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Abstract. For a finite group G, a G-crossed braided fusion category is defined as a G-graded

fusion category equipped with a G-action and a G-braiding. In this work, we investigate G-crossed

braiding structures within exact factorizations of fusion categories, which are analogous to the

Zappa–Szép product in group theory. For a fusion category B faithfully graded by its universal

grading group U(B), we establish that if B = A•C is an exact factorization, then the subcategories

A and C are U(A)- and U(C)-crossed braided, respectively. We extend these results to G-crossed

commutative fusion rings, where we analyze the U(R)-action in exact factorizations of fusion rings.

Additionally, we introduce the notion of the generalized semidirect product of fusion categories

and rings and show its relationship to the bicrossed product, an equivalent formulation of exact

factorization. We further establish that an exact factorization B = A • C is braided if and only

if B ∼= A ⊠ C, and we provide a complete characterization of conditions under which bicrossed

products of categories and rings are commutative or braided. Finally, for a general group G, we

present criteria for exact factorization and examine the implications of fusion subcategories of G-

crossed braided fusion categories.

1. Introduction

A fusion category [11, §4.1] is a specific type of monoidal category, equipped with a tensor prod-

uct that satisfies associativity and unitality axioms. More precisely, fusion categories are finite

semisimple tensor categories where the set of simple objects is finite. The fusion rules, which

describe how objects combine under the tensor product, are central to the study of anyonic sys-

tems and topologically ordered phases, particularly in two spatial dimensions [18]. These algebraic

structures encapsulate the fusion properties of anyons, quasiparticles with nontrivial braiding sta-

tistics [15]. The fusion rules play a critical role in understanding the non-abelian statistics that

emerge in certain topological quantum field theories, which are essential for fault-tolerant quantum

computation [17].

G-crossed braided categories [11, §8.24] have become significant mathematical structures for

describing symmetry-enriched invariants in low-dimensional quantum field theories. Specifically,

G-crossed braided categories emerge from global symmetries in (1 + 1)-dimensional chiral confor-

mal field theory [20], in (2 + 1)-dimensional topological phases of matter [3], and as invariants of

three-dimensional homotopy quantum field theories [30]. Moreover, G-crossed braided categories

generalize the notion of fusion categories by incorporating a G-grading and G-action that encodes

global symmetries, making them powerful tools for analyzing symmetry-enriched topological (SET)

phases [7].



Symmetry-enriched topological phases are phases of matter where global symmetries enrich the

topological order by introducing defects or domain walls that carry nontrivial braiding statistics

[8]. These G-crossed braided categories describe not only the anyonic content but also the interplay

between topological order and symmetry. This interplay is crucial for understanding symmetry-

protected topological (SPT) phases [26] and symmetry-enriched topological orders, which have ap-

plications in quantum information theory, particularly in the design of topological quantum codes

[6]. Furthermore, in the context of tensor networks, fusion categories and their G-crossed counter-

parts are employed in the construction of matrix product states (MPS) and projected entangled

pair states (PEPS), which are used to efficiently represent quantum states in many-body quantum

systems [27]. These tensor networks provide a powerful framework for numerically studying the

ground states of strongly correlated systems, where topological order and symmetry enrichment

play a central role [28].

In the study of topological quantum field theories (TQFTs) and related quantum systems, it is

crucial to create new examples of objects from existing ones or to comprehend how complex objects

can be broken down into simpler components. For example, fusion categories are fully dualizable in

the 3-category of tensor categories, which leads to a “ground-up” construction of the Turaev-Viro

fully extended 3-dimensional TQFT [16]. Following the idea of exact factorization for groups, we

can extend to analogous notions for Hopf algebras [24] and subsequently fusion categories [13];

given two fusion subcategories A, C ⊆ B of B, we say that B = A · C is an exact factorization if

A ∩ C = Vec and FPdim(B) = FPdim(A)FPdim(C). Recently, in [21], the notion of a bicrossed

product, ▷◁, has been formulated and shown to be equivalent to the exact factorization in the

context of fusion rings, which are fusion categories without the associativity coherence data.

This paper focuses on exact factorizations of G-crossed braided fusion categories. We begin

with the case where G is the universal grading group of a fusion category B, denoted U(B), as
it encapsulates the most general grading structure for B, and any other G-grading arises from a

surjective group homomorphism π : U(B) → G. Several natural questions arise in this context.

Question 1. If B = A•C is an exact factorization and B is a U(B)-crossed braided fusion category,

what can be inferred about A and C?

Our approach is to show that the U(B)-crossed action restricts to A and C by considering the

bicrossed product and lifting our problem to the level of fusion rings, thereby turning isomorphisms

in the categories into equalities in the corresponding ring. We prove in Theorem 3.4 that if B = A•C
is an exact factorization of fusion categories and B is U(B)-crossed braided, then A is U(A)-crossed

braided and C is U(C)-crossed braided. Furthermore, we prove some related propositions concerning

the universal grading.

Question 2. Is there a notion of a G-crossed braided fusion ring? What are the implications of

Question 1 in the context of fusion rings?

We first define a G-crossed ring in Definition 4.1. In Theorem 4.4 , we show that if R = A • C is

an exact factorization of the fusion ring (R,B(R)) into a product of fusion subrings (A,B(A)) and

(C,B(C)) and R is U(R)-crossed braided, then A is U(A)-crossed braided and C is U(C)-crossed
2



braided. Furthermore, motivated by the multiplicative structure within the bicrossed product, we

establish results concerning the U(R)-action in the bicrossed product R = A ▷◁ C. These results

yield insight into the restriction of the U(R)-action and also provide an alternative proof of the

preceding statement.

Question 3. If B = A•C is an exact factorization and B is G-crossed braided, what can be inferred

about A and C?

By setting H = {g ∈ G,Bg ∩ A ≠ 0} and K = {g ∈ G,Bg ∩ C ̸= 0}, we prove in Proposition

5.3 that G = HK is a factorization, and in Corollary 5.5 that an exact factorization of the trivial

components of the gradings, Be = Ae • Ce, implies that G = HK is an exact factorization, i.e, A is

H-crossed braided and C is K-crossed braided.

Question 4. What are the implications of a G-crossed braided structure when considering other

factorization structures, such as the semidirect product, Deligne tensor product, and fiber product,

instead of an exact factorization? Can we build new relationships between these structures and

exact factorization?

In Definition 6.3, we introduce a new factorization structure, the generalized semidirect product

of two categories. For the standard semidirect product, known as the crossed product, we prove in

Proposition 6.1 that C ⋊G is G-crossed braided if and only if C is braided and ρg is isomorphic to

idC for all g ∈ G. For the Deligne product, we prove in Proposition 7.1 that if B = A⊠ C, where A
is H-crossed braided and C is K-crossed braided, then B is H ×K-crossed braided. For the fiber

product, we prove in Proposition 7.3 that if A and C are G-crossed braided fusion categories, then

the fiber product A⊠G C is G-crossed braided.

Question 5. What are the implications of exact factorization in general braided fusion categories

and their analog in rings, commutative rings?

In Proposition 8.1, we prove that A ▷◁ C is a commutative ring if and only if A and C are

commutative rings, and the actions ◁ and ▷ are trivial. In Proposition 8.2, we prove that if

B = A • C is an exact factorization of fusion categories, B is braided if and only if A and C are

braided and B ∼= A⊠ C. In Proposition 8.3, we provide an if and only if criterion regarding when

the bicrossed product A ▷◁ C is braided.

This paper is organized as follows. A brief introduction to G-crossed braiding, fusion categories,

fusion rings, and exact factorizations is given in Section 2. In Section 3, we prove our main result

regarding exact factorization in fusion categories when taking the universal grading. In Section

4, we define a G-crossed fusion ring and look at exact factorization with the universal grading.

In Section 5, we prove our main results and build several intermediary propositions in the general

G-crossed braided case. In Section 6, we define the generalized semidirect product. In Section 7, we

study our problem in related factorization structures. In Section 8, we study the general braiding.

2. Preliminaries

We work over an algebraically closed field k of characteristic zero.
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2.1. Monoidal and fusion categories. In this subsection we recall some basic definitions and

fix notation, see [11] for more details.

