Gabriel's Theorem and the Subspaces Problem

Sophia Hou, Henrick Rabinovitz, and Derek Zhao

MIT PRIMES
Mentor: Serina Hu

May 19, 2024

Outline

(1) The Pairs of Subspaces Problem
(2) Quiver Representations
(3) Gabriel's Theorem

4 The Triples of Subspaces Problem

The Pairs of Subspaces Problem

One-Subspace Problem

Note
All spaces will be assumed to be complex vector spaces.

One-Subspace Problem

One-Subspace Problem

Idea
Can we classify all cases in which one space is a subspace of another?

One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?
To make this more manageable:

One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?
To make this more manageable:

- We consider only finite dimensional spaces.

One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?
To make this more manageable:

- We consider only finite dimensional spaces.
- We only care about spaces and their subspaces up to isomorphism

One-Subspace Problem

Idea

Can we classify all cases in which one space is a subspace of another?
To make this more manageable:

- We consider only finite dimensional spaces.
- We only care about spaces and their subspaces up to isomorphism

Definition (Isomorphism)

We say a vector space V is isomorphic to V^{\prime} if there exists an isomorphism, defined to be a bijective linear map, from V to V^{\prime}. For pairs (V, W) where W is a subspace of V, we define an isomorphism from (V, W) to $\left(V^{\prime}, W^{\prime}\right)$ to be an isomorphism from V to V^{\prime} that takes W to W^{\prime}.

One-Subspace Problem

One-Subspace Problem

Refinement

Can we classify, up to isomorphism, all pairs of spaces (V, W) where W is a subspace of V and both spaces are finite dimensional?

Solution One-Subspace Problem

(1) $\operatorname{dim} V \geq \operatorname{dim} W \geq 0$.
(2) Let $\operatorname{dim} W=m$ and $\operatorname{dim} V=m+n$.
(3) Extend a basis of m elements for W to a basis of $m+n$ elements for V; let the additional n elements generate W^{\prime}.
(9) Then $V \cong W \oplus W^{\prime}, W \cong \mathbb{C}^{m}, W^{\prime} \cong \mathbb{C}^{n}$.
(5) Thus, our classification is pairs of the form $\left(\mathbb{C}^{m} \oplus \mathbb{C}^{n}, \mathbb{C}^{n}\right)$.

Pairs of Subspaces Problem

To make a harder problem, we consider two subspaces instead of just one:

Problem

Can we classify up to isomorphism all triples (V, W_{1}, W_{2}) of finite-dimensional vector spaces such that W_{1} and W_{2} are subspaces of V ?

We will solve this in a series of steps.

Step 1: Remove Excess

Step 1

Consider the subpspace $W_{1}+W_{2}$ of V. As we did for the one-subspace problem, get a complement of this subspace in V, W_{3}. Then $V=\left(W_{1}+W_{2}\right) \oplus W_{3}$.

Step 2: Remove Intersection

Step 2

Let the intersection of W_{1} and W_{2} be W_{0}. Let W_{4} and W_{5} be complements of W_{0} in W_{1} and W_{2} respectively. Then $W_{1}=W_{0} \oplus W_{4}$, $W_{2}=W_{0} \oplus W_{5}$, and $W_{1}+W_{2}=W_{3} \oplus W_{4} \oplus W_{5}$.

Step 3: Putting it Together

Step 3

$V=\left(W_{1}+W_{2}\right) \oplus W_{3}=W_{0} \oplus W_{3} \oplus W_{4} \oplus W_{5}, W_{1}=W_{0} \oplus W_{4}$, and $W_{2}=W_{0} \oplus W_{5}$. Letting a, b, c, d be the dimensions of $W_{0}, W_{3}, W_{4}, W_{5}$ respectively, our classification is:

$$
\left(\mathbb{C}^{a} \oplus \mathbb{C}^{b} \oplus \mathbb{C}^{c} \oplus \mathbb{C}^{d}, \mathbb{C}^{a} \oplus \mathbb{C}^{c}, \mathbb{C}^{a} \oplus \mathbb{C}^{d}\right)
$$

Quiver Representations

Quivers

Definition

A quiver is a directed graph.

Quivers

Definition

A quiver is a directed graph.

Examples

Quivers

Definition

A quiver is a directed graph.

Examples

Quivers

Definition

A quiver is a directed graph.

Examples

Dynkin Diagrams

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Dynkin Diagrams

Definition
 Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} is called a Dynkin diagram if positive definite.

Dynkin Diagrams

Definition
 Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} is called a Dynkin diagram if positive definite.

