Gabriel’s Theorem and the Subspaces Problem

Sophia Hou, Henrick Rabinovitz, and Derek Zhao

MIT PRIMES
Mentor: Serina Hu

May 19, 2024
Outline

1. The Pairs of Subspaces Problem
2. Quiver Representations
3. Gabriel’s Theorem
4. The Triples of Subspaces Problem
The Pairs of Subspaces Problem
One-Subspace Problem

Note

All spaces will be assumed to be complex vector spaces.
One-Subspace Problem
One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?

Definition (Isomorphism)

We say a vector space V is isomorphic to V' if there exists an isomorphism, defined to be a bijective linear map, from V to V'. For pairs (V, W) where W is a subspace of V, we define an isomorphism from (V, W) to (V', W') to be an isomorphism from V to V' that takes W to W'.

Hou, Rabinovitz, Zhao (PRIMES)
One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?

To make this more manageable:
One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?

To make this more manageable:

- We consider only finite dimensional spaces.
One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?

To make this more manageable:

- We consider only finite dimensional spaces.
- We only care about spaces and their subspaces *up to isomorphism*.
One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?

To make this more manageable:

- We consider only finite dimensional spaces.
- We only care about spaces and their subspaces up to isomorphism

Definition (Isomorphism)

We say a vector space V is \textit{isomorphic} to V' if there exists an \textit{isomorphism}, defined to be a bijective linear map, from V to V'. For pairs (V, W) where W is a subspace of V, we define an isomorphism from (V, W) to (V', W') to be an isomorphism from V to V' that takes W to W'.
One-Subspace Problem
One-Subspace Problem

Refinement

Can we classify, up to isomorphism, all pairs of spaces (V, W) where W is a subspace of V and both spaces are finite dimensional?
Solution One-Subspace Problem

1. \(\dim V \geq \dim W \geq 0. \)
2. Let \(\dim W = m \) and \(\dim V = m + n. \)
3. Extend a basis of \(m \) elements for \(W \) to a basis of \(m + n \) elements for \(V \); let the additional \(n \) elements generate \(W' \).
4. Then \(V \cong W \oplus W', W \cong \mathbb{C}^m, W' \cong \mathbb{C}^n. \)
5. Thus, our classification is pairs of the form \((\mathbb{C}^m \oplus \mathbb{C}^n, \mathbb{C}^n). \)
To make a harder problem, we consider two subspaces instead of just one:

Problem

Can we classify up to isomorphism all triples (V, W_1, W_2) of finite-dimensional vector spaces such that W_1 and W_2 are subspaces of V?

We will solve this in a series of steps.
Step 1: Remove Excess

Step 1

Consider the subspace \(W_1 + W_2 \) of \(V \). As we did for the one-subspace problem, get a complement of this subspace in \(V \), \(W_3 \). Then
\[
V = (W_1 + W_2) \oplus W_3.
\]
Step 2: Remove Intersection

Let the intersection of W_1 and W_2 be W_0. Let W_4 and W_5 be complements of W_0 in W_1 and W_2 respectively. Then $W_1 = W_0 \oplus W_4$, $W_2 = W_0 \oplus W_5$, and $W_1 + W_2 = W_3 \oplus W_4 \oplus W_5$.
Step 3: Putting it Together

Step 3

\[V = (W_1 + W_2) \oplus W_3 = W_0 \oplus W_3 \oplus W_4 \oplus W_5, \quad W_1 = W_0 \oplus W_4, \quad \text{and} \]
\[W_2 = W_0 \oplus W_5. \]

Letting \(a, b, c, d \) be the dimensions of \(W_0, W_3, W_4, W_5 \) respectively, our classification is:

\[
(C^a \oplus C^b \oplus C^c \oplus C^d, C^a \oplus C^c, C^a \oplus C^d)
\]
Quiver Representations
Quivers

Definition

A quiver is a directed graph.
Quivers

Definition
A quiver is a directed graph.

Examples

\[\bullet \rightarrow \bullet \]
Quivers

Definition

A quiver is a directed graph.

Examples

- [Graph 1](#)
- [Graph 2](#)
- [Graph 3](#)
Quivers

Definition
A quiver is a directed graph.

Examples

![Quiver Diagram](image_url)
Dynkin Diagrams

Definition

Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is $A_\Gamma = 2I - R_\Gamma$.
Dynkin Diagrams

Definition
Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is $A_\Gamma = 2I - R_\Gamma$.

