an edge of G.
The graph on $V = \{1, \cdots, 7\}$ with edge set $E = \{\{1, 2\}, \{2, 5\}, \{3, 4\}, \{4, 5\}, \{5, 7\}\}$
You are given a finite simple connected graph G. How to calculate number of spanning trees of G?
Theorem 6 (Matrix-Tree theorem)

Let U be a simple undirected graph. Let \(\{v_1, v_2, \ldots, v_n\} \) be the vertices of U. Define \((n - 1) \times (n - 1)\) matrix L_0 by

\[
\ell_{ij} = \begin{cases}
\text{the degree of } v_i \text{ if } i = j, \\
-1 \text{ if } i \neq j, \text{ and } v_i \text{ and } v_j \text{ are adjacent, and} \\
0 \text{ otherwise}
\end{cases}
\]

where \(1 \leq i, j \leq n - 1\). Then U has exactly $\det L_0$ spanning trees.
Definition 7 (Matrix)
The matrix size $m \times n$ with real or complex entries is a rectangular array or table filled with real or complex numbers.
Definition 7 (Matrix)

The matrix size $m \times n$ with real or complex entries is a rectangular array or table filled with real or complex numbers.

$$I = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}$$
Definition 7 (Matrix)

The matrix size \(m \times n \) with real or complex entries is a rectangular array or table filled with real or complex numbers.

Operations with matrices

- Addition
- Scalar multiplication
- Multiplication
- Transposing
- Inverting
Definition 8 (Determinant of matrix)

Determinant of a square matrix is an antisymmetric multilinear function of the columns (or of the rows) of a matrix such that $\det I = 1$.
Properties of determinant

Properties

- \(\det I = 1 \)
- Exchanging two rows (or two columns) reverses the sign of the determinant.
- The determinant is linear in each row (in each column) separately.
- For matrices of equal size \(X \) and \(Y \): \(\det XY = \det X \det Y \)
- For matrix \(X \) of size \(a \times a \) and constant \(c \in \mathbb{C} \): \(\det(cX) = c^a \det X \)
computing determinant: formula with permutations

\[\text{det } A = \sum_{\pi \in \text{Sym}(n)} \text{sign}(\pi) a_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)}, \]

where \(\pi \) ranges over the collection of all permutations of the set \(\{1, 2, \ldots, n\} = [n] \).
Row operations

Switching rows

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{m1} & \cdots & a_{m(n-1)} & a_{mn}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 a_{m1} & \cdots & a_{m(n-1)} & a_{mn} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{11} & \cdots & a_{1(n-1)} & a_{1n}
\end{bmatrix}
\]

Multiplying row by a non-zero constant

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{m1} & \cdots & a_{m(n-1)} & a_{mn}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 Ma_{11} & \cdots & Ma_{1(n-1)} & Ma_{1n} \\
 \cdots & \cdots & \cdots & \cdots \\
 Ma_{m1} & \cdots & Ma_{m(n-1)} & Ma_{mn}
\end{bmatrix}
\]

Adding rows

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{m1} & \cdots & a_{m(n-1)} & a_{mn}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 a_{11} + a_{m1} & \cdots & a_{1n} + a_{mn} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\]
Computing determinant: Cofactor formula

Cofactor formula

\[
\text{det } A = \sum_{j=1}^{n} a_{ij} C_{ij}
\]

where \(i \in [n] \) and \(C_{ij} \) equals \((-1)^{i+j} \times \text{determinant of } (n-1) \times (n-1) \) square matrix obtained by removing row \(i \) and column \(j \). \(C_{ij} \) is called a cofactor of \(a_{ij} \).
Example 9

Prove that the number of spanning trees of K_n is n^{n-2} (Cayley’s formula).
Example 9

Prove that the number of spanning trees of K_n is n^{n-2} (Cayley's formula).

Proof.

$$L_0 = \begin{bmatrix} n - 1 & -1 & \cdots & -1 \\ -1 & n - 1 & \cdots & -1 \\ \cdots \\ -1 & -1 & \cdots & n - 1 \end{bmatrix}$$
Example

Proof.

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
-1 & n-1 & \ldots & -1 \\
\vdots \\
-1 & -1 & \ldots & n-1
\end{pmatrix}
\]
Example

Proof.

\[
\begin{bmatrix}
1 & 1 & \ldots & 1 \\
-1 & n-1 & \ldots & -1 \\
\vdots \\
-1 & -1 & \ldots & n-1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & \ldots & 1 \\
0 & n & \ldots & 0 \\
\vdots \\
0 & 0 & \ldots & n
\end{bmatrix}
\]
Example

Proof.

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
-1 & n-1 & \cdots & -1 \\
\vdots \\
-1 & -1 & \cdots & n-1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
0 & n & \cdots & 0 \\
\vdots \\
0 & 0 & \cdots & n
\end{bmatrix}
\]

\[
\det L_0 = \begin{vmatrix}
1 & 1 & \cdots & 1 \\
0 & n & \cdots & 0 \\
\vdots \\
0 & 0 & \cdots & n
\end{vmatrix} = n^{n-2}
\]
Definition 9

Directed G graph is defined as follows: $G=(V,E, s, t)$ where V and E are sets and s and t are the functions from E to V. For an edge e we think of $s(e)$ as the starting vertex of e and $t(e)$ is the ending vertex of e.

Denis Liabakh, Maksym Skulysh, Maryna Lubimova
Definition 9

Directed G graph is defined as follows: $G=(V,E, s, t)$ where V and E are sets and s and t are the functions from E to V. For an edge e we think of $s(e)$ as the starting vertex of e and $t(e)$ is the ending vertex of e.

![Diagram of a directed graph]

- Vertex 1 connected to vertex 2
- Vertex 2 connected to vertex 3
- Vertex 4 connected to vertex 5
- Vertex 5 connected to vertex 6
The case of directed graphs

Definition 10

Let G be a directed graph without loops. Let $\{v_1, v_2, \ldots, v_n\}$ be a vertices of G, and let $\{e_1, e_2, \ldots, e_m\}$ denote the edges of G. Then the incidence matrix of G is $n \times m$ matrix A defined by

- $a_{ij} = 1$ if v_i is the starting vertex of e_j
- $a_{ij} = -1$ if v_i is the ending vertex of e_j
- $a_{ij} = 0$ otherwise.

Theorem 11

Let G be a directed graph without loop, and let A be the incidence matrix of G. Remove any row of A and let A_0 be the remaining matrix. The number of spanning trees of G is $\det A_0 A_0^T$.
The case of directed graphs

Definition 10

Let G be a directed graph without loops. Let $\{v_1, v_2, \ldots, v_n\}$ be a vertices of G, and let $\{e_1, e_2, \ldots, e_m\}$ denote the edges of G. Then the *incidence matrix* of G is $n \times m$ matrix A defined by

- $a_{ij} = 1$ if v_i is the starting vertex of e_j
- $a_{ij} = -1$ if v_i is the ending vertex of e_j
- $a_{ij} = 0$ otherwise.

Theorem 11

Let G be a directed graph without loop, and let A be the incidence matrix of G. Remove any row of A and let A_0 be the remaining matrix. The number of spanning trees of G is $\det A_0 A_0^T$.