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What are Microservices?
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These appllcatlons need
a lot of fault tolerance'
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How do retry mechanisms work?

Server

Client



Retry Storms



Metastable Failures

chfeas?% Vulnerable
1o2

Trigger

Sustaining
Effect



Metastable Failures in the Wild (Huang, et. al)
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Retries are by far the
most common
sustaining effect!



Retry Policies




gRPC retry options

The following table describes options for configuring gRPC retry policies:

Option

MaxAttempts

InitialBackoff

MaxBackoff

BackoffMultiplier

RetryableStatusCodes

Description

The maximum number of call attempts, including the original attempt. This value is limited by
GrpcChannelOptions.MaxRetryAttempts which defaults to 5. A value is required and must be greater than 1.

The initial backoff delay between retry attempts. A randomized delay between 0 and the current backoff
determines when the next retry attempt is made. After each attempt, the current backoff is multiplied by
BackoffMultiplier. A value is required and must be greater than zero.

The maximum backoff places an upper limit on exponential backoff growth. A value is required and must be
greater than zero.

The backoff will be multiplied by this value after each retry attempt and will increase exponentially when the
multiplier is greater than 1. A value is required and must be greater than zero.

A collection of status codes. A gRPC call that fails with a matching status will be automatically retried. For
more information about status codes, see Status codes and their use in gRPC 2. At least one retryable status
code is required.




Testbed Setup

Frontend Business Logic | Cahing&DB

DSB Hotel Reservation

DeathStarBench hotel-reservation Blueprint (Anand et. al)

wrk2 workload
. generator



https://www.microsoft.com/en-us/research/uploads/prod/2023/09/sosp2023-final39.pdf
https://github.com/delimitrou/DeathStarBench/blob/master/hotelReservation/README.md
https://github.com/giltene/wrk2

Retry Mechanism Implementation
Fixed (Power-of-d) Retry:
- Launch a constant of d copies of request without delay

Fixed-interval Retry with Max Attempts
- Launch a retry with constant delay and max attempts

Exponential Backoff Policy (with random jitter)
- Launch retries with exponentially increased time interval

Implemented
by us
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Results: Limitations of Fixed Retry

Max Retries = 10 Amplification with bad retry policy (max
thpt = 3000)
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Latency (milliseconds)

Results: Limitations of Fixed Retry

Max Retries = 2 Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat
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Results: Exponential Retry

Latency (milliseconds)

Latency by Percentile Distribution

60

50

40

30

20

10

0

0% 90% 99% 99.9% 99.99%

Percentile of requests

— Exp, QPS=3000 — Fixed, QPS=3000 Exp, QPS=2000 — Fixed, QPS=2000

[ Takeaway: exponential retry is more resilient than fixed retry under load-increase triggers J




Telemetry

Dependency graph to identify percentage

of retries

Latency graph to color retried requests

Call span of different tiers of services to

identify triggers
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Future Work

1) Study the relationship between retry policies and rate
limiting policies

2) Study retries caused by different triggers like capacity
degradation

3) Expand beyond simple retry policies by exploring
learning-based retry mechanisms
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Key Takeaways

1)

2)

3)

Microservices is an important software architecture that
demands high fault tolerance.

Retry mechanisms, meant to improve fault tolerance,
inadvertently sustain metastable failures—failures that
persist even when a trigger is removed.

We study the relationship between retry policies and
performance of a microservice application operating
under duress.
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Latency (milliseconds)

Results: Limitations of Exponential Retry

Exp. Retries () Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat

Latency by Percentile Distribution
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Example of Metastable Failure

Including Retries Including Retries

—| - g ey
Cache : QI E , Cache

l3000 req/s : l 6000 req/s : l 6000 req/s

Capacity =3000req/s | ° | Capacity=300req/s | | Capacity = 3000 req/s
Time
: : >
Normal Case : - Cache Recovers
System is Vulnerable -~ ¢acheFails o Systemisina
] Metastable State

Retry needs to be system-context aware
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How do Retries Cause Metastable Failures?

Initial Trigger
‘[ Load } ‘[ Load }
€ - > . -
Capacity Capacity
degradation
Retries Trigger Removed
e e [ e [ e
: _ S

Load increase Capacity restored
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Metastable Failures in Serverless

- Case #2: Load Increase (Retries) Leading to Sustaining SLO Violations
1. Given afunction running at the normal load

2. When there's resource contention leading to capacity degradation, due to cold starts
or threshold cap, SLO violations happen

3. The common strategy for function end-users trigger retries which in turn result in
increased load and more cold-started containers

4. Even after the resource contention is gone, SLO violations still exist

A

However, resource contention can be
Load transient so instead of creating new
containers (cold starts), a better move is
— Capacity | to do load shedding.

o

Sol: A better controller that can
differentiate transient or sustaining
contention to avoid metastable failures.

Time
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Latency (milliseconds)

Results: Limitations of Fixed Retry

Max Retries = 2 Tail less amplified - higher throughput (3500)
For 3000 RPS, all requests are under SLO lat
However, may behave worse for lower load

Latency by Percentile Distribution
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Latency (milliseconds)

Limitations of Retry
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A Familiar Experience
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What causes metastable failures?

Triggers

l . D
' Load Spike Capacity Decrease

Vulnerable State
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