Monoidal categories [11, §2.1] are categories where the primary elements consist of a bifunctor

⊗ : C × C → C, a natural isomorphism aX,Y,Z : (X ⊗ Y ) ⊗ Z
∼−→ X ⊗ (Y ⊗ Z) for all objects

X,Y, Z ∈ C, an identity object 1 ∈ C, and natural isomorphisms lX : 1 ⊗ X
∼−→ X and rX :

X ⊗ 1
∼−→ X for all objects X ∈ C. These elements satisfy associativity and unitality axioms, given

by (aW,X,Y ⊗idZ)◦aW⊗X,Y,Z = aW,X,Y⊗Z◦aW,X⊗Y,Z◦(idW⊗aX,Y,Z) and rX◦idY = (idX⊗lY )◦aX,1,Y .

For conciseness, we denote (C,⊗, 1) as C.

Example 2.1. [11, Example 2.3.3] The category k-Vec of all k-vector spaces is a monoidal category,

where ⊗ = ⊗k, 1 = k, and the morphisms a, ι, l, r are the obvious ones. The same is true about

the category of finite dimensional vector spaces over k, denoted by k-vec.

A monoidal functor [11, §2.4] between monoidal categories (C,⊗, 1, a, l, r) and (C1,⊗1, 11, a1,

l1, r1) is a functor F : C → C1 equipped with a natural isomorphism FX,Y : F (X)⊗1F (Y )
∼−→ F (X⊗

Y ) for all objects X,Y ∈ C, and an isomorphism F1 : 11
∼−→ F (1), such that the following conditions

hold for all objects X,Y, Z ∈ C: F (X ⊗ Y ) ◦ F (Z) = (F (X) ⊗1 idF (Y )) ◦ a1(F (X), F (Y ), F (Z)) ◦
F (X ⊗ Y ⊗ Z), F (lX) ◦ l1 = F (1X) ◦ (F0 ⊗1 idF (X)) ◦ a−1

1 (F (1), F (X), F (X)), and F (rX) ◦ r1 =

F (X ⊗ 1) ◦ (idF (X) ⊗1 F1) ◦ a−1
1 (F (X), F (1), F (X)).

Let C be a k-linear, abelian, rigid (equipped with left and right duals), monoidal category. C is

a multitensor category over k if the bifunctor ⊗ : C × C → C is bilinear with respect to morphisms.

We consider C to be indecomposable if it is not equivalent to a direct sum of nonzero multitensor

categories. If EndC(1) ∼= k, then we call C a tensor category [11, §4.1].

A multifusion category [12] is defined as a finite semisimple multitensor category. A fusion

category [11, §4.1] is a multifusion category which is a finite semisimple tensor category. Given a

fusion category C, we denote by Irr(C) the set of isomorphism classes of simple objects of C. We

can decompose the product of two objects C,C ′ ∈ C as

C ⊗ C ′ ≃
⊕

C′′∈Irr(C)

NC,C′

C′′ C ′′ ,

where NC,C′

C′′ = dimk HomC(C
′′, C ⊗ C ′).

Example 2.2. Let G be a group. The category Repk(G) of all representations of G over k is a

monoidal category, with ⊗ being the tensor product of representations: if for a representation V

one denotes by ρV the corresponding map G → GL(V ), then

ρV⊗W (g) := ρV (g)⊗ ρW (g).

The unit object in this category is the trivial representation 1 = k. Note that in general, Rep(G)

is a fusion category if char(k) = 0, or char(k) is coprime to |G|. More generally, let H be a

semisimple Hopf algebra over k. The category Rep(H) of finite-dimensional representations of H

has the structure of a fusion category [1, Definition 1.8].

Example 2.3. The category VecG consisting of finite-dimensional vector spaces graded by a finite

group G is a fusion category. The simple objects in this category are {kg}g∈G, where each kg
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is a one-dimensional vector space graded by g ∈ G. The tensor product in VecG is defined as

kg ⊗ kh = kgh, and the associativity morphisms are identities.

Example 2.4. [12, §2] Let G be a group, A an abelian group with trivial G-action, and ω a

3-cocycle of G with values in A. This means ω : G×G×G → A satisfies the equation:

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3, g4)

for all g1, g2, g3, g4 ∈ G. The category VecωG consists of G-graded finite-dimensional k-vector spaces,
where the associativity is defined by the 3-cocycle ω. If G is a finite group, then VecωG is a fusion

category.

The natural tensor product operation on finite abelian categories is known as the Deligne tensor

product. The Deligne tensor product C ⊠ D [11, §4.6] refers to an abelian k-linear category that

serves as a universal construction for the functor mapping every k-linear abelian category A to

the category of right exact bilinear bifunctors C × D → A. Specifically, there exists a bifunctor

⊠ : C × D → C ⊠ D, which is right exact in both variables, such that for any right exact bilinear

bifunctor F : C × D → A, there exists a unique right exact functor F : C ⊠ D → A satisfying

F ◦⊠ = F .

In a fusion category C, for an object X, its Frobenius-Perron dimension FPdim(X) is defined in

[11, Proposition 3.3.4]. The Frobenius-Perron dimension FPdim(C) of C is defined by:

FPdim(C) =
∑

X∈Irr(C)

(FPdim(X))2.

A monoidal category C = (C,⊗, 1, a, l, r) is braided [11, §8.1] if it is equipped with a natural

isomorphism cX,Y : X ⊗ Y
∼−→ Y ⊗ X for X,Y ∈ C (braiding), such that the following hexagon

axioms hold for each X,Y, Z ∈ C: cX⊗Y,Z = aZ,X,Y ◦ (cX,Z ⊗ idY ) ◦ a−1
X,Z,Y ◦ (idX ⊗ cY,Z) ◦ aX,Y,Z

and cX,Y⊗Z = a−1
Y,Z,X ◦ (idY ⊗ cX,Z) ◦ aY,X,Z ◦ cX,Y ◦ idZ ◦ a−1

X,Y,Z .

Example 2.5. The category sVec of super-vector spaces is based on the fusion category VecZ/2Z
with a braiding given by

cV,W :=

(
1 1

1 −1

)
:

(
W0 ⊗ V0 W0 ⊗ V1

W1 ⊗ V0 W1 ⊗ V1

)
→

(
V0 ⊗W0 V1 ⊗W0

V0 ⊗W1 V1 ⊗W1

)
.

In this context, cV,W (w ⊗ v) = (−1)gr(w)·gr(v)v ⊗ w, where gr(w) and gr(v) denote the parity of w

and v in the super-vector space.

2.2. Fusion rings. A fusion ring [11, §3.1] is a pair (R,B(R)), where R is a ring with a fixed

Z-basis B(R) = {b0, . . . , bn}, such that:

(i) The structure coefficients of the multiplication are non-negative integers, that is, bibj =∑n
k=0N

k
i,jbk for some Nk

i,j ∈ N0,

(ii) b0 = 1 is the unit of the ring,
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(iii) there is an involution ∗ : {0, 1, . . . , n} → {0, 1, . . . , n} such that the structure coefficients

satisfy

N0
i,j =

1 if j = i∗,

0 otherwise,

(iv) the involution ∗ in In induces an involution ∗ : R → R, given by x =
∑

i∈In aixi 7→ x∗ =∑
i∈In aix

∗
i , such that ∗ is an anti-automorphism of rings.

Let (R,B(R)) be a fusion ring with basis B(R) = {b0, . . . , bn}. For i, j, k ∈ In, we denote by

N
bi,bj
bk

:= Nk
i,j .

The Grothendieck ring [11, §4.5] of a fusion category C, denoted K0(C), is a fusion ring with a

basis given by the equivalence classes of simple objects. This ring is the free Z-module generated

by Irr(C), with multiplication defined by the tensor product:

C ⊗ C ′ =
∑

C′′∈Irr(C)

NC′′
C,C′C ′′,

for C,C ′ ∈ Irr(C). The involution is determined by the duality of the category.

2.3. Graded fusion categories. Let C be a fusion category and G a finite group. A G-grading

[11, §4.1] on C is a decomposition of C into a direct sum of full abelian subcategories

C =
⊕
g∈G

Cg,

such that C∗
g = Cg−1 and the tensor product ⊗ : C × C → C maps Cg × Ch to Cgh. A G-grading

on C is equivalently characterized by a function λ : Irr(C) → G such that λ(X∗) = λ(X)−1 and

λ(Z) = λ(X)λ(Y ) for all X,Y, Z ∈ Irr(C). When Cg ̸= 0 for all g ∈ G, the grading is said to be

faithful.

