MIT PRIMES STEP Senior Group
${ }^{7}$ Fibonacci
Party Tricks PRIMES Conference, May 19th, 2024

Sikhil Byrapuram, Adam Ge, Selena Ge, Sylfia Zia Lee, Rajaishi Slandal, Gordon Redwine, Soham Samanta, Daniel ENu, Danyang Xu, and Ray Thao Mentored by Dr. Fanya SKhovanova


## A Demonstration of the Trick

We will need a volunteer from the audience to give us two numbers.

Now, we will sum those two numbers $\rightarrow$ up to make a third number, and sum the second and third term to make a fourth term, etc. until we have a ten-term long Fibonacci-like sequence.
 head without writing all of the terms.

## How the trick works

If the first two numbers are $a$ and $b$, the 7 th element is $5 a+8 b$, and the sum is $55 a+83 i$. Thus, this trick will always work, no matter what numbers your friend chooses!


A Whole Family of Tricks
When we experimented with other numbers, we discovered an entire set of tricks similar to this. Here are some examples:

- The sum of the first 14 terms of a Fibonacci-like sequence is the same as the 9 th term multiplied by 29.
- The sum of the first 6 terms of a Fibonacci-like sequence is the same as the 5 th term multiplied by 4.
- The sum of the first 2 terms of a Fibonacci-like sequence is the same as the 3rd term multiplied by 1.

We then decided to continue the pattern and attempt to find all similar tricks.

We define $S_{n}$ as the sum of the
first $n$ Fibonacci numbers, $F_{m}$ as the largest possible term that divides $S_{n}$, and $z$ as $S_{n} / F_{m}$

## Odd Index m pattern

Index is the index number of the Lucas number that

| Sum of first $n$ terms | Index $m$ | Multiplier $z$ | Index i |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 1 |
| 2 | 3 | 1 | 1 |
| 3 | 3 | 2 | 0 |
| 6 | 5 | 4 | 3 |
| 10 | 7 | 11 | 5 |
| 14 | 9 | 29 | 7 |
| 18 | 11 | 76 | 9 |

## 4

## A Pattern?

Rows 1 and 3 of that table are clearly exceptions, so let's delete those.

Now, we have a nice pattern: The sum of the first $4 k-2$ terms in a Fibonacci-like sequence is equal to the $2 k+1$ th term multiplied by the $2 k$ - 1 th Lucas number.

Now, let's move on to Fibonacci numbers specifically.


## Fibonacci partial sums table

| Sums $_{n}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Index $\boldsymbol{m}^{\prime}$ | 2 | 3 | 3 | 2 | 4 | 5 | 4 | 4 | 6 | 7 |
| Multiplier $z$ | 1 | 1 | 2 | 7 | 4 | 4 | 11 | 18 | 11 | 11 |


| Sums $_{\boldsymbol{n}}$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Index $\boldsymbol{m}$ | 6 | 6 | 8 | 9 | 8 | 8 | 10 | 11 | 10 | 10 |
| Multiplier $\mathbf{z}$ | 29 | 47 | 29 | 29 | 76 | 123 | 76 | 76 | 199 | 377 |

$$
4
$$

$\nabla$

$\nabla$
Maximality


. . . but what if you don't want to multiply a term by some random big number in your head?

## What is the largest term in the sequence that divides the sum?

## An interesting phenomenon...

| Known Formulae |  |
| :---: | :--- |
| $F_{2 n}+(-1)^{n}=F_{n-1} L_{n+1}$ |  |
| $F_{2 n}-(-1)^{n}=F_{n+1} L_{n-1}$ |  |
| $F_{2 n+1}+(-1)^{n}=F_{n+1} L_{n}$ |  |
| $F_{2 n+1}-(-1)^{n}=F_{n} L_{n+1}$, | $x=2 n+1$ |

Substitute $x$
$F_{1 k+2}-1=F_{2 k} L_{2 k+2}$
$F_{1 k+1}-1=F_{2 k+3} L_{2 k+1}$
$F_{1 k+3}-1=F_{2 k+2} L_{2 k+1}$
$F_{1 k+5}-1=F_{2 k+2} L_{2 k+3}$

Surprise!

$$
\begin{aligned}
& F_{4 k+2}-1=F_{2 k} L_{2 k+2}=S_{4 k} \\
& F_{4 k+4}-1=F_{2 k+3} L_{2 k+1}=S_{4 k+2} \\
& F_{4 k+3}-1=F_{2 k+2} L_{2 k+1}=S_{4 k+1} \\
& F_{4 k+5}-1=F_{2 k+2} L_{2 k+3}=S_{4 k+3} .
\end{aligned}
$$

The multipliers are Lucas numbers! But this might be a coincidence?

