
Tetrahedron-intersecting families of 3-uniform hypergraphs

Nitya Mani Owen Jianwen Zhang

May 7, 2025

Abstract

An H-intersecting family is a collection of (hyper)graphs F on a fixed underlying set of la-
beled vertices, such that for each pair G1, G2 ∈ F , the intersection G1∩G2 contains a subgraph
isomorphic to H. Understanding how large F can be for a given H is of great importance in ex-
tremal combinatorics and theoretical computer science. Ellis, Filmus, and Friedgut conjectured
a tight upper bound on the size of a Kt-intersecting family, but only the cases of t = 3 and
t = 4 have been resolved (by Ellis, Filmus, and Friedgut, and Berger and Zhao respectively).
We resolve the case t = 5. We also give the first resolution of an analogous conjecture in the
hypergraph setting, giving a tight bound on the size of a tetrahedron-intersecting family of
3-uniform hypergraphs.

1 Introduction

Intersection problems in theoretical computer science and extremal combinatorics have a rich his-
tory, with their study dating back to the early 1900s [Ell22]. Such questions broadly have the
following flavor:

How large can a family F of subsets of some ground set Ω be, if for every pair of elements
G1, G2 ∈ F , the intersection G1 ∩G2 must satisfy some property?

One of the most basic intersecting families problems has a very simple solution: how large
can a family F of subsets of [n] := {1, . . . , n} be so that every pair of sets in F has nonempty
intersection? Taking all subsets of [n] that contain {1} gives an intersecting family F of size 2n−1;
this bound is tight, as can be seen by noticing that for any S ⊂ [n], we cannot have both S and
S = [n]\S in F . One of the oldest and one of the most famous results in the area is the Erdős-Ko-
Rado theorem [EKR61], which gives a tight upper bound on the maximum size of an intersecting
family of size k subsets of {1, . . . , n}. Since the 1930s, a wide variety of intersection problems
over the integers, permutations, graphs, groups, and other combinatorial objects have been heavily
studied, but many basic questions remain open [EFF12, EKR61, CGFS86, Wil84, Kat64, FW81,
FR87, DEF78, FW86, JT08, Fri08]. This work focuses on H-intersecting families of (hyper)graphs,
one example of a heavily studied problem where basic, natural-sounding questions have remained
unanswered for decades.

Definition 1.1 (H-intersecting family). Let H be a fixed, unlabeled graph. A family F of graphs
on n labeled vertices is H-intersecting if the intersection of any two graphs in F contains some
subgraph isomorphic to H.

1

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1: A triangle-intersecting family of graphs on 6 labeled vertices.

In 1976, Simonovits and Sós conjectured that the largest triangle-intersecting family of graphs

on n labeled vertices has size at most 2(
n
2)−3, tight only when every graph in the family contains

some fixed triangle. We call such a family of graphs a △-umvirate.

Definition 1.2 (H-umvirate). A family F of graphs on vertex set [n] is an H-umvirate, if F
consists of all graphs on [n] that contain a single fixed copy of H as a subgraph.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 2: A triangle-intersecting family of graphs on 4 labeled vertices with size 2(
4
2)−3, consisting

of all graphs containing the triangle with vertices 1, 2 and 3.

Little progress was made until 1984, when Chung, Graham, Frankl and Shearer [CGFS86]

proved an upper bound of 2(
n
2)−2 (falling short of the Simonovits-Sós conjecture by a factor of 2)

by bounding the entropy of a random graph within a triangle-intersecting family. In the course of
establishing this upper bound, they developed the ubiquitous entropy method, introducing Shearer’s
inequality, just one example of a technical contribution with outsized impact made while studying
an intersection problem. Finally, in 2010, Ellis, Filmus, and Friedgut [EFF12] used Fourier analytic
methods to prove the Simonovits-Sós conjecture, hence resolving the case where H is a triangle.

Theorem 1.3 (Theorem 1.4 in [EFF12], conjectured by Simonovits-Sós). Let F be a triangle-

intersecting family of graphs on [n] := {1, 2, . . . , n}. Then, |F| ≤ 2(
n
2)−3, and the above upper

bound is an equality if and only if F is a △-umvirate.