Example 2.6. A G-graded vector space over a field k, for a finite group G, is naturally a graded

fusion category. It consists of a direct sum of vector spaces V =
⊕

g∈G Vg, where each component Vg

is finite-dimensional and over k. This category is semisimple, meaning every object can be decom-

posed into simple objects, and it admits a tensor product defined by (V ⊗W )h =
⊕

g1g2=h Vg1⊗Wg2 ,

respecting the G-grading. The unit object is kG =
⊕

g∈G kg with k1 = k and kg = 0 for g ̸= 1.

The grading is faithful if each Cg is nonzero, ensuring FPdim(C) = |G| · FPdim(C1).

The adjoint subcategory Cad [11] is the tensor subcategory generated by the elements X⊗X∗ for

X ∈ C. For any fusion category C, there exists a universal grading by a group U(C) with several key

properties: it is faithful; the trivial component forms the full fusion subcategory spanned by objects

of the form X⊗X∗; every full fusion subcategory D ⊂ C that contains the adjoint category Cad is of

the form D ∼=
⊕

h∈H Ch for some subgroup H ⊂ U(C); and the group of monoidal automorphisms of

the identity functor is canonically isomorphic to Hom(U(C),k×). We denote U(C) as the universal

grading group of C.

Proposition 2.7 ([14] Corollary 3.7). Any other faithful grading of C by a group G is determined

by a surjective group homomorphism π : U(C) → G.
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Corollary 2.8. [23, §2] Suppose D is a fusion subcategory of C. Then D is faithfully graded by the

subgroup UD(C) = {g ∈ U(C) | D ∩ Cg ̸= 0} ⊆ U(C). By the universal property of U(D), there is a

surjective group homomorphism ϕD : U(D) → UD(C).

Example 2.9. Consider VecG, the category of finite-dimensional vector spaces graded by a finite

group G. In this case, the universal grading group U(VecG) = G.

Note that these notions on fusion categories can be readily generalized to fusion rings. Let

(R,B(R)) be a fusion ring and G a group. We say that R is graded by G if R can be decomposed as

a graded ring [11, §3.6], that is, R =
⊕

g∈GRg, where Rg are Z-submodules such that RgRg′ ⊆ Rgg′ ,

and there is a partition B(R) =
⊔

g∈GB(R)g. Additionally, we require R∗
g = Rg−1 and that Rg is

the Z-submodule generated by B(R)g. This G-grading is called faithful if Rg ̸= 0 for all g ∈ G.

A G-grading on R induces a map deg : B(R) → G, given by b 7→ |b|, such that if xy has z in its

B(R)-decomposition, then |z| = |x||y|. Every fusion ring R is faithfully graded by the universal

grading group U(R) [14, Theorem 3.5].

2.4. G-crossed braided fusion categories. Let G be a finite group and C be a fusion category.

We say that there is a categorical left action by tensor autoequivalences of G on C when, for every

g ∈ G, there exists a tensor functor Lg : C → C (resp. Rg : C → C) whose action on an object X and

a morphism f is given by Lg(X) = g▷X, Rg(X) = X◁g, Lg(f) = g▷f , and Rg(f) = f◁g. We denote

g ▷Y as g(Y ) for simplicity. Additionally, there are natural isomorphisms L2
g,h : g ◁ (h◁−) → gh◁−

(resp. R2
g,h : (− ◁ g) ◁ h → − ◁ gh) and L0 : idC → e ◁ − (resp. R0 : idC → − ◁ e), such that the

diagrams given in [23, §2.7] commute.

A G-crossed braided fusion category [11, §8.24] is a fusion category C equipped with an action of

G on C, a (not necessarily faithful) grading C =
⊕

g∈G Cg, and isomorphisms

(1) cX,Y : X ⊗ Y
∼−→ g(Y )⊗X for g ∈ G, X ∈ Cg, and Y ∈ C.

called the G-braiding isomorphisms. These structures must satisfy the following conditions:

(1) g(Ch) ⊂ Cghg−1 for all g, h ∈ G.

(2) The isomorphisms cX,Y are functorial in X and Y .

(3) The isomorphisms cX,Y are compatible with the G-action, i.e., g(cX,Y ) = cg(X),g(Y ) for all

g ∈ G.

(4) The following diagrams commute for all g, h ∈ G, X ∈ Cg, and Y ∈ Ch:

X ⊗ Y ⊗ Z
cX,Y ⊗Z−−−−−→ g(Y ⊗ Z)⊗X

↓ cX,Y ⊗ idZ ↓ idg(Y ) ⊗ cX,Z

g(Y )⊗X ⊗ Z
g(Y )⊗cX,Z−−−−−−−→ g(Y )⊗ g(Z)⊗X

X ⊗ Y ⊗ Z
cX⊗Y,Z−−−−−→ gh(Z)⊗X ⊗ Y

↘ idX⊗cY,Z ↓ idgh(Z)⊗idX⊗idY

X ⊗ h(Z)⊗ Y
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2.5. Exact factorization of fusion categories. In this subsection, we will introduce the defini-

tion of exact factorization of groups and fusion categories and some of their properties. See [13] for

more details.

An exact factorization of a group Σ is defined in [5] as a pair (F,G) of subgroups such that

Σ = FG and F ∩G = {e}, where e is the identity element of Σ. This implies that the restriction

of the multiplication map · : F × G → Σ is a bijection. In notation, we denote this situation as

Σ = F ·G. An exact factorization of a group is also known as a Zappa–Szép product.

Exact factorizations can be described in terms of the notion of a matched pair. A matched pair

of groups is a collection (F,G,◀,▶) where F and G are groups, ◀ and ▶ are left and right actions

of G on F and F on G, respectively, such that:

(gt) ◀ f = (g ◀ (t ▶ f))(t ◀ f), g ▶ (fl) = (g ▶ f)((g ◀ f) ▶ l),

for all g, t ∈ G and f, l ∈ F . Then F ▷◁ G := F × G with the multiplication (f, g)(l, t) = (f(g ▶

l), (g ◀ l)t), where g, t ∈ G and f, l ∈ F , is a group which is an exact factorization. Moreover, any

exact factorization of F and G is of this form.

Let B be a fusion category with fusion subcategories A and C. We say that B is an exact

factorization of fusion categories A and C [13, Theorem 3.8] if any of the following equivalent

conditions are met: B is the full abelian subcategory spanned by direct summands of X⊗Y , where

X ∈ A and Y ∈ C, and A ∩ C = Vec; or A ∩ C = Vec and FPdim(B) = FPdim(A) · FPdim(C);
or every simple object of B can be uniquely expressed as A ⊗ C with A ∈ Irr(A) and C ∈ Irr(C).
In this case, we denote B as A • C. For a fusion ring (R, B(R)), and fusion subrings (A, B(A)),

(C, B(C)), we say R = A • C is an exact factorization of fusion rings [21, Definition 2.7] if every

element b ∈ B(R) can be uniquely expressed as b = ac, where a ∈ B(A) and c ∈ B(C).

Proposition 2.10 ([21] Proposition 3.24). Let B = A • C be an exact factorization of fusion

categories. Then, the universal grading groups satisfy U(B) ∼= U(A) • U(C).

Remark 2.11. We identify a ∈ U(A) with (a, e) ∈ U(A)× U(C) = U(B).

Proposition 2.12 ([21] Proposition 3.22). If R = A • C is an exact factorization of fusion rings,

then there is an exact factorization of groups U(R) ∼= U(A) • U(C).

2.6. Matched pairs and Bicrossed product. Exact factorizations of fusion rings can be de-

scribed in terms of the notion of matched pair. Note that analogous notions have been developed

for fusion categories, see [21, Section 4]. A matched pair of fusion rings A and C with faithful

gradings

A =
∑
h∈H

Ah, B(A) =
⊔
h∈H

B(A)h, C =
∑
k∈K

Ck, B(C) =
⊔
k∈K

B(C)k,

for groups H and K, is a collection (A,C, H,K,▶,◀, ▷, ◁) where

• (H,K,▶,◀) is a matched pair of groups between H and K,
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• ▷ : K ×A → A and ◁ : C×H → C are Z-linear left and right actions, respectively, such that

k ▷ B(A)h = B(A)k▶h, B(C)k ◁ h = B(C)k◀h, and

k ▷ (aa′) = (k ▷ a)((k ◀ |a|) ▷ a′), a, a′ ∈ B(A),

(cc′) ◁ h = (c ◁ (|c′| ▶ h))(c′ ◁ h), c, c′ ∈ B(C),

k ▷ 1 = 1 = 1 ◁ h k ∈ K,h ∈ H,

see [21, Definition 3.10]. Moreover, any exact factorization of A and C is like this.