Definition
A_Γ is called a Dynkin diagram if positive definite.
Dynkin Diagrams

Definition
Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is $A_\Gamma = 2I - R_\Gamma$.

Definition
A_Γ is called a Dynkin diagram if positive definite.

Examples
A_n:

```
• —— •  ······· • —— •
```
Dynkin Diagrams

Definition

Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is $A_\Gamma = 2I - R_\Gamma$.

Definition

A_Γ is called a Dynkin diagram if positive definite.

Examples

- A_n:

 ![Diagram of A_n]

- D_n:

 ![Diagram of D_n]
Dynkin Diagrams

Examples

\[E_6 : \]

\[
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet
\]

\[
| \quad \quad \quad \quad \quad \quad \quad \quad |
\]

\[
\bullet
\]
 Dynkin Diagrams

Examples

\[E_6 : \]
\[E_7 : \]
Dynkin Diagrams

Examples

E_6:

E_7:

E_8:
Quiver Representation

Quiver Representations can help us solve problems.
Quiver Representation

Quiver Representations can help us solve problems.

Examples

1. Classifying representations of A_2 solves the one subspace problem.
Quiver Representations can help us solve problems.

Examples

1. Classifying representations of A_2 solves the one subspace problem.
2. Classifying representations of A_3 solves the pair of subspaces problem.
Quiver Representations can help us solve problems.

Examples

1. Classifying representations of A_2 solves the one subspace problem.
2. Classifying representations of A_3 solves the pair of subspaces problem.
3. Classifying representations of D_4 solves the triples of subspaces problem.
Definition

A representation of a quiver Q is an assignment of each vertex i to a vector space V_i and each edge h_{ij} to a linear map $x_{ij} : V_i \to V_j$.
Definition

A representation of a quiver Q is an assignment of each vertex i to a vector space V_i and each edge h_{ij} to a linear map $x_{ij} : V_i \to V_j$.

Definition

A subrepresentation (W, y) of a quiver Q satisfies $W_i \subset V_i$ for all i and $y_{ij} : W_i \to W_j$ is a linear map.
Quiver Representation

Definition
A representation of a quiver Q is an assignment of each vertex i to a vector space V_i and each edge h_{ij} to a linear map $x_{ij}: V_i \to V_j$.

Definition
A subrepresentation (W, y) of a quiver Q satisfies $W_i \subset V_i$ for all i and $y_{ij}: W_i \to W_j$ is a linear map.

Definition
The direct sum of two representations (V, x) and (W, y) is $(V \oplus W, x \oplus y)$.
Indecomposable Representations

Definition

A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Example

The quiver consisting of one vertex and one self-loop has infinitely many indecomposable representations, which are $V = \mathbb{C}^n$ and f is a $n \times n$ Jordan block.

Remark

Considering indecomposable representations are helpful because they can be thought of building blocks for all representations.
Indecomposable Representations

Definition

A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Example

The quiver consisting of one vertex and one self-loop has infinitely many indecomposable representation, which are $V = \mathbb{C}^n$ and f is a $n \times n$ Jordan block.
Indecomposable Representations

Definition
A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Example
The quiver consisting of one vertex and one self-loop has infinitely many indecomposable representation, which are $V = \mathbb{C}^n$ and f is a $n \times n$ Jordan block.

Remark
Considering indecomposable representations are helpful because they can be thought of building blocks for all representations.
Gabriel’s Theorem
Roots

We first begin by defining roots
Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is $A_\Gamma = 2I - R_\Gamma$.
We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma} = 2I - R_{\Gamma}$.

Definition

A_{Γ} defines an inner product $B(x, y) = x^T A_{\Gamma} y$.
Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma} = 2I - R_{\Gamma}$.

Definition

A_{Γ} defines an inner product $B(x, y) = x^T A_{\Gamma} y$.

Definition

A root is a vector α with integer components which takes the smallest possible value of $B_{\Gamma}(x, x)$.
We first begin by defining roots

Definition

Let Γ denote a graph and R_Γ be the adjacency matrix. The Cartan matrix of Γ is

$$A_\Gamma = 2I - R_\Gamma.$$

Definition

A_Γ defines an inner product $B(x, y) = x^T A_\Gamma y$.

Definition

A root is a vector α with integer components which takes the smallest possible value of $B_\Gamma(x, x)$.