For the case when H is a complete graph, Ellis, Filmus, and Friedgut [EFF12] formally posed
the following generalization of the Simonovits-Sós conjecture:

2

Conjecture 1.4 (Subsection 6.3 in [EFF12]). Let F be a Kt-intersecting family of graphs on [n].

• (Upper bound) |F| ≤ 2(
n
2)−(

t
2).

• (Uniqueness) The above upper bound is an equality if and only if F is a Kt-umvirate.

In 2021, Berger and Zhao [BZ23] extended the methods of Ellis, Filmus, and Friedgut [EFF12]
to prove Conjecture 1.4 for t = 4 via a linear-programming approach. Both Ellis, Filmus, and
Friedgut [EFF12] and Berger and Zhao [BZ23] gave additional stability results, showing that for
t = 3, 4, nearly optimal Kt-intersecting families must be very close to a Kt-umvirate. It is natural
to wonder if Conjecture 1.4 generalizes to all subgraphs H. Unfortunately, this is not the case, as in
general an H-intersecting family can be a constant factor larger than an H-umvirate. As discussed
in [BZ23], Noga Alon showed that for every fixed star forest H, the largest H-intersecting family

on n vertices has size (1 − o(1))2(
n
2)−1 (a bound that is tight, as an H-intersecting family must

be intersecting and thus cannot contain both a graph and its complement). He further posed the
following conjecture.

Conjecture 1.5 (Noga Alon). There is a universal constant c > 0 such that for H not a star

forest, the largest H-intersecting family on n vertices has size at most (1− c)2(
n
2)−1.

Given the resolution of triangle-intersecting families, it would suffice to verify this conjecture
for H = P4 a path with 3 edges, but it is known that the largest P4-intersecting family is not always
a P4-umvirate (see Subsection 6.3 of [EFF12] for further discussion). Nonetheless, Conjecture 1.4
is widely believed to be true for all Kt, despite only being known to hold in the t = 3 and t = 4
settings. Verifying Conjecture 1.4 for K4-intersecting families in [BZ23] involved computationally
verifying all “small” graphs. This work additionally gave a framework that could theoretically
verify Conjecture 1.4 for any t ≥ 3 given enough computing power. However, going beyond t = 4
using their argument is quite difficult due to the rate at which the number of possible graphs grows
(super-exponentially), causing their methods to require an infeasible amount of computing power
for even t = 5.

Another natural generalization of the Simonovits-Sós conjecture is to consider higher-dimensional
combinatorial structures. A 3-uniform hypergraph G = (V,E) is given by a collection of vertices V
and an edge set E that comprises a collection of unordered triples of vertices. As posed in [BZ23]
and informally much earlier, one might wonder if a hypergraph analogue of Conjecture 1.4 holds.

Question 1.6. For complete hypergraphs H, is the largest H-intersecting family of 3-uniform

hypergraphs on n labelled vertices an H-umvirate? If H is complete, is |F| ≤ 2(
n
3)−e(H) for any

H-intersecting family of hypergraphs F?

Our main contribution in this work is to provide an affirmative answer to Question 1.6 for the

smallest non-trivial example of such a hypergraph, the tetrahedron K
(3)
4 , the complete 3-uniform

hypergraph on 4 vertices (see Fig. 3).

Theorem 1.7. Let F be a tetrahedron-intersecting family of 3-uniform hypergraphs on [n]. Then

|F| ≤ 2(
n
3)−4, and the upper bound is an equality if and only if F is a tetrahedron-umvirate.

Our approach to prove Theorem 1.7 also involves computationally verifying all “small” 3-uniform
hypergraphs. However, there are heuristically many more small 3-uniform hypergraphs than graphs,
due to each edge having

(
n
3

)
possibilities as compared to

(
n
2

)
. Hence, it is especially important to

3

v1v3

v2

v4

e3

e4

e1 e2

Figure 3: K
(3)
4 , a tetrahedron.

show tight bounds which minimize the size of the final computation. As a result, the bulk of our
paper consists of a careful graph-theoretic analysis of the intersections of tetrahedron-free 3-uniform
hypergraphs, from which we derive bounds that ensure the resulting computation is feasible.

Along the way, we also resolve Conjecture 1.4 for t = 5, adding to the small collection of graphs
H, for which Conjecture 1.4 is known to hold.