Given a matched pair of fusion rings (A,C,H,K,▶,◀, ▷, ◁), we define the bicrossed product of A

and C, denoted as A ▷◁ C, as the following Z-ring:

(i) A ▷◁ C = A⊗Z C as a Z-module, and the elements are denoted as a ▷◁ c := a⊗ c for a ∈ A

and c ∈ C.

(ii) The fixed Z-basis is B(A ▷◁ C) = {a ▷◁ c : a ∈ B(A), c ∈ B(C)}.
(iii) The multiplication is given by

(a ▷◁ c)(a′ ▷◁ c′) = a(|c| ▷ a′) ▷◁ (c ◁ |a′|)c′,

for all a, a′ ∈ B(A), c, c′ ∈ B(C) and extended Z-linearly.
(iv) The involution ∗ : A ▷◁ C → A ▷◁ C is given by

(a ▷◁ c)∗ = |c|−1 ▷ a∗ ▷◁ c∗ ◁ |a|−1,

for all a ∈ B(A), c ∈ B(C) and extended Z-linearly.

Theorem 2.13 ([21] Theorem 3.14). Let R = A •C be an exact factorization of fusion rings. Then

there exists a matched pair of fusion rings between A and C such that R ∼= A ▷◁ C.

More precisely, an exact factorization R = A · C give rise to a matched pair of fusion rings

(A,C, H,K,▶,◀, ▷, ◁), where ca = (|c| ▷ a)(c ◁ |a|), with c ∈ B(C), a ∈ B(A), such that R ≃ A ▷◁ C,

see [21, Theorem 3.14, Corollary 3.20].

3. Exact Factorization in the Universal Grading Case

In this section, we establish some foundational results concerning exact factorizations of G-

crossed braided fusion categories, where G is the universal grading group. One of our main results

is the following: if B is U(B)-crossed braided, then both A and C inherit U(A)-crossed and U(C)-
crossed braided structures, respectively.

Lemma 3.1. If A is a fusion subcategory of B, then U(A) ∼= UA(B) = {g ∈ U(B) | A ∩ Bg ̸= 0} ≤
U(B).

Proof. By [23, §2], A is faithfully graded by the subgroup UA(B) = {g ∈ U(B) | A∩Bg ̸= 0} ⊆ U(B).
Note that UA(B) is a subgroup of U(B) by Proposition 5.1. By the universal property of U(A),

there is a surjective group homomorphism φA : U(A) → UA(B). By [21, Proposition 3.22], φA is

an isomorphism, and hence U(A) is isomorphic to UA(B), a subgroup of U(B). □
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Remark 3.2. Note that U(B) organizes the fusion category B into direct summands indexed by

elements of U(B). Therefore, any full fusion subcategory A ⊆ B containing the adjoint subcategory

Bad can be expressed as A ∼=
⊕

h∈H Bh, where H ⊆ U(B) is a subgroup by [9, Proposition 2.3].

Furthermore, the group of monoidal automorphisms of the identity functor of B is canonically

isomorphic to Hom(U(B), k), where k is the base field.

Corollary 3.3 ([9] Corollary 2.5). There is a one-to-one correspondence between fusion subcate-

gories A ⊆ B containing Bad and subgroups G ⊆ U(B), namely A 7→ GA := {g ∈ U(B) | A∩Bg ̸= 0}
and G 7→ AG :=

⊕
g∈G Bg.

Theorem 3.4. Let B = A • C be an exact factorization of fusion categories. If B is U(B)-crossed
braided, then A is U(A)-crossed braided and C is U(C)-crossed braided.

Proof. Since B is U(B)-crossed braided, there is a U(B)-action T : U(B) → Aut⊗(B) such that

Tb(Bb′) ⊆ Bbb′b−1 for b, b′ ∈ U(B). By Lemma 3.1, U(A) is isomorphic to a subgroup of U(B),
and from [21, Proposition 3.24] we have that U(B) ≃ U(A) · U(C); hence, T can be restricted to

U(A). Consider the restriction T |U(A) : U(A) → Aut⊗(B). Take a ∈ U(A). For a simple B in Ba,

using Equation (1), we have the isomorphism B ⊗A ∼= Ta(A)⊗B. By [13, Theorem 3.8], we write

B ∼= A′⊗C ′, where A′ is a simple object in A and C ′ is a simple object in C. Then, |B| = |A′| · |C ′|,
and it follows that |A′| = a and |C ′| = e, where e is the identity element of U(C). Since Ta(A) is a

simple in Ba, and tensor autoequivalences send simples to simples, we have Ta(A) ∼= Ã⊗C̃, where Ã

is a simple object in A and C̃ is a simple object in C, with |Ã| = a|A|a−1 and |C̃| = e by definition.

Recall that our main equations are B ⊗A ∼= Ta(A)⊗B, B ∼= A′ ⊗ C ′, and Ta(A) ∼= Ã⊗ C̃.

In the fusion ring, by [21, Definition 3.12] and considering a “delifting” that is the converse of the

lifting described in [21, Definition 4.4], i.e., a categorification of fusion rings, these isomorphisms

translate to the equations:

BA = Ta(A)(B), B = A′ ▷◁ C ′, and Ta(A) = Ã ▷◁ C̃

=⇒ (A′ ▷◁ C ′)(A ▷◁ 1) = (Ã ▷◁ C̃)(A′ ▷◁ C ′)

=⇒ A′(|C ′|�A) ▷◁ (C ′ � |A|) = (Ã ▷◁ C̃)(A′ ▷◁ C ′)

=⇒ A′A ▷◁ C ′ � |A| = ÃA′ ▷◁ (C̃ � |A′|)(C ′), ∀A′ simple in Aa, C
′ simple in Ce.

Let C ′ = 1, the unit in C, in the above equality, which gives A′A ▷◁ 1 = ÃA′ ▷◁ C̃ � |A′|. Acting

from the right with |A′|−1 gives

(2) A′A ▷◁ 1 = ÃA′ ▷◁ C

In terms of the basis elements Ai of K0(A), we get A′A =
∑n

i=0N
i
A′,AAi. Similarly, ÃA′ =∑n

i=0N
i
Ã,A′Ai. Substituting the basis decompositions yields

n∑
i=0

N i
A′,AAi ▷◁ 1 =

n∑
i=0

N i
Ã,A′Ai ▷◁ C̃ =⇒

n∑
i=0

(
N i

A′,AAi ▷◁ 1
)
=

n∑
i=0

(
N i

Ã,A′Ai ▷◁ C̃
)
.

Let’s work in A ▷◁ C, with elements a ▷◁ c := a ⊗ c, with Z-basis B(A ▷◁ C) = {a ▷◁ c : a ∈
B(A), c ∈ B(C)}, where 1 = b0 ∈ B(C). For the sake of contradiction, assume C̃ ̸= 1. Then, since
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C̃ is a simple object in the category C, it is an element of the basis B(C) = {c0, c1, . . . , cj}. By

definition, c0 = 1, so assume C̃ = ck for some k ∈ {1, 2, . . . , j}. Then,

n∑
i=0

N i
A′,AAi ▷◁ 1 =

n∑
i=0

N i
Ã,A′Ai ▷◁ ck =⇒

n∑
i=0

N i
A′,AAi ▷◁ 1−

n∑
i=0

N i
Ã,A′Ai ▷◁ ck = 0.

Since {Ai ▷◁ cj}n,mi=0, j=0 forms a basis of A ▷◁ C, the terms in the sum are basis elements and hence

linearly independent. Therefore, N i
A′,A = 0 and N i

Ã,A′ = 0 for i = 0, 1, . . . , n. However, this implies

A′A = ÃA′ = 0, which is false. Hence, we must have C̃ = 1.