Proposition

There are finitely many roots of B_Γ.
Definition

A simple root α_i is in the form $\alpha_i = (0, \ldots, 1, \ldots, 0)$ where the ith term is 1.
Definition

A simple root \(\alpha_i \) is in the form \(\alpha_i = (0, \ldots, 1, \ldots, 0) \) where the \(i \)th term is 1.

Lemma

For a root \(\alpha = \sum_{i=1}^{n} k_i \alpha_i \), either all \(k_i \geq 0 \) or all \(k_i \leq 0 \).
Definition
A simple root α_i is in the form $\alpha_i = (0, \ldots, 1, \ldots, 0)$ where the ith term is 1.

Lemma
For a root $\alpha = \sum_{i=1}^{n} k_i \alpha_i$, either all $k_i \geq 0$ or all $k_i \leq 0$.

Definition
A root $\alpha = \sum_{i=1}^{n} k_i \alpha_i$ is called a positive root if $k_i \geq 0$ for all i.
Definition
The dimension vector of a representation \(V = (V_1, \ldots, V_n) \) of \(Q \) is

\[
d(V) = (\dim(V_1), \ldots, \dim(V_n)).
\]
Gabriel’s Theorem

Definition

The dimension vector of a representation $V = (V_1, \ldots, V_n)$ of Q is

$$d(V) = (\dim(V_1), \ldots, \dim(V_n)).$$

Theorem

A quiver Q of type A_n, D_n, E_6, E_7, E_8, has finitely many indecomposable representations. Furthermore, the dimension vector of an indecomposable representation corresponds with a positive root and every positive root corresponds with one indecomposable representation.
Gabriel’s Theorem

Definition
The dimension vector of a representation $V = (V_1, \ldots, V_n)$ of Q is

$$d(V) = (\dim(V_1), \ldots, \dim(V_n)).$$

Theorem
A quiver Q of type A_n, D_n, E_6, E_7, E_8, has finitely many indecomposable representations. Furthermore, the dimension vector of an indecomposable representation corresponds with a positive root and every positive root corresponds with one indecomposable representation.

Remark
The proof of this theorem involves looking at reflection functors, which preserves indecomposable representations and dimension.
The Triples of Subspaces Problem
The Triples of Subspaces Problem

The Problem

Consider the quiver D_4 with the following orientation of arrows and labeling of vertices.

We want to find indecomposable representations of the above quiver.

While we could do a similar process as with the pairs of subspaces problem, the process is much more complicated.
The Triples of Subspaces Problem

The Problem

Idea

Consider the quiver D_4 with the following orientation of arrows and labelling of vertices.
The Triples of Subspaces Problem

The Problem

Idea

Consider the quiver D_4 with the following orientation of arrows and labelling of vertices.

\[\begin{array}{c}
2 & \rightarrow & 1 & \leftarrow & 4 \\
\uparrow & & & & \\
\downarrow & & & & \\
3 & & & &
\end{array} \]
The Triples of Subspaces Problem

The Problem

Idea

Consider the quiver D_4 with the following orientation of arrows and labelling of vertices.

```
2 ---> 1  <--- 4
   |    ↑
  3
```

We want to find indecomposable representations of the above quiver.
Consider the quiver D_4 with the following orientation of arrows and labelling of vertices.

We want to find indecomposable representations of the above quiver. While we could do a similar process as with the pairs of subspaces problem, the process is much more complicated.
Using Gabriel’s Theorem

Gabriel’s Theorem states that the dimension vectors of the indecomposable representations and the positive roots of Γ have a 1-to-1 correspondence. If we can find the positive roots of Γ_{D_4}, we can match these with indecomposable representations of D_4.

Hou, Rabinovitz, Zhao (PRIMES)
Gabriel’s Theorem and the Subspaces Problem
May 19, 2024
Using Gabriel’s Theorem

Gabriel’s Theorem
Gabriel’s Theorem states that the dimension vectors of the indecomposable representations and the positive roots of $B\Gamma$ have a 1-to-1 correspondence.
Using Gabriel’s Theorem

Gabriel’s Theorem

Gabriel’s Theorem states that the dimension vectors of the indecomposable representations and the positive roots of $B_Γ$ have a 1-to-1 correspondence.