## ...or is it?

Given $n$ and $m$ that satisfy:
By a few approximations, we get:

1. $n-3 m \leq 4$
2. $n \geq 11$
3. $n-m \geq 0$
$S_{n}=F_{n+2}-1 \approx \frac{\phi^{n+2}}{\sqrt{5}}$
$F_{m} \approx \frac{\phi^{m}}{\sqrt{5}}$
We have that $\frac{S_{n}}{F_{m}}=L_{n-m+2}$.
$\frac{S_{n}}{F_{m}} \approx \phi^{n-m+2} \approx L_{n-m+2}$

## Products of aibonacci and a Lucas Number

We found that $F_{d} L_{b}=F_{c} L_{d}$ is true for only a few cases:

1. $a=c, b=d$
$\Rightarrow \quad F_{a} L_{b}=F_{d} L_{b}$
2. $a=c=0$
$\Rightarrow \quad F_{0} L_{b}=F_{0} L_{d}=0$
3. $a=1, c=2, b=d \quad \Rightarrow \quad F_{1} L_{b}=F_{2} L_{b}=L_{b}$
4. $\quad a=2, c=1, b=d \quad \Rightarrow \quad F_{1} L_{b}=F_{2} L_{b}=L_{b}$
5. $a=b=k, c=2 k, d=1 \Rightarrow F_{k} L_{k}=F_{2 k}$
6. $(a, b, c, d)=(1,3,3,0),(2,3,3,0),(1,0,3,1),(2,0,3,1),(3,2,4,0)$

## Proving Maximality

- $\quad$ Suppose there exists a greater solution $m^{\prime}$ such that $F_{m}, \mid S_{n}$.
- We can check that $m^{\prime}$ satisfies the conditions necessary for $S_{n} / F_{m^{\prime}}=L_{n-m^{\prime}+2}$.

$$
\begin{aligned}
& S_{4 n}=F_{2 n} L_{2 n+2} \\
& S_{4 n+1}=F_{2 n+2} L_{2 n+1} \\
& S_{4 n+2}=F_{2 n+3} L_{2 n+1} \\
& S_{4 n+3}=F_{2 n+2} L_{2 n+3}
\end{aligned}
$$

- Since $S_{n}=F_{m^{\prime}} L_{n-m^{\prime}+2}=F_{m} L_{n-m+2}$, we conclude that for most cases, $m^{\prime}=m$.
- Contradiction!

If $n$ and $m$ satisfy:
$\square \quad F_{m} \mid S_{n}$

- $\quad n-3 m \leq-4$
- $\quad n \geq 11$
- $\quad n-m \geq 0$

Then $S_{n} / F_{m}=L_{n-m+2}$.

## Indices of Divisors, Graphed




## Fibonacci and Trigonometry

When analyzing trigonometric identities, we find analogous identities using Fibonacci and Lucas numbers. The study of these similarities was dubbed "Fibonometry" in Conway and Ryba's original paper, a combination of "Fibonacci" and "Trigonometry". For example, note the similarities between

$$
\begin{aligned}
& \sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha) \quad \text { and } \quad F_{2 n}=F_{n} L_{n} \\
& \cos (2 \alpha)=\cos (\alpha)^{2}-\sin (\alpha)^{2} \quad \text { and } \quad 2 L_{2 n}=L_{n}^{2}+5 F_{n}^{2}
\end{aligned}
$$

We can see similarities between sine and the Fibonacci numbers as we do with the cosine and Lucas numbers. We apply this pattern in the rules to follow.

## Fibonometry Rules

Conway and Ryba came up with the following rule for converting a Fibonacci Identity to a Trigonometric Identity.