Since the action T restricts to U(A) and U(C), the grading structure is preserved within both

U(A) and U(C). This follows from the fact that T acts as a tensor functor on the larger category

B, and thus its restriction to the subcategories U(A) and U(C) naturally maintains the grading.

By similar reasoning, since the conditions for the action T hold in the larger category B, they also

hold in the subcategory C, as it resides within B.

We need to show that the braiding restricts to A and C in a G-crossed braided fusion category.

First, note for any g, h ∈ G, the conditions Tg(Ch) ⊂ Cghg−1 and the G-braiding isomorphisms must

be compatible with the G-action, satisfying Tg(cX,Y ) = cTg(X),Tg(Y ) for any g ∈ G hold because T is

closed. Second, we analyze the G-braiding isomorphisms cX,Y : X⊗Y → Tg(Y )⊗X for X ∈ Cg and
Y ∈ C. These isomorphisms are functorial in X and Y , meaning the naturality condition holds for

morphisms f : X → X ′ in Cg and h : Y → Y ′ in C. Since U(A) and U(C)are subcategories of U(B)
where the G-braiding already satisfies this condition, it naturally extends to these subcategories.

Consider a restriction of the crossed braiding diagrams to the A subcategory. For the hexagon

equation:

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) X ⊗ (TA(h)(Z)⊗ Y )

(TA(g)(Y )⊗X)⊗ Z (X ⊗ TA(h)(Z))⊗ Y

TA(g)(Y )⊗ (X ⊗ Z) TA(g)(Y )⊗ (TA(g)(Z)⊗X) (TA(g)(Y )⊗ TA(g)(Z))⊗X

αX,Y,Z

cX,Y ⊗1Z

1X⊗cY,Z

α
X,TA(h)(Z),Y

α
TA(g)(Y ),X,Z 1X⊗α

TA(h)(Z),X,Y

1
TA(g)(Y )

⊗cX,Z α
TA(g)(Y ),TA(g)(Z),X

For the compatibility condition:

TA(g)(TA(h)(X)) TA(gh)(X)

TA(g)(X)⊗ 1h 1g ⊗ TA(h)(X)

TA
2 (g,h)

c
g,TA(h)(X) cgh,X

cg,X⊗1h

These diagrams demonstrate that the U(A)-crossed braided structure on A fulfills the necessary

conditions inherited from the U(B)-crossed braided structure on B. Similar diagrams can be drawn

to show that the same conditions hold for C. □
11



4. G-crossed Fusion Rings

We generalize the definition for G-crossed braided fusion categories to fusion rings. Then, we

impose an exact factorization on such a fusion ring to realize its implications. We prove that if

R = A • C is an exact factorization, and R is a U(R)-crossed fusion ring, then A is a U(A)-crossed

fusion ring and C is a U(C)-crossed fusion ring. Furthermore, we study the restriction of the

U(R)-action to fusion subrings A and C in the bicrossed product R = A ▷◁ C.

Definition 4.1. A G-crossed commutative fusion ring R is a fusion ring equipped with:

(i) A grading R =
⊕

g∈G Rg,

(ii) An action ρ : G → Aut(R) of G on R, such that ρg : R → R is an automorphism of fusion

rings for each g ∈ G,

(iii) ρg(Rh) ⊆ Rghg−1 for all g, h ∈ G,

(iv) xy = ρg(y)x, for x ∈ Rg, g ∈ G, and y ∈ R.

Remark 4.2. The commutative diagrams that define a braiding in the definition of a G-crossed

braided fusion category are redundant under this definition of a G-crossed fusion ring.

Example 4.3. If C is a G-crossed braided fusion category, then K0(C) is a G-crossed commutative

fusion ring.

Theorem 4.4. Let R = AC be an exact factorization of the fusion ring (R,B(R)) into a product of

fusion subrings (A,B(A)) and (C,B(C)). If R is U(R)-crossed commutative, then A is U(A)-crossed

commutative and C is U(C)-crossed commutative.

Proof. Let ρ : U(R) → Aut(R) be the action of U(R) on R. We want to show that ρ|U(A)(A) ⊆ A

and ρ|U(B)(B) ⊆ B. By Definition 4.1(iv), we have that ba = ρh(a)b, for all h ∈ U(A), a ∈ B(A)

and b ∈ B(R)h. Since R is an exact factorization and b ∈ B(R), then b = a′c′ and ρh(a) = a′′c′′, for

uniques a′ ∈ B(A)h, a
′′ ∈ B(A)h|a|h−1 and c′, c′′ ∈ B(C)e. By [21, Corollary 3.20], we have that

a′a(c′ ◁ |a|) = ba = ρh(a)b = a′′a′(c′′ ◁ |a′|)c′.

Choosing c′ = 1, we obtain a′a = a′′a′(c′′ ◁ |a′|), for a′ ∈ B(A)h, a
′′ ∈ B(A)h|a|h−1 , c′′ ∈ B(C)e, and

for all a ∈ B(A), h ∈ U(A). Let B(A) = {a0, a1, . . . , am}. Then
n∑

i=1

N i
a′′,a′ai(c

′′ ◁ |a′|) =
n∑

i=0

N i
a′,aai.

Since the basis of R is the product of the basis of A and the basis of C, then c′′ ◁ |a′| = 1 and c′′ = 1.

Therefore, ρh ∈ Aut(A), for all h ∈ U(A). Similarly, ρk ∈ Aut(C), for all k ∈ U(C). Then it follows

that A is U(A)-crossed braided and C is U(C)-crossed braided. □

4.1. Image of the Action. LetG = U(R), and suppose R is a U(R)-crossed commutative ring such

that R = A ▷◁ C is an exact factorization of fusion rings. Recall multiplication in R = A ▷◁ C is given

by (a ▷◁ c)(a′ ▷◁ c′) = a(|c|▷a′) ▷◁ (c◁|a′|)c′ by [21, Definition 3.12] and (a ▷◁ c)(a′ ▷◁ c′) = ρ|a||c|(a
′ ▷◁

c′)(a ▷◁ c) by Definition 4.1(iv). Hence, we are interested in finding what ρ|a||c|(a
′ ▷◁ c′)(a ▷◁ c)

12



looks like - in particular, when it provides a restriction on A or C. To study the restriction, we

consider four cases: (i.) a = 1, c′ = 1, (ii.) a′ = 1, c = 1, (iii.) a′ = 1, a = 1, (iv.) c′ = 1, c = 1.

Let’s begin with (i), a = 1, c′ = 1. Let ρ|c|(a
′ ▷◁ 1) = (γ(a′, c) ▷◁ µ(a′, c)), where γ(a′, c) ∈ B(A)

and µ(a′, c) ∈ B(C). Then, note

ρ|c|(a
′ ▷◁ 1)(1 ▷◁ c) = (|c| ▷ a′) ▷◁ (c ◁ |a′|)

(γ(a′, c) ▷◁ µ(a′, c))(1 ▷◁ c) = (|c| ▷ a′) ▷◁ (c ◁ |a′|)

γ(a′, c) ▷◁ µ(a′, c)c = (|c| ▷ a′) ▷◁ (c ◁ |a′|)

Since these are basis elements and form an exact factorization,γ(a′, c) = |c| ▷ a′ and µ(a′, c)c =

c ◁ |a′|. This implies ρ|c|(a
′ ▷◁ 1) = (|c| ▷ a′) ▷◁ µ(a′, c) and µ(a′, c)(c) = c ◁ |a′|.

Proposition 4.5. The action ρ restricts on U(C) to A, or ρ|U(C)(A) ⊆ A, if and only if the right

action ◁ : U(A)×C → C is trivial. That is, ρ|c|(a
′ ▷◁ 1) is in A if and only if ◁ is trivial. Moreover,

in this case, ρ|c|(a) = |c| ▷ a, for all |c| ∈ U(C), a ∈ A.

Proof. We will first prove that ρ|c|(a
′ ▷◁ 1) ∈ A implies ◁ is trivial. If ρ|c|(a

′ ▷◁ 1) ∈ A, then

ρ|c|(a
′ ▷◁ 1) = (|c| ▷ a′) ▷◁ µ(a′, c) ∈ A, where |c| ▷ a′ ∈ B(A) and µ(a′, c) ∈ B(C). This implies

µ(a′, c) = 1, and c = c ◁ |a′|, so ◁ is trivial.

