Characterizing Retry Policies for
Microservice Applications

Alan Song (PRIMES CS)

Mentor: Lisa (Yueying) Li

What are Microservices?

Microservice Graphs

amazoncom NETFLIX

These appllcatlons need
a lot of fault tolerance'

Fault Tolerance Measures

Client Server

How do retry mechanisms work?

Server

Client

Retry Storms

Metastable Failures

chfeas?% Vulnerable
1o2

Trigger

Sustaining
Effect

Metastable Failures in the Wild (Huang, et. al)

— =
D Date (;;1':)" Services Impacted Triggers S“E;:'t“g Mitigation
Gmail, Photos, Drive, Cloud Storage, +Toad spike N : +Toad shedding
Sl oy various other GCP services « config change cascading overload | | 1o config deploy
+Toad shedding
GGL2 (23] | 1031/19| 215 multiple components of GCE + software bug * retry « reboot
2 * capacity increase
g Google BigQuery, Cloud TAM + config change) « config rollback
5 [O6L2 124 [04nsB0| B2 3% of Cloud SQL HA « software bug i « policy change
) « config change traffic queuc growth |+ config rollabck
SOEe 1o LS Sooglc AR Infrastmchure « latent software bug « reboots « server reboot
« config rollback
« network . « policy change
AWS1 [(47) | 0421/11 | 667 Amazon EC2, Amazon RDS coug g retry i iodiee
« capacity increase
2| Aws2 (48] 0613714 | 423 Amazon SimpleDB « power loss . retry " l::i::’:gg‘a’;f
< =
3 ; < retry + Toad shedding —
AWS SQS, EC2 Autoscaling, + load spike ... N
AWS3 [49]| 092015 | - 4.5 CloudWatch, AWS Console « network disruption "’:“""“g R Pousc metadata ops
lemotion « capacity increase
AWS DynamoDB, EC2, Fargate, “Tatent software bug :
h + load rebalancing
AWS4 [51]|1207221| 9.3 |RDS, EMR, Workspaces, AWS Console, | triggered by scale-up « retry it
ization services, internal DNS led to load spike s
Azure SQL DB & SQL Data Warchouse,| + unspecified load
AZR1[4] |07/0120| 2.65 Azure Database for imbalance trigger | + cascading overload |+ service restart
MySQL/PostgreSQL/MariaDB + latent config bug
AZRE(H |owdiza| i3 FrEm— * Software bug leading . + unknown automation
to cacl « capacity increase
Management operations N . queuc + load shedding
&| AZR3 (4] |06/14221 | 1325 of many Azure l“‘f'l‘::f;"’ii’: DUE | o owth due to overload [+ remove buggy software
5 Services b and timeouts « capacity increase
‘Windows Virtual Deskiop, < deployment of h + load rebalancing
AZR4[4] 07012121 7.92 Azure Front Door, software bug B . + trigger hot fix
Azure CDN Standard « load spike Qiberirepectis « policy change
Private DNS, HS Crypto Service, + load shedding
IBMI [11] [06/11221 | 7353 Cloudant DNS Services, + software bug « retry « policy change
Osaka, Cloudshell services + trigger hot fix
SPFI[19] | 0413 | NA Iservice UL *Joudspike . + load sheddis
[19) core app/service ok s retry l0ad shedding
* load spike due to * retry .
; d ; ; + trigger hot fix
SPF2[19] |06/04/13 | 8.33 core app) ur service cosssve l:agimg o
5 s
-) ~unspecified maintenance | load caused ZK chum < restart
8| ELCt (39) | 04102719 | 6.67 ElasticoRdtal Service « unspecified error causing more load + load shedding
; ; v .) + unspecified causing |+ load shedding
WIKI [58]| 03/30/21| 2.25 media upload, misc queued jobs load spike e e
CCI1 [10] |07/07/15| 1833 Core product + load spike d:.el"’:d Increase + load shedding
= " + self-sustaining and ;
CASI[1] |0727/17| NA Partial database outage rolling restart eriaing iy policy change
7 « load spike of certain b + trigger removal -
CAS2[43]| 2020 | 0.16 ably services e retry et e
FBI[1S] | NA | NA Facebook core services +Toad spike + software bug “hot fix

failure,

Table 1: Metastable failures from public sources. Azure and IBM
gh the incident description lacked some necessary details.

do not provide a direct incident link. Gray highlight indicates a

mEl Microsoft

Retries are by far the
most common
sustaining effect!

Retry Policies

gRPC retry options

The following table describes options for configuring gRPC retry policies:

Option

MaxAttempts

InitialBackoff

MaxBackoff

BackoffMultiplier

RetryableStatusCodes

Description

The maximum number of call attempts, including the original attempt. This value is limited by
GrpcChannelOptions.MaxRetryAttempts which defaults to 5. A value is required and must be greater than 1.

The initial backoff delay between retry attempts. A randomized delay between 0 and the current backoff
determines when the next retry attempt is made. After each attempt, the current backoff is multiplied by
BackoffMultiplier. A value is required and must be greater than zero.

The maximum backoff places an upper limit on exponential backoff growth. A value is required and must be
greater than zero.

The backoff will be multiplied by this value after each retry attempt and will increase exponentially when the
multiplier is greater than 1. A value is required and must be greater than zero.

A collection of status codes. A gRPC call that fails with a matching status will be automatically retried. For
more information about status codes, see Status codes and their use in gRPC 2. At least one retryable status
code is required.