Theorem 1.8. Let F be a K5-intersecting family of graphs on [n]. Then, |F| ≤ 2(
n
2)−(

5
2), and the

above upper bound is an equality if and only if F consists of all graphs containing some fixed K5.

Organization. In Section 2, we summarize the framework in [EFF12, BZ23] that reduces Theo-
rem 1.7 to a linear program. In Section 3, we present our solution to the linear program in Section 2
and verify it for 3-uniform hypergraphs on up to 7 vertices. In Section 4, we verify our solution
for 3-uniform hypergraphs on 8 to 13 vertices. In Section 5, we verify our solution for 3-uniform
hypergraphs on 14 or more vertices, completing the proof of Theorem 1.7. We give a proof of
Theorem 1.8 in Appendix A.

Notation. Throughout, we let [n] := {1, 2, . . . n}. G = (V,E) will always denote a graph or 3-
uniform hypergraph, typically with V = [n], and H will be a small fixed subgraph. All hypergraphs
considered in this paper are 3-uniform, simple hypergraphs (with all distinct edges). We denote by

Kt the complete graph on t vertices and by K
(3)
t the complete hypergraph on t vertices. For any

(hyper)graph G, let V (G) be the vertex set of G with size v(G) = |V (G)| and let E(G) be the edge
set of G with size e(G) = |E(G)|. Given (hyper)graphs G1 = ([n], E1), G2 = ([n], E2) on the same
vertex set, their intersection is the (hyper)graph G1 ∩ G2 = ([n], E1 ∩ E2) comprising the edges
present in both G1 and G2. Given two distinct vertices v1, v2 ∈ G, let their codegree codeg(v1, v2)
be the number of edges e ∈ G with v1, v2 ∈ e. Let ∆(G) be the maximum degree of any vertex in
G, and let ∆2(G) be the maximum codegree of any pair of vertices in G.

4

2 Reduction to a linear program

We begin by recalling the framework of [EFF12, BZ23] used to bound the size of K3 and K4-
intersecting families. In [BZ23], much of this reduction is given in generality for Kt-intersecting
families.

Definition 2.1 (Definition 2.4 [BZ23]). For a graphG on [n], let [q][n] be the set of maps φ : V (G)→
[q], viewed as q-colorings of [n] (not necessarily proper). For each coloring φ : V (G) → [q], define
φ(G) to be the subgraph ofG formed by deleting all monochromatic edges ofG, and then deleting all
isolated vertices that result. Let Gq be the random graph φ(G) given by choosing φ ∼ Unif([q][n]).

In particular, Definition 2.1 ensures that the random graph Gq never contains the complete
graph K(q+1) as a subgraph, which is necessary in the proof of the following proposition—see
[BZ23] for further details.

Proposition 2.2 (Proposition 2.5 in [BZ23]). Suppose there exists t ≥ 3 an integer, {H} a set of

unlabeled graphs, {cH} an associated set of coefficients with c∅ = 2(
t
2) − 1, and δ > 0 a constant,

such that the function

µ(G) := (−1)e(G)
∑
H

cH · P[G(t−1)
∼= H]

satisfies the following conditions:

1. |µ(G)| ≤ 1 whenever 1 ≤ e(G) ≤
(
t
2

)
.

2. |µ(G)| ≤ 1− δ whenever
(
t
2

)
< e(G).

Let F be a Kt-intersecting family of graphs on [n]. Then,

• (Upper bound) |F| ≤ 2(
n
2)−(

t
2).

• (Maximal families) The upper bound is an equality if and only if F is a Kt-umvirate.

In their paper, Berger and Zhao found and verified a satisfactory function µ for Proposition 2.2

with t = 4 and c∅ = 63 = 2(
4
2)− 1, hence proving that the maximal size of a K4-intersecting family

of graphs on [n] is 2(
n
2)−(

4
2).

We adapt Berger and Zhao’s framework to bound the sizes of K
(3)
4 -intersecting families of

hypergraphs. To do so, we will need to devise an analogue of Definition 2.1 that is appropriate for
the tetrahedron-intersecting setting.

Unfortunately, the most natural analogue—coloring vertices one of three colors and deleting

all monochromatic edges does not ensure that the resulting hypergraph never contains K
(3)
4 . This

can be seen as K
(3)
4 itself can be colored with 1, 1, 2, 3 in some order, resulting in no edges being

deleted. So, we must study the following more complicated random subgraph process.