Reciprocally, we will prove that ◁ is trivial implies ρ|c|(a
′ ▷◁ 1) ∈ A. Recall ρ|c|(a

′ ▷◁ 1) =

(|c| ▷ a′) ▷◁ µ(a′, c), where |c| ▷ a′ ∈ B(A), µ(a′, c) ∈ B(C). If ◁ is trivial, then µ(a′, c)c = c. Since

the right hand side, c, does not depend on a′, we have µ(a′, c) = µ(1, c). Denote this as β(c). Take

a′ = 1. Then ρ|c|(1 ▷◁ 1) must be 1 ▷◁ 1 since ρ|c| is an automorphism of fusion rings. Note

ρ|c|(1 ▷◁ 1) = 1 ▷◁ 1 = (|c| ▷ 1) ▷◁ β(c) = 1 ▷◁ β(c).

Since 1 ▷◁ 1 and 1 ▷◁ β(c) both belong to the basis B(A ▷◁ C), we there must have β(c) = 1 and

ρ|c|(a
′ ▷◁ 1) = |c| ▷ a′ ▷◁ 1, for all c ∈ C, a′ ∈ A. □

Case (ii), where, a′ = 1, c = 1, is similar to (i), and the proof of the below proposition follows by

analogous reasoning.

Proposition 4.6. The action ρ restricts on U(A) to C, or ρ|U(A)(C) ⊆ C if and only if the left

action ▷ : U(C)×A → A is trivial. That is, ρ|a|(1 ▷◁ c′) is in C if and only if ▷ is trivial. Moreover,

in this case, ρ|a|(c) = c ◁ |a|, for all |a| ∈ U(A), c ∈ C.

Note Case (iii), where a′ = 1, a = 1, and Case (iv), where c′ = 1, c = 1, follow from Theorem 4.4.

Corollary 4.7. The action ρ restricts on U(A) to A, or ρ|U(A)(A) ⊆ A. That is, ρ|a|(a
′ ▷◁ 1) is

always in A. Similarly, the action ρ restricts on U(C) to C, or ρ|U(C)(C) ⊆ C. That is, ρ|c|(1 ▷◁ c′)

is always in C.
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5. Exact Factorization in the General Case

Let B = A • C be an exact factorization. Define H = {g ∈ G,Bg ∩ A ̸= 0} and K = {g ∈
G,Bg ∩ C ̸= 0}. Through a series of intermediary propositions, we establish that if Be = Ae • Ce
represents an exact factorization of the trivial components of the gradings, then G = HK is an

exact factorization. Consequently, A must be H-crossed braided and C must be K-crossed braided.

Proposition 5.1. H and K are subgroups of G.

Proof. Note that the identity element e is in H since Be ∩ A = A; closure holds as for h, h′ ∈ H,

Bhh′ ∩ A ⊇ (Bh ⊗ Bh′) ∩ A ⊇ (Bh ∩ A) ⊗ (Bh′ ∩ A) ̸= 0; and inverses exist because if h ∈ H, then

Bh−1 ∩ A = (Bh)
∗ ∩ A ≠ 0. Similarly, K satisfies these criteria. □

Proposition 5.2. A has a faithful grading A =
⊕

h∈H Ah, where Ah = Bh ∩ A, and C has a

faithful grading C =
⊕

k∈K Ck, where Ck = Bk ∩ C.

Proof. Note that by the definition ofH, Ah consists of objects in A that also belong to Bh. Consider

A =
⊕

h∈H Ah. Every object X ∈ A can be uniquely expressed as X =
⊕

h∈H Xh where Xh ∈ Ah

for each h ∈ H. This is because Ah = Bh ∩ A, ensuring that A is decomposed into H-indexed

components Ah. Hence, this forms a direct sum decomposition of A into homogeneous components

indexed byH. Next, we seek to prove the faithfulness of the grading. The direct sumA =
⊕

h∈H Ah

implies that every object X ∈ A belongs to some Ah. Ah are non-zero because Bh∩A ̸= 0 for each

h ∈ H, ensuring Ah ̸= 0 and thus A =
⊕

h∈H Ah covers all of A. Therefore, A admits a faithful

grading A =
⊕

h∈H Ah, where Ah = Bh ∩ A.

To show that Ah are abelian subcategories of A, consider that B has a faithful G-grading, which

means B =
⊕

g∈G Bg. Given A ⊆ B, it follows that: Ah ⊗ Ah′ ⊆ Ahh′ and (Ah)
∗ ⊆ Ah−1 . This

is because Bh ⊗ Bh′ ⊆ Bhh′ and (Bh)
∗ ⊆ Bh−1 by the properties of the G-grading of B. So Ah

inherits these properties as intersections with A. The proof is analogous for proving the statement

for C. □

Proposition 5.3. G = HK is a factorization.

Proof. Since π : U(B) → G is a group epimorphism, every element g ∈ G corresponds to an element

g̃ ∈ U(B). By the exact factorization U(B) = U(A) ·U(C), every element g̃ ∈ U(B) can be written

as g̃ = h̃k̃ where h̃ ∈ U(A) and k̃ ∈ U(C). Note that h̃ corresponds to some h ∈ H because π(h̃) = h

and h ∈ H by definition (since h̃ ∈ U(A) ⊆ U(B)), and k̃ corresponds to some k ∈ K because

π(k̃) = k and k ∈ K by definition (since k̃ ∈ U(C) ⊆ U(B)). Therefore, g̃ = h̃k̃ corresponds to

g = hk where h = π(h̃) ∈ H and k = π(k̃) ∈ K. This shows that every g ∈ G can indeed be

expressed as g = hk for some h ∈ H and k ∈ K. □

Question 6. Is there an exact factorization of the trivial components of the gradings, Be = Ae•Ce?

Corollary 5.4. Let π : U(B) → G be the surjective group homomorphism described in Proposition

2.7. Similarly, let π1 : U(A) → H and π2 : U(C) → K denote the corresponding homomorphisms

for A and C, respectively. Then, Be = Ae • Ce if and only if | kerπ| = | kerπ1| · | kerπ2|.
14



Proof. Note that FPdim(Be) = FPdim(Bad) · | ker(π)|, where Bad is the adjoint component. Sim-

ilarly, FPdim(Ae) = FPdim(Aad) · | ker(π1)| and FPdim(Ce) = FPdim(Cad) · | ker(π2)|. Since

FPdim(Bad) = FPdim(Aad) · FPdim(Cad), we can write FPdim(Be) = FPdim(Aad) · FPdim(Cad) ·
| ker(π)|. It follows that FPdim(Be) = FPdim(Ae) ·FPdim(Ce) · | ker(π)|

| ker(π1)|·| ker(π2)| . Therefore, to show

that FPdim(Be) = FPdim(Ae) ·FPdim(Ce), it suffices to prove that | ker(π)| = | ker(π1)| · | ker(π2)|,
which implies an exact factorization of the kernels ker(π), ker(π1), and ker(π2). □

Corollary 5.5. If Be = Ae • Ce then G = HK is an exact factorization, implying A is H-crossed

braided and C is K-crossed braided.

Proof. It suffices to show that H ∩ K = {e}, i.e, |H ∩ K | = 1. Note FPdim B = |G|FPdim Be.

Since G is a factorization of H and K, we have |G| = |H|·|K|
|H∩K | . Thus, FPdim B = |H|·|K|

|H∩K | FPdim Be.

By our previous claim, FPdim Be = FPdim Ae · FPdim Ce. Therefore,

FPdim B =
|H| · |K|
|H ∩K |

FPdim Ae · FPdim Ce.

Note that |H| · FPdim Ae = FPdim A and |K| · FPdim Ce = FPdim C. Thus,

FPdim B =
FPdim A · FPdim C

|H ∩K |
.

But since FPdim B = FPdim A · FPdim C, it follows that |H ∩K | = 1. □

6. Generalized Semidirect Product

Let A be a fusion category and G be a finite group. A categorical action by tensor autoequiva-

lences of G on A is a tensor functor ρ : G → Aut⊗(A). We recall the definition of the semidirect

product category A⋊G, where G acts categorically by tensor autoequivalences on A. As an abelian

category A⋊G is the Deligne tensor product A⊠VecG, with tensor product given by

(A#g)⊗ (A′#g′) = A⊗ ρg(A
′)#gg′, A,A′ ∈ C, g, h ∈ G,

the unit object is 1#e and the associativity and unit constraints come from those of C. The

semidirect product category is also known as crossed product category, see [11, Definition 4.15.5].