Examples A_{n} :

Dynkin Diagrams

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} is called a Dynkin diagram if positive definite.

Dynkin Diagrams

Examples

E_{6} :

Dynkin Diagrams

Examples

E_{6} :

$E_{7}:$

Dynkin Diagrams

E_{8} :

Quiver Representation

Quiver Representations can help us solve problems.

Quiver Representation

Quiver Representations can help us solve problems.

Examples

(1) Classifying representations of A_{2} solves the one subspace problem.

Quiver Representation

Quiver Representations can help us solve problems.

Examples

(1) Classifying representations of A_{2} solves the one subspace problem.
(2) Classifying representations of A_{3} solves the pair of subspaces problem.

Quiver Representation

Quiver Representations can help us solve problems.

Examples

(1) Classifying representations of A_{2} solves the one subspace problem.
(2) Classifying representations of A_{3} solves the pair of subspaces problem.
(3) Classifying representations of D_{4} solves the triples of subspaces problem.

Quiver Representation

Definition

A representation of a quiver Q is an assignment of each vertex i to a vector space V_{i} and each edge $h_{i j}$ to a linear map $x_{i j}: V_{i} \rightarrow V_{j}$.

Quiver Representation

Definition

A representation of a quiver Q is an assignment of each vertex i to a vector space V_{i} and each edge $h_{i j}$ to a linear map $x_{i j}: V_{i} \rightarrow V_{j}$.

Definition

A subrepresentation (W, y) of a quiver Q satisfies $W_{i} \subset V_{i}$ for all i and $y_{i j}: W_{i} \rightarrow W_{j}$ is a linear map.

Quiver Representation

Definition

A representation of a quiver Q is an assignment of each vertex i to a vector space V_{i} and each edge $h_{i j}$ to a linear map $x_{i j}: V_{i} \rightarrow V_{j}$.

Definition

A subrepresentation (W, y) of a quiver Q satisfies $W_{i} \subset V_{i}$ for all i and $y_{i j}: W_{i} \rightarrow W_{j}$ is a linear map.

Definition

The direct sum of two representations (V, x) and (W, y) is $(V \oplus W, x \oplus y)$.

Indecomposable Representations

Definition

A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Indecomposable Representations

Definition

A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Example

The quiver consisting of one vertex and one self-loop has infinitely many indecomposable representation, which are $V=\mathbb{C}^{n}$ and f is a $n \times n$ Jordan block.

Indecomposable Representations

Definition

A representation of a quiver is indecomposable if it cannot be written as the direct sum of subrepresentations.

Example

The quiver consisting of one vertex and one self-loop has infinitely many indecomposable representation, which are $V=\mathbb{C}^{n}$ and f is a $n \times n$ Jordan block.

Remark

Considering indecomposable representations are helpful because they can be thought of building blocks for all representations.

Gabriel's Theorem

Roots

We first begin by defining roots

Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} defines an inner product $B(x, y)=x^{T} A_{\Gamma} y$.

Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} defines an inner product $B(x, y)=x^{T} A_{\Gamma} y$.

Definition

A root is a vector α with integer components which takes the smallest possible value of $B_{\Gamma}(x, x)$.

Roots

We first begin by defining roots

Definition

Let Γ denote a graph and R_{Γ} be the adjacency matrix. The Cartan matrix of Γ is $A_{\Gamma}=2 I-R_{\Gamma}$.

Definition

A_{Γ} defines an inner product $B(x, y)=x^{\top} A_{\Gamma} y$.

Definition

A root is a vector α with integer components which takes the smallest possible value of $B_{\Gamma}(x, x)$.

Proposition

There are finitely many roots of B_{Γ}.

Roots

Definition

A simple root α_{i} is in the form $\alpha_{i}=(0, \ldots, 1, \ldots, 0)$ where the i th term is 1.

Roots

Definition

A simple root α_{i} is in the form $\alpha_{i}=(0, \ldots, 1, \ldots, 0)$ where the i th term is 1.

Lemma

For a root $\alpha=\sum_{i=1}^{n}=k_{i} \alpha_{i}$, either all $k_{i} \geq 0$ or all $k_{i} \leq 0$.

Roots

Definition

A simple root α_{i} is in the form $\alpha_{i}=(0, \ldots, 1, \ldots, 0)$ where the i th term is 1.

Lemma

For a root $\alpha=\sum_{i=1}^{n}=k_{i} \alpha_{i}$, either all $k_{i} \geq 0$ or all $k_{i} \leq 0$.