Definition 2.3. For a 3-uniform hypergraph G on [n], let [3][n] be the set of maps φ : V (G)→ [3].
For each φ ∈ [3][n], define φ(G) to be the subgraph of G formed by deleting all monochromatic
edges of G and all edges whose vertex colors sum to 2 mod 3, and then deleting all isolated vertices.
Define G∗ to be the random hypergraph φ(G) given by choosing φ uniformly at random from
[3]V (G).

We will leverage the following straightforward properties of G∗.

5

Observation 2.4. Consider G∗ as in Definition 2.3. Then, we have the following properties.

1. G∗ never contains K
(3)
4 .

2. For any edge e ∈ G, P(e ∈ G∗) = 5/9.

3. Let φ ∈ [3]V (G) be uniformly randomly chosen. For any edge e ∈ G and vertex v ∈ e,
P(e ∈ φ(G) | φ(v)) = 5/9.

4. Let φ ∈ [3]V (G) be uniformly randomly chosen. For any edge e ∈ G and distinct vertices
v1, v2 ∈ e, we have that

P(e ∈ φ(G) | φ(v1) = φ(v2)) =
1

3
, P(e ∈ φ(G) | φ(v1) ̸= φ(v2)) =

2

3
.

Since G∗ never contains K
(3)
4 , we may use it in the hypergraph analogue of Proposition 2.2.

Proven identically, it is as follows:

Proposition 2.5. Suppose there exists a finite set {H} of unlabeled 3-uniform hypergraphs, {cH}
an associated set of coefficients with c∅ = 2(

4
3) − 1 = 15, and δ > 0 a constant, such that the

function

µ(G) := (−1)e(G)
∑
H

cH · P[G∗ ∼= H] (1)

satisfies the following conditions:

1. |µ(G)| ≤ 1 whenever 1 ≤ e(G) ≤ 4.

2. |µ(G)| ≤ 1− δ whenever 4 < e(G).

Let F be a K
(3)
4 -intersecting family of hypergraphs on [n]. Then,

• (Upper bound) |F| ≤ 2(
n
3)−4.

• (Maximal families) The upper bound is an equality if and only if F is a K
(3)
4 -umvirate.

In Berger and Zhao’s paper [BZ23] on K4-intersecting families, they constructed a candidate
µ by providing a finite collection of {cH , H}. They then showed that it sufficed to verify that
Constraint 2 of Proposition 2.2 held for all graphs on at most 9 vertices, and then manually
checking the constraints for all such small graphs. It is natural to expect small graphs G to be the
only ones that contain “binding” constraints; for fixed H, the P[Gq

∼= H] decays to 0 as G grows
large. Hence µ(G) also decays, so for large G it is easier to abstractly verify |µ(G)| < 1 without
actually computing µ(G). There are a limited number of graphs with small v(G), so one might
expect it to be easier to just calculate µ(G) for each individual small G. One can then push these
two methods until they meet.

Unfortunately, such a two-pronged approach cannot be directly applied to K
(3)
4 -intersecting

families. For K
(3)
4 -intersecting families, P[G∗ ∼= H] and hence µ(G) decay significantly slower.

Broadly, this is because for K
(3)
4 -intersecting families, G∗ is expected to have 5/9 the edges of G by

Observation 2.4, whereas the ratio is 3/4 for K4-intersecting families, and so the size of G∗ grows
slower. This implies that G∗ is “sparser” relative to G, and so G would need to be larger for it to
be unlikely that G∗ is the same size as H. Hence, a uniform bound cannot prove µ(G) < 1 unless
it only applies to G with a much larger number of vertices. We must then individually compute

6

µ(G) for all other G, which is computationally infeasible given the super-exponential growth of the
number of hypergraphs on n vertices. This issue is especially bad for hypergraphs (there are over
1019 nonisomorphic 3-uniform hypergraphs on just 9 vertices alone)!

However, the general strategy of “individually check smaller G, get a bound for larger G” still
holds promise. To facilitate this approach, in the rest of the paper, we will carefully analyze the
structure of G∗ to achieve tighter nonuniform bounds on µ(G).