Proposition 6.1. C ⋊ G is G-crossed braided if and only if C is braided and ρg is isomorphic to

idC for all g ∈ G. The action ρ is given by G
ρ−→ Aut⊗(C), and T : G → Aut⊗(C ⋊G).

Proof. We first prove the forward direction. Since C ⋊ G is G-crossed braided, then (C ⋊ G)e =

C ⊗ e ∼= C is braided. Now, consider the natural isomorphism µx:

x
µx−→ x⊠ e ∼= (x⊗ 1)⊠ e ∼= (x⊗ ρg(1))⊠ e ∼= (x⊠ g)⊗ (1⊠ g−1)

r−→ [(x⊗ 1)⊠ g]⊗ (1⊠ g−1) ∼= [(x⊗ ρe(1))⊠ g]⊗ (1⊠ g−1)

∼= [(x⊠ e)⊗ (1⊠ g)]⊗ (1⊠ g−1) ∼= [Te(1⊠ g)⊗ (x⊠ e)]⊗ (1⊠ g−1)

Te
∼=id−−−−→ [(1⊗ ρg(x))⊠ g]⊗ (1⊠ g−1) ∼= (ρg(x)⊠ g)⊗ (1⊠ g−1)

∼= (ρg(x)⊗ ρg(1))⊠ e ∼= (ρg(x)⊗ 1)⊠ e ∼= ρg(x)⊠ e ∼= ρg(x). □
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We now prove the reverse implication. Consider ρ̃ : G → Aut⊗(C ⋊ G) by g → ρ̃(g) : C ⋊ G →
C ⋊G, with ρ̃g given by x⊠ h 7→ ρ(g)(x)⊠ ghg−1. We first show that ρ̃ and ρ̃g are tensor functors.

ρ̃(gh)(x⊠ l) → ρ(gh)(x)⊠ ghl(gh)−1 ∼= ρ(g)(ρ(h)(x))⊠ ghlh−1g−1

∼= ρ̃(g)(ρ(h)(x)⊠ hlh−1) = (ρ̃(g) · ρ̃(h))(x⊠ l)

∼= ρ̃(g)((x⊗ ρ(h)(y))⊠ hl) ∼= ρ(g)(x⊗ ρ(h)(y))⊠ ghlg−1

by ρ action−−−−−−−→ ρ(g)(x)⊗ ρ(ghg−1)(ρ(g)(y))⊠ ghg−1glg−1

∼= (ρ(g)(x)⊠ ghg−1)⊗ (ρ(g)(y)⊠ glg−1)

∼= ρ̃(g)(x⊠ h)⊗ ρ̃(g)(y ⊠ l) ∼= (ρ̃(g) ◦ ρ̃(h))(x⊠ l) □

Note C ⋊G =
⊕

g∈G(C ⋊ g). Hence, ρ(g) ∼= idC implies C ⋊G is isomorphic to C ⊠VecG. It can

be seen that Cx⊠g,y⊠h : (x⊠ g)⊗ (y⊠ h) → (y⊠ ghg−1)⊗ (x⊠ g) = (y⊗ x)⊠ (gh). Also, note that

(x⊠ g)⊗ (y ⊠ h) is equal to (x⊗ y)⊠ gh and hence

(x⊠ g)⊗ (y ⊠ h) (y ⊗ x)⊠ gh
Cx,y⊗id

is a G-crossed braiding. □

The associativity in the semidirect product can be twisted by a 3-cocycle ω of G, see [10,

Definition 2.10]. In this case, the category is denoted byA⋊ωG. We offer an alternative construction

of this category in Proposition 6.2; the proof is straightforward.

Proposition 6.2. Let G be a finite group acting by tensor autoequivalences on a fusion category

A. Let C be the tensor subcategory of (A⋊G)⊠VecωG generated by the elements

(A#g)⊠ g, A ∈ Irr(A), g ∈ G.

Then C is tensor equivalent to A⋊ω G.

The previous proposition give us a way to generalize A ⋊ω G, as it suffices to change VecωG to

another faithfully G-graded fusion category.

Definition 6.3. Let A and C be fusion categories and G be a finite group. Assume that G acts

categorically by tensor autoequivalences on A and C has a faithful G-grading. We define the

generalized semidirect product of fusion categories A⋊ C as the fusion subcategory of (A⋊G)⊠ C
generated by the elements

(A#|C|)⊠ C, A ∈ Irr(A), C ∈ Irr(C).

Remark 6.4. Notice that A⋊ C is as an abelian category A⊠ C. Hence, we can denote the simple

objects of A⋊ C by A#C, A ∈ Irr(A), C ∈ Irr(C). The tensor product is then given by

A#C ⊗A′#C ′ = A⊗A (|C| ⇀ A′)#C ⊗C C ′.

Remark 6.5. The semidirect product category A⋊C does not depend of the choice of grading group

G as we can always choose G = U(C). Indeed, since there exists an epimorphism ϕ : U(C) → G

[14], the G-action on A induces a U(C)-action on A via ϕ. The semidirect product defined with this
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U(C)-action coincides with the semidirect product defined with the G-action. So, the semidirect

product depends only on the action, not the grading group.

Proposition 6.6. Let B = A ▷◁ C. Suppose B is U(B)-crossed braided, ◁: Hop → Aut(C) acts

by tensor autoequivalence, vh : − ◁ h ∼= idC for all h ∈ H are monoidal natural isomorphisms,

and T |U(C)|A : A → A. Then, A is U(A)-crossed braided, C is U(C)-crossed braided, and B is

monoidally equivalent to A⋉ C.

Proof. It suffices to show that there exists a monoidal functor (F,F2) from A ⋉ C to B. Define

F : A ⋉ C → B on objects as F (A#C) = A ⊗ C for A ∈ Irr(A), C ∈ Irr(C) and on morphisms

as F (f#g) = f ⊗ g. It is straightforward to verify that since c satisfies the braiding axioms,

F2
(A#C),(A′#C′) defined as follows satisfies the monoidal functor axioms.

F (A#C)⊗ F (A′#C ′) F ((A#C)⊗ (A′#C ′))

(A⊗ C)⊗ (A′ ⊗ C ′) F ((A⊗ T|c|(A
′))#(C ⊗ C ′))

(A⊗ T|c|(A
′))⊗ (C ⊗ C ′)

F2
A#C,A′#C′

= =

=id

□

7. Related Factorizations

In this section, we study implications of a G-crossed braided structure when considering other

factorization structures. For the Deligne product, we prove that if B = A⊠C, where A is H-crossed

braided and C is K-crossed braided, then B is H×K-crossed braided. We then recall the definition

of the fiber product and prove that if A and C are braided G-crossed braided fusion categories,

then the fiber product A⊠G C is G-crossed braided.

Proposition 7.1. Suppose B = A⊠ C, where A is H-crossed braided and C is K-crossed braided.

Then B is H ×K-crossed braided.

Proof. Let A have H-grading as A =
⊕

h∈H Ah. and let C have K-grading as C =
⊕

k∈K Ck. Define

the grading on B by setting B(h,k) = Ah ⊠ Ck for each (h, k) ∈ H × K. Consequently, B can be

decomposed as

B =
⊕

(h,k)∈H×K

B(h,k) =
⊕

(h,k)∈H×K

(Ah ⊠ Ck).

Given that
⊕

h∈H Ah = A and
⊕

k∈K Ck = C, it follows that⊕
(h,k)∈H×K

B(h,k) =
⊕
h∈H

Ah ⊠
⊕
k∈K

Ck = A⊠ C = B.

Next, we consider the tensor products of the graded components. For B(h,k) and B(h′,k′), we have:

B(h,k) ⊗ B(h′,k′) = (Ah ⊠ Ck)⊗ (Ah′ ⊠ Ck′) = (Ah ⊗Ah′)⊠ (Ck ⊗ Ck′).
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Since A and C are graded by H and K respectively, we have Ah ⊗Ah′ ⊆ Ahh′ and Ck ⊗ Ck′ ⊆ Ckk′ .
Therefore,

(Ah ⊗Ah′)⊠ (Ck ⊗ Ck′) ⊆ Ahh′ ⊠ Ckk′ = B(hh′,kk′).