Fibonometry rule. Replace an angle $\theta=p \alpha+q \beta+r \gamma+\cdots$ with a subscript $n=p a+q b+r c+\cdots$. Then replace $\sin \theta$ with $\frac{i^{n} F_{n}}{2}$ and $\cos \theta$ with $\frac{i^{n} L_{n}}{2}$. Finally, insert a factor -5 for any square of sines; thus, insert $(-5)^{k}$ for any term that contains $2 k$ or $2 k+1$ sines.

We came up with another rule, that only uses one step and doesn't have to look at the square of sines.

One-step Fibonometry rule. Replace an angle $\theta$ with a subscript $n$ as before. Then, replace

$$
\sin \theta \quad \text { with } \quad \frac{\sqrt{5}}{2} i^{n-1} F_{n} \quad \text { and } \quad \cos \theta \quad \text { with } \quad \frac{1}{2} i^{n} L_{n} .
$$

## Why do these rules work?

These rules work because of the similarities between the formulas of the Fibonacci and Lucas numbers and the cosine and sine formulas.

It is well known that the closed form for Fibonacci and Lucas Numbers are:

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}} \quad \text { and } \quad L_{n}=\varphi^{n}+(-\varphi)^{-n}
$$

By Euler's Formula, we also have the following formulas for the cosine and sine functions.

$$
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \quad \text { and } \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}
$$

$$
4
$$

$\nabla$


Generalizing
 Fibonometry

## Lucas Sequences

We define Lucas sequences of the first kind as $\cup_{n}(P, Q)$. We have the following rules:

$$
\begin{aligned}
& U_{0}(P, Q)=0 \\
& U_{1}(P, Q)=1 \\
& U_{n}(P, Q)=P \cdot U_{n-1}(P, Q)-Q \cdot U_{n-2}(P, Q) \text { for } n>1
\end{aligned}
$$

We similarly define the Lucas sequence of the second kind as $V_{n}(P, Q)$. We also have the following rules:

$$
\begin{aligned}
& V_{0}(P, Q)=2 \\
& V_{1}(P, Q)=P \\
& V_{n}(P, Q)=P \cdot V_{n-1}(P, Q)-Q \cdot V_{n-2}(P, Q) \text { for } n>1
\end{aligned}
$$

## Fibonometry with Lucas Sequences

Using similar rules to what we did previously, we derived the following rules that convert trigonometric identities to Lucas sequence identities.

Beyond Fibonometry rule. Replace an angle $\theta$ with a subscript $n$ as before. Then, replace

$$
\sin \theta \text { with } \frac{\sqrt{D}}{2 i}\left(\frac{-1}{\sqrt{Q}}\right)^{n} U_{n} \quad \text { and } \quad \cos \theta \text { with } \frac{1}{2}\left(\frac{-1}{\sqrt{Q}}\right)^{n} V_{n}
$$

In this rule, we have that $D=P^{2}-4 Q$. We see that this closely resembles our previous Fibonometry rules, where $\mathrm{D}=5$ and $\mathrm{Q}=-1$.

One-step Fibonometry rule. Replace an angle $\theta$ with a subscript $n$ as before. Then, replace

$$
\sin \theta \quad \text { with } \quad \frac{\sqrt{5}}{2} i^{n-1} F_{n} \quad \text { and } \quad \cos \theta \quad \text { with } \quad \frac{1}{2} i^{n} L_{n} .
$$

## Example of Fibonometry with Lucas Sequences

We consider the identity $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$.
We now convert this into an identity with the Lucas sequences. By using the rule on the previous slide we get that:

$$
\frac{\sqrt{D}}{2 i}\left(\frac{-1}{\sqrt{Q}}\right)^{m} U_{m}+\frac{\sqrt{D}}{2 i}\left(\frac{-1}{\sqrt{Q}}\right)^{n} U_{n}=2 \frac{\sqrt{D}}{2 i}\left(\frac{-1}{\sqrt{Q}}\right)^{\frac{m+n}{2}} U_{\frac{m+n}{2}} \frac{1}{2}\left(\frac{-1}{\sqrt{Q}}\right)^{\frac{m-n}{2}} V_{\frac{m-n}{2}}
$$