Testbed Setup

Frontend Business Logic | Cahing&DB

DSB Hotel Reservation

DeathStarBench hotel-reservation Blueprint (Anand et. al)

wrk2 workload
. generator

https://www.microsoft.com/en-us/research/uploads/prod/2023/09/sosp2023-final39.pdf
https://github.com/delimitrou/DeathStarBench/blob/master/hotelReservation/README.md
https://github.com/giltene/wrk2

Retry Mechanism Implementation
Fixed (Power-of-d) Retry:
- Launch a constant of d copies of request without delay

Fixed-interval Retry with Max Attempts
- Launch a retry with constant delay and max attempts

Exponential Backoff Policy (with random jitter)
- Launch retries with exponentially increased time interval

Implemented
by us

12

Results: Limitations of Fixed Retry

Max Retries = 10 Amplification with bad retry policy (max
thpt = 3000)

Latency by Percentile Distribution

120

SLO Latency

=
%)
g 80
o
()
2
= 60
&
g
3 40
©
~
20
0
0% 90% 99% 99.9%

Percentile of requests

— QPS=1000 — QPS=100 — QPS=2000 — QPS=3000

Latency (milliseconds)

Results: Limitations of Fixed Retry

Max Retries = 2 Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat

Latency by Percentile Distribution

175

150

125
SLO Latency
=55
75
5
_

25 m—

0
0% 90% 99% 99.9% 99.99%

Percentile of requests

— QPS=2000 — QPS=1000 — QPS=3000 — QPS=3500

Results: Exponential Retry

Latency (milliseconds)

Latency by Percentile Distribution

60

50

40

30

20

10

0

0% 90% 99% 99.9% 99.99%

Percentile of requests

— Exp, QPS=3000 — Fixed, QPS=3000 Exp, QPS=2000 — Fixed, QPS=2000

[Takeaway: exponential retry is more resilient than fixed retry under load-increase triggers J

Telemetry

Dependency graph to identify percentage

of retries

Latency graph to color retried requests

Call span of different tiers of services to

identify triggers

~

Service & Operation v o> ¥ »

v unknown_service:frontend_service_proce...
Vv unknown_service:frontend_service_pr...
~ _ unknown_service:search_service_...

v | unknown_service:search_servi...

ﬂ unknown_service:geo_servi...

V| unknown_service:search_servi...
unknown_service:rate_serv...

v unknown_service:frontend_service_pr...

unknown_service:reserv_service._...

6.94ms

1]

unknown_service:wlgen_proc

952623

unknown_service:frontend_service_process

75

unknown_servicunknown_servicunknown_service:reserv_service_process
768 95\§3

13.89ms 20.83ms 27.77ms

16

Future Work

1) Study the relationship between retry policies and rate
limiting policies

2) Study retries caused by different triggers like capacity
degradation

3) Expand beyond simple retry policies by exploring
learning-based retry mechanisms

17

Key Takeaways

1)

2)

3)

Microservices is an important software architecture that
demands high fault tolerance.

Retry mechanisms, meant to improve fault tolerance,
inadvertently sustain metastable failures—failures that
persist even when a trigger is removed.

We study the relationship between retry policies and
performance of a microservice application operating
under duress.

18

Latency (milliseconds)

Results: Limitations of Exponential Retry

Exp. Retries () Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat

Latency by Percentile Distribution

175

150

125
SLO Latency

—
75
5{ Takeaway: fixed retry policy needs to be load-aware. J
25 / 7

. _— ,
0% 90% 99% 99.9% 99.99%

~ ntile

— QPS=2000 — QPS=1000 QPS=3000 — QPS=3500

Example of Metastable Failure

Including Retries Including Retries

—| - g ey
Cache : QI E , Cache

l3000 req/s : l 6000 req/s : l 6000 req/s

Capacity =3000req/s | ° | Capacity=300req/s | | Capacity = 3000 req/s
Time
: : >
Normal Case : - Cache Recovers
System is Vulnerable -~ ¢acheFails o Systemisina
] Metastable State

Retry needs to be system-context aware

20

How do Retries Cause Metastable Failures?

Initial Trigger
‘[Load } ‘[Load }
€ - > . -
Capacity Capacity
degradation
Retries Trigger Removed
e e [e [e
: _ S

Load increase Capacity restored

21

Metastable Failures in Serverless

- Case #2: Load Increase (Retries) Leading to Sustaining SLO Violations
1. Given afunction running at the normal load

2. When there's resource contention leading to capacity degradation, due to cold starts
or threshold cap, SLO violations happen

3. The common strategy for function end-users trigger retries which in turn result in
increased load and more cold-started containers

4. Even after the resource contention is gone, SLO violations still exist

A

However, resource contention can be
Load transient so instead of creating new
containers (cold starts), a better move is
— Capacity | to do load shedding.

o

Sol: A better controller that can
differentiate transient or sustaining
contention to avoid metastable failures.

Time

;

L oad

Capacity

Time

23

Latency (milliseconds)

Results: Limitations of Fixed Retry

Max Retries = 2 Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat
However, may behave worse for lower load

Latency by Percentile Distribution

175

150

125

SLO Latency
—59

75

5

//_/
25

T

0

0% 90% 99% 99.9% 99.99%
~ ntile

— QPS=2000 — QPS=1000 — QPS=3000 — QPS=3500

Latency (milliseconds)

Limitations of Retry

70

60

50

40

30

20

10

Latency by Percentile Distribution

0%

90%

—— wrk_qgps1000_retry_2.txt

99%
Percentile
—— wrk_gps1000_retry_base.ixt

99.9%

wrk_qps2000_retry_base.txt

—— wrk_gps2000_retry_2.txt

99.99%

A Familiar Experience

26

What causes metastable failures?

Triggers

l . D
' Load Spike Capacity Decrease

Vulnerable State

27