Definition

A root $\alpha=\sum_{i=1}^{n}=k_{i} \alpha_{i}$ is called a positive root if $k_{i} \geq 0$ for all i.

Gabriel's Theorem

Definition

The dimension vector of a representation $V=\left(V_{1}, \ldots, V_{n}\right)$ of Q is

$$
d(V)=\left(\operatorname{dim}\left(V_{1}\right), \ldots, \operatorname{dim}\left(V_{n}\right)\right) .
$$

Gabriel's Theorem

Definition

The dimension vector of a representation $V=\left(V_{1}, \ldots, V_{n}\right)$ of Q is

$$
d(V)=\left(\operatorname{dim}\left(V_{1}\right), \ldots, \operatorname{dim}\left(V_{n}\right)\right) .
$$

Theorem

A quiver Q of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$, has finitely many indecomposable representations. Furthermore, the dimension vector of an indecomposable representation corresponds with a positive root and every positive root corresponds with one indecomposable representation.

Gabriel's Theorem

Definition

The dimension vector of a representation $V=\left(V_{1}, \ldots, V_{n}\right)$ of Q is

$$
d(V)=\left(\operatorname{dim}\left(V_{1}\right), \ldots, \operatorname{dim}\left(V_{n}\right)\right)
$$

Theorem

A quiver Q of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$, has finitely many indecomposable representations. Furthermore, the dimension vector of an indecomposable representation corresponds with a positive root and every positive root corresponds with one indecomposable representation.

Remark

The proof of this theorem involves looking at reflection functors, which preserves indecomposable representations and dimension.

The Triples of Subspaces Problem

The Problem

The Problem

Idea

Consider the quiver D_{4} with the following orientation of arrows and labelling of vertices.

The Problem

Idea

Consider the quiver D_{4} with the following orientation of arrows and labelling of vertices.

The Problem

Idea

Consider the quiver D_{4} with the following orientation of arrows and labelling of vertices.

We want to find indecomposable representations of the above quiver.

The Problem

Idea

Consider the quiver D_{4} with the following orientation of arrows and labelling of vertices.

We want to find indecomposable representations of the above quiver. While we could do a similar process as with the pairs of subspaces problem, the process is much more complicated.

Using Gabriel's Theorem

Using Gabriel's Theorem

Gabriel's Theorem

Gabriel's Theorem states that the dimension vectors of the indecomposable representations and the positive roots of B_{Γ} have a 1-to-1 correspondence.

Using Gabriel's Theorem

Gabriel's Theorem

Gabriel's Theorem states that the dimension vectors of the indecomposable representations and the positive roots of B_{Γ} have a 1-to-1 correspondence.

If we can find the the positive roots of $B_{D_{4}}$, we can match these with indecomposable representations of D_{4}.

Solving the Problem

Solving the Problem

Solution

To compute the positive roots of $B_{D_{4}}$, we first compute the adjacency matrix $R_{D_{4}}$ as follows.

Solving the Problem

Solution

To compute the positive roots of $B_{D_{4}}$, we first compute the adjacency matrix $R_{D_{4}}$ as follows.

$$
R_{D_{4}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Solving the Problem

Solution

To compute the positive roots of $B_{D_{4}}$, we first compute the adjacency matrix $R_{D_{4}}$ as follows.

$$
R_{D_{4}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We can then compute $A_{D_{4}}$ by using the formula $A_{D_{4}}=2 \mathrm{ld}-R_{D_{4}}$.

Solving the Problem

Solution

To compute the positive roots of $B_{D_{4}}$, we first compute the adjacency matrix $R_{D_{4}}$ as follows.

$$
R_{D_{4}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We can then compute $A_{D_{4}}$ by using the formula $A_{D_{4}}=2 \mathrm{ld}-R_{D_{4}}$.

$$
A_{D_{4}}=\left(\begin{array}{cccc}
2 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 2 & 0 \\
-1 & 0 & 0 & 2
\end{array}\right)
$$

Solving the Problem

Solution

Let $B(x, x)=x^{T} A_{D_{4} x}=2$ where x is a root and let x be some vector in \mathbb{Z}^{4} such that $x=(a b c d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.