If we can find the positive roots of B_{D_4}, we can match these with indecomposable representations of D_4.
Solving the Problem

To compute the positive roots of B^D_4, we first compute the adjacency matrix R^D_4 as follows.

$$R^D_4 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

We can then compute A^D_4 by using the formula $A^D_4 = 2I_4 - R^D_4$.

$$A^D_4 = \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix}$$
Solving the Problem

Solution

To compute the positive roots of B_{D_4}, we first compute the adjacency matrix R_{D_4} as follows.

\[
R_{D_4} = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

We can then compute A_{D_4} by using the formula $A_{D_4} = 2I - R_{D_4}$.
Solving the Problem

Solution

To compute the positive roots of B_{D_4}, we first compute the adjacency matrix R_{D_4} as follows.

$$R_{D_4} = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$
Solving the Problem

Solution

To compute the positive roots of B_{D_4}, we first compute the adjacency matrix R_{D_4} as follows.

$$R_{D_4} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

We can then compute A_{D_4} by using the formula $A_{D_4} = 2I_d - R_{D_4}$.
Solving the Problem

Solution

To compute the positive roots of B_{D_4}, we first compute the adjacency matrix R_{D_4} as follows.

$$R_{D_4} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

We can then compute A_{D_4} by using the formula $A_{D_4} = 2\text{Id} - R_{D_4}$.

$$A_{D_4} = \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix}$$
Solving the Problem

Solution

Let $B(x, x) = x^T A_{D_4} x = 2$ where x is a root and let x be some vector in \mathbb{Z}^4 such that $x = (a, b, c, d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.

Carrying out the multiplication we get

$$B(x, x) = (a, b, c, d) \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = 2a^2 + 2b^2 + 2c^2 + 2d^2 - 2ab - 2ac - 2ad = 2.$$
Solving the Problem

Solution

Let $B(x, x) = x^T A_{D_4} x = 2$ where x is a root and let x be some vector in \mathbb{Z}^4 such that $x = (a \ b \ c \ d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.

Carrying out the multiplication we get
Solving the Problem

Solution

Let $B(x, x) = x^T A_{D_4} x = 2$ where x is a root and let x be some vector in \mathbb{Z}^4 such that $x = (a \ b \ c \ d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.

Carrying out the multiplication we get

$$B(x, x) = (a \ b \ c \ d) \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
Solving the Problem

Solution

Let $B(x, x) = x^TA_{D_4}x = 2$ where x is a root and let x be some vector in \mathbb{Z}^4 such that $x = (a \ b \ c \ d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.

Carrying out the multiplication we get

\[
B(x, x) = (a \ b \ c \ d) \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = 2a^2 + 2b^2 + 2c^2 + 2d^2 - 2ab - 2ac - 2ad = 2
\]
Solving the Problem

Solution

So we must solve for

\[a^2 + b^2 + c^2 + d^2 - ab - ac - ad = 1 \]
Solving the Problem

Solution

So we must solve for

\[a^2 + b^2 + c^2 + d^2 - ab - ac - ad = 1 \]

It turns out that there are only 12 solutions to this equation where \(a, b, c, d \geq 0 \). These solutions are:

- \((1, 0, 0, 0)\)
- \((0, 1, 0, 0)\)
- \((0, 0, 1, 0)\)
- \((0, 0, 0, 1)\)
- \((1, 1, 0, 0)\)
- \((1, 0, 1, 0)\)
- \((1, 0, 0, 1)\)
- \((1, 1, 1, 0)\)
- \((1, 1, 0, 1)\)
- \((1, 0, 1, 1)\)
- \((1, 1, 1, 1)\)
- \((2, 1, 1, 1)\)
Solving the Problem

Solution

So we must solve for

\[a^2 + b^2 + c^2 + d^2 - ab - ac - ad = 1 \]

It turns out that there are only 12 solutions to this equation where \(a, b, c, d \geq 0 \). These solutions are:

\[
\begin{align*}
(1 & 0 & 0 & 0) & (0 & 1 & 0 & 0) & (0 & 0 & 1 & 0) & (0 & 0 & 0 & 1) \\
(1 & 1 & 0 & 0) & (1 & 0 & 1 & 0) & (1 & 0 & 0 & 1) & (1 & 1 & 1 & 0) \\
(1 & 1 & 0 & 1) & (1 & 0 & 1 & 1) & (1 & 1 & 1 & 1) & (2 & 1 & 1 & 1)
\end{align*}
\]
The Solution

Solution

These solutions correspond to the following indecomposable representations.
The Solution