3 A construction for µ

For the remainder of the main body of this article, we study tetrahedron-intersecting families of
hypergraphs. In this section, we give a construction of µ for Proposition 2.5 and verify that the
conditions of Proposition 2.5 hold for all 3-uniform hypergraphs G on up to 7 vertices. In Sec-
tion 4, we verify Proposition 2.5 for all G on between 8 and 13 vertices, and in Section 5 we
verify Proposition 2.5 for all G on 14 or more vertices.

We generate our choice of cH in Python using CVXPY [DB16, AVDB18], a convex programming
solver, to choose a set of coefficients where µ(∅) = c∅ = 15 and satisfying |µ(G)| ≤ 1 for all G ̸= ∅
on up to 7 vertices. Our choices of cH for Proposition 2.5 are listed in Appendix D as Table 2. We
list the subset of cH with notable magnitude in Table 1.

Set of edges of H cH

∅ 15.0

{(1, 2, 3)} −10.2

{(1, 2, 3), (1, 2, 4)} 0.6

{(1, 2, 3), (1, 2, 4), (1, 3, 4)} −6.6

{(1, 2, 5), (1, 3, 4)} 3.48

{(1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5)} −4.249

{(1, 5, 6), (2, 3, 4)} 3.48

{(1, 2, 5), (1, 2, 6), (1, 3, 4)} 1.051

{(1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 4, 5)} 1.28

{(1, 2, 3), (1, 2, 4), (1, 5, 6), (2, 3, 4)} 1.395

{(1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5)} −1.4

{(1, 2, 3), (2, 3, 4), (5, 6, 7)} 4

Table 1: Values of notable cH

It turns out that the coefficients cH for which H ⊆ K
(3)
4 are uniquely determined when c∅ =

2(
4
3) − 1; see Appendix B for a proof. The proof in Appendix B also easily generalizes to Kt-

7

intersecting families and other K
(3)
t -intersecting families for any integer t ≥ 3. Heuristically, we

have less freedom over the choice of cH for small H and more freedom for larger H.
In our choice of coefficients cH , the hypergraphs H with non-zero cH are relatively small in size.

They have at most 6 edges, and furthermore, no hypergraph with 5 or 6 edges has a coefficient of
notable magnitude. Additionally, all but one hypergraph have at most 6 vertices. The one other
hypergraph has 7 vertices, and is the last entry in Table 1. Keeping the H small is beneficial as it
allows P[G∗ ∼= H] and hence µ(G) to decay as quickly as possible with respect to the size of G.

We will prove Proposition 2.5 for this choice of cH via a case analysis on v(G). For each value of
v(G), the list of all 3-uniform hypergraphs on v(G) vertices is generated using SageMath [The25],
which in turn invokes Brendan McKay’s Nauty [MP14].

For a given choice of {cH , H}, it may not be clear at first glance how one would verify |µ(G)| < 1
for all hypergraphs without an infinitely large computation. The key intuition that underpins our
argumentation is that one should only have to individually compute µ(G) for small G, as we should
be able to bound |µ(G)| away from 1 for large G. To demonstrate this, we give a simple bound
that establishes |µ(G)| < 1 for very very large G:

Lemma 3.1 (Terrible bound). With cH chosen as in Table 2, and µ(G) as defined in Eq. (1), we
have that |µ(G)| < 1 for all hypergraphs G with at least 250 vertices.

Proof. We straightforwardly upper bound |µ(G)|, noticing that it’s very unlikely that v(G∗) ≤ 7
if v(G) is large, which is a necessary condition for G∗ ∼= H for any H with nonzero coefficient cH .
More precisely, we have the following

|µ(G)| =

∣∣∣∣∣∑
H

cH · P[G∗ ∼= H]

∣∣∣∣∣ (Eq. (1))

≤
(
max
H
|cH |

)
·
∑
cH ̸=0

P[G∗ ∼= H]

≤ 15 · P[v(G∗) ≤ 7] (cH ̸= 0 =⇒ v(H) ≤ 7)

≤ 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

P[v /∈ G∗ ∀ v ∈ S]

Let SE := {e ∈ E(G) | ∃v ∈ S : v ∈ e} be the set of edges in G containing some vertex in S.
Arbitrarily label the edges in SE as e1, . . . , e|SE |. Then,

|µ(G)| ≤ 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

P[e /∈ G∗ ∀ e ∈ SE]

