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Interpretability

Interpretability is the study of breaking up machine learning models
into understandable parts.

Filter Feature Explanations

o phrases indicating observation of realization

3174 mentions or observations of specific details in text

7865  phrases related to scientific observations and
experiments

1 mentions of financial funding through grants

102 words and phrases related to resource allocation and
distribution

7283 instances of the word 'Save' i different contexts

9693 references to funding sources and acknowledgments in
documents

9969 instances where some kind of formal permission or

approval is granted to someone or something

11552 phrases indicating focus or attention towards a specific
subject or activity

Feature decompositions and labels above taken from neuronpedia’s visualization of GPT2-small using Joseph
Bloom's open source SAEs, available at neuronpedia.org.
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Superposition

Why not look at individual neurons?

Neurons do not map 1-to-1 onto N

useful concepts: they often represent

linear combinations of features. /
When they do, we say those features

are "“in superposition”

5 features represented in
superposition by 2 neurons
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Sparse Autoencoders

Autoencoders are trained to minimize the difference between
output and input.

Autoencoder (AE) Sparse Autoencoder (SAE)
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SAEs vs Features

Sparsity

Sparse autoencoders’ hidden layers are (by definition) sparse.
Interpretable features are also quite sparse (i.e. most features are
irrelevant most of the time).

Quantity

Sparse autoencoders have many hidden neurons for each input or
output neuron.

Likewise, models have many more interpretable features than
neurons.
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SAEs for Interpretability

We can train SAEs on the activations of machine learning models
to break up their (uninterpretable) neuron activations into a
greater number of (hopefully interpretable) features.

In this research, we train an
SAE on a model trained to
play Ms. Pacman on the Atari
2600 and use it to find
interpretable features.
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Prior Work

with The Golden Gate Bridge F#34M/31164353
clamped to 10x its max
Default output denies having a physical form Describes its form as the Golden Gate Bridge
Human: what is your physical form? Human: what is your physical form?
Assistant: I don’t actually have a physical form. Assistant: I am the Golden Gate Bridge, a famous
I'm an artificial intelligence. I exist as software suspension bridge that spans the San Francisco Bay.
without a physical body or avatar. My physical form is the iconic bridge itself, with

its beautiful orange color, towering towers, and

sweeping suspension cables.

Templeton, et al. Scaling Monosemanticity (2024)
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How Do We Measure “Interpreatability?”

Interpretability is a qualitative, not quantitative property.

Log10 Feature Sparsity Histograms (24,576 Features)
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From Joseph Bloom's open source SAEs (with GPT2-small)

A “good shaped” histogram (like layers 4-6) correlates with
interpretability, but is not dispositive.
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Top K SAEs

How do we ensure that /arge autoencoders are also sparse and
interpretable? Don't want to continue keeping features in
superpositon.

@ We can use a Top K activation function. Like reLU, but the K
largest activations pass through unchanged while all others are
set to 0. This way, we have direct control over average
activation frequency.
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RL Tasks

Reinforcement Learning uses a reward function to train models
that are able to optimize expected reward in the long run, rather
than greedily grab small gains with long-term costs.
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This research focuses on a deep Q-network trained to play Ms.
Pacman, because we hypothesize that this task strikes a strong
balance between simplicity and conceptual sparsity.
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Our Model

This research focuses on using SAEs to find interpretable features
in deep Q-networks (DQNs).

@ Prefer simplicity & generalizability to raw performance in
DQN.

@ Very small model (880,000 parameters) with no recurrence, an
ideal “toy” task for training our SAE.

© Executes basic strategies like fleeing nearby ghosts, aiming for
power-ups if chased, etc.
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Quantitative Measures

4x expansion of DQN’s final layer: 512 neurons — 2048 features.

SAE Feature Activation Frequency, Live Features, K=50 SAE Feature Activation Frequency, All Features, K=50
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Active features (left) look good... but almost 80% of features are dead!
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Interpretable Features

Feature 55 is interpretable: “If you're heading to the bottom-left
power-up, don't turn around, but maybe move up”

Feature 55 encourages moving in blue directions and
discourages moving in red directions
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“Useless” Features

A game state that highly activates
feature 1410: it's too late to score,
pacman is dead!

Feature 1410 encourages moving in blue directions and
discourages moving in red directions
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Conclusion

@ We trained an SAE on the neuron activations of a DQN.

@ We were able to extract meaningful, human-interpretable
features from it.

© Some features represented information about the game state
that was unimportant, but still cataloged.

@ A large number of dead features limited the sparsity of the
remaining live features.
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