This can be simplified to get:

$$
U_{m}+(-\sqrt{Q})^{m-n} U_{n}=U_{\frac{m+n}{2}} V_{\frac{m-n}{2}}
$$

Notice that we must have that $m$ and $n$ are of the same parities. So we can simplify the equation into:

$$
U_{m}+Q^{\frac{m-n}{2}} U_{n}=U_{\frac{m+n}{2}} V_{\frac{m-n}{2}} .
$$

## Table of Converted Trig to Lucas Sequence Identities

Below is a table of trigonometric identities and there converted Lucas sequence identities.

| Trigonometry | Lucas Sequence |
| :---: | :---: |
| $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ | $V_{n}^{2}-D U_{n}^{2}=4 Q^{n}$ |
| $\sin (-\alpha)=-\sin \alpha$ | $-Q^{n} U_{-n}=U_{n}$ |
| $\cos (-\alpha)=\cos \alpha$ | $V_{n}=Q^{n} V_{-n}$ |
| $\sin 2 \alpha=2 \cos \alpha \sin \alpha$ | $U_{2 n}=U_{n} V_{n}$ |
| $\cos 2 \alpha=2 \cos ^{2} \alpha-1$ | $V_{2 n}=V_{n}^{2}-2 Q^{n}$ |
| $\cos 2 \alpha=1-2 \sin ^{2} \alpha$ | $V_{2 n}=2 Q^{n}-D U_{n}^{2}$ |
| $\sin 3 \alpha=3 \sin \alpha-4 \sin ^{3} \alpha$ | $U_{3 n}=3 Q^{n} U_{n}+D U_{n}^{3}$ |
| $\cos 3 \alpha=4 \cos ^{3} \alpha-3 \cos \alpha$ | $V_{3 n}=V_{n}^{3}-3 Q^{n} V_{n}$ |
| $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$ | $2 U_{m+n}=U_{m} V_{n}+U_{n} V_{m}$ |
| $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ | $2 V_{m+n}=V_{m} V_{n}+D U_{m} U_{n}$ |
| $\sin \alpha \sin \beta=\frac{\cos (\alpha-\beta)-\cos (\alpha+\beta)}{2}$ | $D U_{m} U_{n}=V_{m+n}-Q^{n} V_{m-n}$ |
| $\cos \alpha \cos \beta=\frac{\cos (\alpha+\beta)+\cos (\alpha-\beta)}{2}$ | $V_{m} V_{n}=V_{m+n}+Q^{n} V_{m-n}$ |
| $\sin \alpha \cos \beta=\frac{\sin (\alpha+\beta)+\sin (\alpha-\beta)}{2}$ | $U_{m} V_{n}=U_{m+n}+Q^{n} U_{m-n}$ |
| $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$ | $U_{m}+Q^{\frac{m-n}{2}} U_{n}=U_{m+n}^{2} V_{m-n}^{2}$ |
| $\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$ | $V_{m}-Q^{\frac{m-n}{2}} V_{n}=D U_{m+n}^{2} U_{\frac{m-n}{2}}^{2}$ |

## Acknowledgements

Thank you to the MIT PRIMES STEP program and Dr. Tanya Khovanova for providing us with this opportunity.

Our Friends and Family, Especially our Parents.

## Works Cited

Fibonacci Number Trick, available at https://www.1728.org/fibonacci.htm, accessed March 2024.

Conway, John and Ryba, Alex, Fibonometry. The Mathematical Gazette 97 (2013), pp.~494--495.

Fokkink, Robert, The Pell Tower and Ostronometry. arXiv preprint arXiv:2309.01644 (2023).

Keskin, Refik, Three identities concerning Fibonacci and Lucas numbers, Notes on Number Theory and Discrete Mathematics, 20:5, (2014), pp.~44--48.

Metzler, David, Fibonacci Numbers and Complex Trigonometry. YouTube series, (2015) https://www.youtube.com/playlist?list=PLP8japRypwHmtdpyApWY_R6A_cOBKbT1W.
G. Osborn, 109.[D. 6. d.] Mnemonic for hyperbolic formulae. The Mathematical Gazette 2(34), (1902) p. $\sim 189$.

Vajda, Steven, Fibonacci and Lucas numbers, and the golden section: theory and applications. Courier Corporation, 2008.


## A Any Questions?



## $\triangle$ <br> Thank you!