= 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

(|SE |∏
i=1

P[ei /∈ G∗ | e1, . . . , ei−1 /∈ G∗]

)

If there exists a vertex v ∈ ei such that v /∈ e1, . . . , ei−1, then the probability P[ei /∈ G∗ |
e1, . . . , ei−1 /∈ G∗] is at most 2/3 by (4) in Observation 2.4.

|µ(G)| ≤ 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

 ∏
1≤i≤|SE |

∃v∈ei:v/∈e1,...,ei−1

P[ei /∈ G∗ | e1, . . . , ei−1 /∈ G∗]

8

≤ 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

 ∏
1≤i≤|SE |

∃v∈ei:v/∈e1,...,ei−1

2

3

 (Observation 2.4)

≤ 15 ·
(
v(G)

7

)
· max

S⊂V (G)
|S|=v(G)−7

(
2

3

)|S|/3
(|ei| = 3, S ⊆ e1 ∪ · · · ∪ e|SE |)

= 15 ·
(
v(G)

7

)
·
(
2

3

)(v(G)−7)/3

≤ 15 ·
(
250

7

)
·
(
2

3

)(250−7)/3

(v(G) ≥ 250)

≤ 0.999.

Of course, individually checking hypergraphs on up to 249 vertices is far beyond the limits
of computational feasibility. In practice, we can only individually check hypergraphs on up to 7
vertices.

3.1 Verifying 3-uniform hypergraphs G with v(G) ≤ 7

All verification computations are scripted in C++ and are on GitHub at https://github.com/yun
owe/tetrahedronintersectingfamilies. 3-uniform hypergraphs are encoded via their edge-set
indicator vector, which is implemented using the std::bitset data structure. The intersection of
3-uniform hypergraphs then corresponds to the binary AND operation between bitsets.

There are only 7,013,320 3-uniform hypergraphs on up to 7 vertices, which is well within the
range of computational feasibility. Note that

µ(G) = (−1)e(G)
∑
H

cH · P[G∗ ∼= H] = (−1)e(G) E
φ∈[3]V (G)

[cφ(G)],

where cφ(G) is the value of cH for the H isomorphic to φ(G) (defined in Definition 2.3), and 0 if no

such H exists. Hence, for each G, we compute µ(G) by averaging cφ(G) over all φ ∈ [3]V (G).
While computing φ(G) is easy, finding which cH has H isomorphic to φ(G) in order to compute

cφ(G) is not as simple due to the inefficiencies of checking hypergraph isomorphism. However,
since computing cφ(G) must be done many times for various φ and G, we may do precomputation
to significantly speed up the computation of cφ(G). For every H with non-zero cH , we find all
3-uniform hypergraphs on v(G) vertices isomorphic to H by iterating over all ways to choose the
vertices of H from {1, . . . , v(G)}. This results in a hash table that allows a computer to look up
cφ(G) in constant time after computing φ(G).

Lemma 3.2. With cH chosen as in Table 2, and µ(G) = (−1)e(G)
∑

H cH · P[G∗ ∼= H], we have
that

1. |µ(G)| ≤ 1 for G with at most 4 edges and at most 7 vertices, and

2. |µ(G)| < 1 for G with more than 4 edges and at most 7 vertices.

Proof. Properties (1) and (2) are verified by computing µ(G) for each G on up to 7 vertices using
the method described above. This computation was relatively quick, taking 47 seconds to complete
on a desktop computer.

9

https://github.com/yunowe/tetrahedronintersectingfamilies
https://github.com/yunowe/tetrahedronintersectingfamilies

4 Verifying 3-uniform hypergraphs G with 8 ≤ v(G) ≤ 13

There are over 1012 3-uniform hypergraphs on 8 vertices alone, so it is infeasible to individually
compute µ(G) for each G using the coefficients in Section 3 to verify Proposition 2.5. Instead, in
this section we work to bound |µ(G)| < 1 for enough 3-uniform hypergraphs G to the point where
individually computing µ(G) for the remaining G is computationally feasible. Then, we compute
µ(G) for the remaining G to verify Proposition 2.5 for all G on between 8 and 13 vertices.