These solutions correspond to the following indecomposable representations:

\[
\begin{array}{cccccccccccc}
0 \rightarrow & 1 & \leftarrow & 0 & 1 \rightarrow & 0 & \leftarrow & 0 & 0 \rightarrow & 0 & \leftarrow & 0 & 0 \rightarrow & 0 & \leftarrow & 1 \\
\uparrow & & & & \uparrow \\
0 & & & & 0 & & & & 1 & & & & 0 & & & & 0 \\
1 \rightarrow & 1 & \leftarrow & 0 & 0 \rightarrow & 1 & \leftarrow & 0 & 0 \rightarrow & 1 & \leftarrow & 1 & 1 \rightarrow & 1 & \leftarrow & 0 \\
\uparrow & & & & \uparrow \\
0 & & & & 1 & & & & 0 & & & & 1 & & & & 1 \\
1 \rightarrow & 1 & \leftarrow & 1 & 0 \rightarrow & 1 & \leftarrow & 1 & 1 \rightarrow & 1 & \leftarrow & 1 & 1 \rightarrow & 1 & \leftarrow & 2 & \leftarrow & 1 \\
\uparrow & & & & \uparrow \\
0 & & & & 1 & & & & 1 & & & & 1 & & & & 1 \\
\end{array}
\]
The Triples of Subspaces Problem

The Solution

Solution

Note that 3 of these solutions are not injective and thus, cannot contribute to our triples of subspaces problem. Specifically, these are the following indecomposable representations:
Note that 3 of these solutions are not injective and thus, cannot contribute to our triples of subspaces problem. Specifically, these are the following indecomposable representations:

\[
\begin{array}{c}
1 \\
\uparrow \\
0
\end{array}
\quad
\begin{array}{c}
0 & 0 & 0 \\
\uparrow & \uparrow & \\
0 & 0 & 0
\end{array}
\quad
\begin{array}{c}
0 \\
\uparrow \\
1
\end{array}
\quad
\begin{array}{c}
0 \\
\uparrow \\
0
\end{array}
\quad
\begin{array}{c}
1
\end{array}
\]
Relating Back to the Triples of Subspaces Problem
The Problem

Can we classify up to isomorphism all quadruples \((V, W_1, W_2, W_3)\) of finite-dimensional vector spaces such that \(W_1, W_2, W_3\) are subspaces of \(V\)?
Relating Back to the Triples of Subspaces Problem

The Problem

Can we classify up to isomorphism all quadruples \((V, W_1, W_2, W_3)\) of finite-dimensional vector spaces such that \(W_1, W_2, W_3\) are subspaces of \(V\)?

We can relate this to the quivers we found by letting the numbers at each vertex represent the dimensions of \(V, W_1, W_2,\) and \(W_3\).
Relating Back to the Triples of Subspaces Problem

Using a method similar to the beginning of the presentation, paired with the indecomposable representations, we can deduce the following.

\[W_1 \oplus W_2 \oplus W_3 \cong L_{m_1} I_{m_1} \] where the \(I \) are the indecomposable representations and \(m_I \) is its multiplicity.
Solution

Using a method similar to the beginning of the presentation, paired with the indecomposable representations, we can deduce the following.
Relating Back to the Triples of Subspaces Problem

Solution

Using a method similar to the beginning of the presentation, paired with the indecomposable representations, we can deduce the following.

\[W_1 \rightarrow V \leftarrow W_3 \]

\[W_2 \]

is \(\bigoplus_I m_I \cdot I \) where the \(I \) are the indecomposable representations and \(m_I \) is its multiplicity.
Relating Back to the Triples of Subspaces Problem
Solution

\[0 \rightarrow 1 \leftarrow 0 \]

For this representation, the multiplicity of it is equal to the dimension of the complement of \(W_1 + W_2 + W_3 \) in \(V \).
Relating Back to the Triples of Subspaces Problem

Solution

0 → 1 ← 0

For this representation, the multiplicity of it is equal to the dimension of the complement of $W_1 + W_2 + W_3$ in V.

1 → 1 ← 0

For this case, if we let W_4 be the intersection of W_1, W_2, and W_3 and W_5 be the complement of W_4 in W_1, then the multiplicity is the dimension of the direct sum of the complement of $W_1 + W_2 + W_3$ in V and W_5.
Acknowledgements

Thank you, PRIMES and parents!

We would like to thank our mentor, Serina Hu, PRIMES coordinators Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova, everybody behind the PRIMES program, as well as our parents!

Also a big thank you to Prof. Etingof for his book *Introduction to Representation Theory* in which this presentation is based upon.