To determine the duals, we note that the dual of B(h,k) is given by:

(B(h,k))
∗ = (Ah ⊠ Ck)∗ ∼= (Ah)

∗ ⊠ (Ck)∗.

Since the dual of a graded component is the graded component indexed by the inverse element, we

have (Ah)
∗ ∼= Ah−1 and (Ck)∗ ∼= Ck−1 . Thus,

(B(h,k))
∗ ∼= Ah−1 ⊠ Ck−1 = B(h−1,k−1).

Next, we define the action T : H ×K → Aut(A⊠ C) by T(h,k) = T1(h)⊠ T2(k), where T1 : H →
Aut⊗(A) and T2 : K → Aut⊗(C) are the actions associated with the H-crossed braiding on A and

the K-crossed braiding on C, respectively. Then, for B(h′,k′) = Ah′ ⊠ Ck′ ,

T(h,k)(B(h′,k′)) = (T1(h)⊠ T2(k))(Ah′ ⊠ Ck′) = T1(h)(Ah′)⊠ T2(k)(Ck′).

Since T1(h) acts on A and T2(k) acts on C, we have T1(h)(Ah′) ⊆ Ahhh′−1 and T2(k)(Ck′) ⊆ Ckkk′−1 .

Therefore,

T(h,k)(B(h′,k′)) ⊆ Ahhh′−1 ⊠ Ckkk′−1 = B(hhh′−1,kkk′−1).

Hence, the decomposition B =
⊕

(h,k)∈H×K B(h,k) respects the H × K-grading, and the action

T : H ×K → Aut(B) defined by T(h,k) = T1(h)⊠ T2(k) satisfies the required properties for B to be

H ×K-crossed braided. Thus, we have shown that B is H ×K-crossed braided. □

We now study the implications of a G-crossed braided structure in the fiber product, as defined

in [25, §2.2]:

Definition 7.2. The fiber product of A and C is the fusion category A⊠G C :=
⊕

g∈GAg ⊠ Cg.

Proposition 7.3. Let A and C be G-crossed braided fusion categories. Then, the fiber product

A⊠G C is G-crossed braided.

Proof. Firstly, consider the grading of the fiber product. Clearly, A⊠G C is a fusion subcategory of

A⊠C graded by G, where each component Ag⊠Cg corresponds to an element g ∈ G. This naturally

provides a G-grading for the fiber product, as the grading is inherited from the G-gradings of A
and C.

Next, we define the G-action on the fiber product A ⊠G C. The actions of G on A and C gives

rise to an action of G on A ⊠G C, defined by g(X ⊠ Y ) = g(X) ⊠ g(Y ) for X ∈ Ah, Y ∈ Ch,
and g ∈ G. This action is well-defined because both A and C are G-crossed categories, meaning

that g(Ah) ⊂ Aghg−1 and g(Ch) ⊂ Cghg−1 . Therefore, the action on the fiber product respects the

grading.

The G-crossed braidings c1 and c2 of A and C can similarly be combined to define a G-crossed

braiding on A ⊠G C. Specifically, we define the braiding isomorphisms cX⊠Y,Z⊠W as cX⊠Y,Z⊠W =

c1X,Z ⊠ c2Y,W , where c1X,Z and c2Y,W are the G-braiding isomorphisms in A and C respectively. These

isomorphisms are functorial, as they inherit the functoriality from the individual G-braidings in A
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and C. Furthermore, the isomorphisms are compatible with the G-action due to the compatibility

of the braidings in the original categories.

Finally, we verify the duality structure of A ⊠G C. The dual of the graded component B(h,k) =

Ah ⊠ Ck is given by (B(h,k))
∗ ∼= (Ah)

∗ ⊠ (Ck)∗, where (Ah)
∗ ∼= Ah−1 and (Ck)∗ ∼= Ck−1 . This implies

that (B(h,k))
∗ ∼= B(h−1,k−1), ensuring that the duality structure of A ⊠G C is compatible with its

G-grading. Hence, the fiber product A ⊠G C indeed inherits the structure of a G-crossed braided

fusion category from A and C. □

8. General Braiding

In this section, we study the more general braided fusion categories and their natural analog in

rings, commutative fusion rings. In Proposition 8.1, we prove that A ▷◁ C is a commutative ring if

and only if A and C are commutative rings, and the actions ◁ and ▷ are trivial. In Proposition 8.2,

we prove that if B = A • C is an exact factorization of fusion categories, B is braided if and only if

A and C are braided and B ∼= A⊠ C.

Proposition 8.1. A ▷◁ C is commutative if and only if A and C are commutative, and ◁ and ▷ are

trivial.

Proof. Note that if A ▷◁ C is commutative, then for any a, a′ ∈ B(A), we have (a ▷◁ 1)(a′ ▷◁ 1) =

(aa′ ▷◁ 1) and (a′ ▷◁ 1)(a ▷◁ 1) = (a′a ▷◁ 1) which implies a′a = aa′, so A is commutative. Similarly,

C is commutative.

For any c ∈ B(C) and a ∈ B(A), we have (1 ▷◁ c)(a ▷◁ 1) = (|c| ▷ a) ▷◁ (c ◁ |a|). Also, since A ▷◁ C

is commutative, (1 ▷◁ c)(a ▷◁ 1) = (a ▷◁ 1)(1 ▷◁ c) = (a ▷◁ c). Note that (|c| ▷ a) and a are in B(A),

and (c ◁ |a|) and c are in B(C). Since A ▷◁ C = A · C is an exact factorization, we must have

(|c| ▷ a) = a and (c ◁ |a|) = c for all c ∈ B(C) and a ∈ B(A),

implying that ◁ and ▷ are trivial.

For the other direction, assume A and C are commutative and ◁ and ▷ are trivial. Then, (a ▷◁

c)(a′ ▷◁ c′) = a(|c| ▷ a′) ▷◁ (c ◁ |a′|)c′ = aa′ ▷◁ cc′ = a′a ▷◁ c′c = (a′ ▷◁ c′)(a ▷◁ c) □

Proposition 8.2. Let B = A•C be an exact factorization. Then, B is braided if and only if A and

C are braided and B ∼= A⊠ C.

Proof. Suppose B is braided and has braiding c. Then, the restriction cA := c|A implies A is

braided and the restriction cC := c|C implies C is braided. By [13, Corollary 3.9], B ∼= A⊠ C.

Suppose A and C are braided and B ∼= A⊠ C. It is straightforward to check c̃A⊠C,A′⊠C′ , defined

as follows, is a braiding in B ∼= A⊠ C:

(A⊠ C)⊗ (A′ ⊠ C ′) (A′ ⊠ C ′)⊗ (A⊠ C)

(A⊗A′)⊠ (C ⊗ C ′) (A′ ⊗A)⊠ (C ′ ⊗ C)

c̃A⊠C,A′⊠C′

∼= ∼=
cA
A,A′⊠cC

C,C′
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□

Proposition 8.3. A ▷◁ C is braided if and only if A and C are braided, ▷ and ◁ are actions by tensor

autoequivalence, and uk : k ▷− → idA and vh : − ◁ h → idC are monoidal natural isomorphisms.

Proof. The reverse direction follows by [21, Proposition 4.11]. For the first direction, define the

braiding in A as, for all A,A′ simple in A, CA,A′ := CA▷◁1,A′▷◁1. Define a braiding on C analogously.

Note (A ▷◁ 1)(1 ▷◁ C) ∼= A ▷◁ C by [21, Proposition 4.7], so (|C| ▷ A) ▷◁ (C ◁ |A|) ∼= A ▷◁ C.

Hence, |C| ▷ A ▷◁ C ◁ |A| ∼= A ▷◁ C. via a natural isomorphism. This implies |C| ▷ A ∼= A, which

we denote as the functor u|C|(A), and C ◁ |A| ∼= C, which we denote as the functor v|A|(C). It is

straightforward to check that the actions ◁ and ▷ are monoidal functors, as this would imply they

act by tensor autoequivalence, and to verify that u|C| and v|A| are monoidal natural isomorphisms.

□
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