Solving the Problem

Solution

Let $B(x, x)=x^{T} A_{D_{4} x}=2$ where x is a root and let x be some vector in \mathbb{Z}^{4} such that $x=(a b c d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.
Carrying out the multiplication we get

Solving the Problem

Solution

Let $B(x, x)=x^{T} A_{D_{4}} x=2$ where x is a root and let x be some vector in \mathbb{Z}^{4} such that $x=(a b c d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.
Carrying out the multiplication we get

$$
B(x, x)=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
2 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 2 & 0 \\
-1 & 0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Solving the Problem

Solution

Let $B(x, x)=x^{T} A_{D_{4}} x=2$ where x is a root and let x be some vector in \mathbb{Z}^{4} such that $x=(a b c d)$ for some $a, b, c, d \in \mathbb{Z}$. Then in order for x to be a positive root, we want $a, b, c, d \geq 0$.
Carrying out the multiplication we get

$$
\begin{aligned}
& B(x, x)=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
2 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 2 & 0 \\
-1 & 0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \\
& =2 a^{2}+2 b^{2}+2 c^{2}+2 d^{2}-2 a b-2 a c-2 a d=2
\end{aligned}
$$

Solving the Problem

Solution

So we must solve for

$$
a^{2}+b^{2}+c^{2}+d^{2}-a b-a c-a d=1
$$

Solving the Problem

Solution

So we must solve for

$$
a^{2}+b^{2}+c^{2}+d^{2}-a b-a c-a d=1
$$

It turns out that there are only 12 solutions to this equation where $a, b, c, d \geq 0$. These solutions are:

Solving the Problem

Solution

So we must solve for

$$
a^{2}+b^{2}+c^{2}+d^{2}-a b-a c-a d=1
$$

It turns out that there are only 12 solutions to this equation where $a, b, c, d \geq 0$. These solutions are:
$(1000) \quad(0100) \quad(0010) \quad(0001)$
$(1100)(1010)$
(1001) (1110)
$(1101) \quad(1011) \quad(1111) \quad(2111)$

The Solution

Solution

These solutions correspond to the following indecomposable representations

The Solution

Solution

These solutions correspond to the following indecomposable representations

The Solution

Solution

Note that 3 of these solutions are not injective and thus, cannot contribute to our triples of subspaces problem. Specifically, these are the following indecomposable representations:

The Solution

Solution

Note that 3 of these solutions are not injective and thus, cannot contribute to our triples of subspaces problem. Specifically, these are the following indecomposable representations:

Relating Back to the Triples of Subspaces Problem

Relating Back to the Triples of Subspaces Problem

The Problem
Can we classify up to isomorphism all quadruples (V, W_{1}, W_{2}, W_{3}) of finite-dimensional vector spaces such that W_{1}, W_{2}, W_{3} are subspaces of V ?

Relating Back to the Triples of Subspaces Problem

The Problem
Can we classify up to isomorphism all quadruples (V, W_{1}, W_{2}, W_{3}) of finite-dimensional vector spaces such that W_{1}, W_{2}, W_{3} are subspaces of V ?

We can relate this to the quivers we found by letting the numbers at each vertex represent the dimensions of V, W_{1}, W_{2}, and W_{3}.

Relating Back to the Triples of Subspaces Problem

Relating Back to the Triples of Subspaces Problem

Solution

Using a method similar to the beginning of the presentation, paired with the indecomposable representations, we can deduce the following.

Relating Back to the Triples of Subspaces Problem

Solution

Using a method similar to the beginning of the presentation, paired with the indecomposable representations, we can deduce the following.

W_{2}
is $\bigoplus_{l} m_{l} \cdot l$ where the l are the indecomposable representations and m_{l} is its multiplicity.

Relating Back to the Triples of Subspaces Problem

Relating Back to the Triples of Subspaces Problem

Solution

For this representation, the multiplicity of it is equal to the dimension of the complement of $W_{1}+W_{2}+W_{3}$ in V.

Relating Back to the Triples of Subspaces Problem

Solution

For this representation, the multiplicity of it is equal to the dimension of the complement of $W_{1}+W_{2}+W_{3}$ in V.
$1 \longrightarrow \underset{\uparrow}{\substack{1}} \underset{ }{1} \longleftarrow 0$
For this case, if we let W_{4} be the intersection of W_{1}, W_{2}, and W_{3} and W_{5} be the complement of W_{4} in W_{1}, then the multiplicity is the dimension of the direct sum of the complement of $W_{1}+W_{2}+W_{3}$ in V and W_{5}.

Acknowledgements

Thank you, PRIMES and parents!

We would like to thank our mentor, Serina Hu, PRIMES coordinators Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova, everybody behind the PRIMES program, as well as our parents!

Also a big thank you to Prof. Etingof for his book Introduction to Representation Theory in which this presentation is based upon.