Firstly, note that the sum |µ(G)| = |
∑

cH · P[G∗ ∼= H]| in Proposition 2.5 can be bounded by
the maximum of the total magnitudes of the positive and negative terms:

|µ(G)| =

∣∣∣∣∣∑
H

cH · P[G∗ ∼= H]

∣∣∣∣∣ ≤ max

∑
H

cH>0

cH · P[G∗ ∼= H],
∑
H

cH<0

−cH · P[G∗ ∼= H]

 .

Next, we define monotonic bounds on the sums in the RHS.

Definition 4.1. Let

M+(G) :=
∑
H′

max
H⊇H′

cH>0

cH

P[G∗ ∼= H ′]

 and M−(G) :=
∑
H′

max
H⊇H′

cH<0

−cH

P[G∗ ∼= H ′]

 ,

where both sums iterate over all unlabeled 3-uniform hypergraphs H ′.

Note that both M+ and M− are monotone with respect to taking subgraphs in the sense that
if K ⊆ G then M+(K) ≥M+(G) and M−(K) ≥M−(G).

Lemma 4.2. Let M(K) := max {M+(K),M−(K)}. For any K ⊆ G, we have |µ(G)| ≤M(K).

Proof. We have the following inequalities based on the definition of µ(G) in Eq. (1).

|µ(G)| ≤ max

∑
H

cH>0

cH · P[G∗ ∼= H],
∑
H

cH<0

−cH · P[G∗ ∼= H]

≤ max

{
M+(G),M−(G)

}
(Definition 4.1)

≤ max
{
M+(K),M−(K)

}
(K ⊆ G)

= M(K).

Note that the functions M+ and M− have a similar shape to µ, only diverging in the associated
set of coefficients. Hence, we can compute values of M in an identical manner to how we computed
values of µ in Lemma 3.2.

If we compute M+(K) and M−(K) for some K and verify that M(K) < 1, this immediately
implies |µ(G)| < 1 for all G ⊇ K, hence verifying Proposition 2.5 for all such G. Our goal is
therefore to choose some satisfactory set S of 3-uniform hypergraphs K that satisfies the following
pair of properties:

Definition 4.3. A set S of 3-uniform hypergraphs is satisfactory if the following conditions are
true:

• M(K) < 1 for all K ∈ S;

10

• For most hypergraphs G we wish to verify (in this section, 8 ≤ v(G) ≤ 13), there exists some
K ∈ S such that K ⊆ G, to the point where directly computing µ(G) on the remaining G is
computationally feasible.

If we had this pair of conditions, then we would immediately show |µ(G)| < 1 for almost all G
with between 8 and 13 vertices. Ideally, individually computing µ(G) for the remaining G would
be computationally feasible.

Lemma 4.4. With cH chosen as in Table 2, and µ(G) = (−1)e(G)
∑

H cH · P[G∗ ∼= H], then

1. |µ(G)| ≤ 1 for G with at most 4 edges and between 8 and 13 vertices and

2. |µ(G)| < 1 for G with more than 4 edges and between 8 and 13 vertices.

Proof. All implementations are in C++. We choose the set S to consist of all 3-uniform hypergraphs
K satisfying one of the following:

• v(K) = 8, e(K) = 12

• v(K) = 9, e(K) = 11

• v(K) = 10, e(K) = 10

• v(K) = 11, e(K) = 10

• v(K) = 12, e(K) = 9

• v(K) = 13, e(K) = 9

For each of the approximately 160 million K ∈ S, we individually calculate M+(K) and M−(K)
by averaging over all colorings φ ∈ [3]V (K) (the same method as in Lemma 3.2), verifying that
M(K) < 1. Hence, every G for which there exists a K ∈ S such that K ⊆ G satisfies |µ(G)| < 1,
thus verifying (1) and (2) for these G.

For the remaining approximately 20 million G, we individually compute µ(G) and verify con-
ditions (1) and (2), proving the lemma.

Verifying that M(K) < 1 for all K ∈ S turned out to be the most computationally demanding
part of this article. Computing M+(K) and M−(K) for a single hypergraph K requires computing
about O(3v(K)) colorings (in practice, this number is slightly lower as some colorings are functionally
identical since they delete the same edges from all hypergraphs).

It took about a week to complete the computation on a desktop computer using a Ryzen 7
5800X CPU. Most of the computational power was used on the hypergraphs with v(K) = 13
(which makes sense intuitively given the rate at which O(3v(K)) grows).

5 Verifying 3-uniform hypergraphs G with v(G) ≥ 14

The base strategy in this section is the same as in Section 4 — choose some set S of 3-uniform
hypergraphs K such that M(K) < 1 for all K ∈ S. The issue with directly applying the method in
Section 4 is that computing µ, M+ or M− on 3-uniform hypergraphs requires one to iterate through
∼3v(G) colorings of V (G). As v(G) grows, it becomes computationally infeasible to compute these
functions on a large number of graphs.

On the other hand, the largest H for which cH is non-zero in our construction in Section 3 has
only 7 vertices. An isomorphism G∗ ∼= H for some H with non-zero cH therefore requires G∗ to have

11

at most 7 vertices, which becomes unlikely as v(G) grows (illustrated in Lemma 3.1). In practice,
when v(G) ≥ 14, the probability P[G∗ ∼= H] has decayed enough to the point where even crude
bounds on |µ(G)| may be able to verify |µ(G)| < 1 (though not nearly as crude as Lemma 3.1).

Since computing µ(G) is slow for G of this size, we try to choose the K ∈ S to have few edges
in order to minimize the number of G for which there does not exist K ∈ S satisfying G ⊇ K. This
motivates the following class of hypergraphs:

Definition 5.1. Define a 3-uniform hypergraph K to be ℓ-minimal if v(K) = ℓ, K has no isolated
vertices, and no edges of K can be deleted without isolating a vertex.

In particular, ℓ-minimal 3-uniform hypergraphs are those for which all edges contain at least
one vertex of degree 1.

Lemma 5.2. Let ℓ be an integer with ℓ ̸≡ 1 mod 3. Then, any 3-uniform hypergraph G with
v(G) ≥ ℓ and no isolated vertices contains a ℓ-minimal or (ℓ+ 1)-minimal 3-uniform hypergraph.

Proof. We show that one can delete edges from G to form a ℓ-minimal or (ℓ+1)-minimal 3-uniform
hypergraph with extra isolated vertices.

Iteratively delete edges from G while maintaining that the resulting hypergraph has at least ℓ
non-isolated vertices until it is no longer possible to do so. Let G′ be the resulting hypergraph when
this process terminates, and let β be the number of non-isolated vertices in G′. The termination of
the process implies that the deletion of any single further edge in G′ would cause G′ to have fewer
than ℓ non-isolated vertices. Therefore, all remaining edges in G′ must contain at least β − ℓ + 1
vertices of degree 1. Note that G′ is 3-uniform, hence β − ℓ+ 1 ≤ 3, so β ≤ ℓ+ 2.

If β = ℓ + 2, then all remaining edges in G must have all three vertices be degree 1, which is
impossible since 3 ∤ ℓ+2. Hence, β is either ℓ or ℓ+1, so G′ is either a ℓ-minimal or a (ℓ+1)-minimal
3-uniform hypergraph with some extra isolated vertices. Since edges can be deleted from G to form
G′, this proves the lemma.

Lemma 5.2 implies that all G with v(G) ≥ 14 contain some 14-minimal or 15-minimal hyper-
graph. Hence, we may wish for S to consist primarily of 14-minimal and 15-minimal hypergraphs.

Unfortunately, not all 14-minimal and 15-minimal hypergraphs K satisfy M+(K) < 1 and
M−(K) < 1. However, since M+ and M− are monotonic, we can iteratively add edges to such
K until they do satisfy M(K) < 1. Hence, a satisfactory set S can be generated by the following
algorithm:

Algorithm 5.3. To generate a satisfactory set S such that for all K ∈ S, M(K) < 1:

1. Initialize U to all 14-minimal and 15-minimal 3-uniform hypergraphs and S = ∅.

2. While U is nonempty:

(a) Let K be the first element in U and let U ← U\{K}.
(b) Compute M(K). If M(K) < 1, S ← S ∪ {K}.
(c) Else, Let K′ be the set of all 3-uniform hypergraphs of the form K ∪ {1 more edge}. Let
U ← U ∪ K′.

Since all sufficiently large hypergraphs K satisfy M(K) < 1, Algorithm 5.3 terminates and thus
theoretically achieves a finite satisfactory set. In practice it is still computationally infeasible due
to the large size of S. However, it turns out that almost all 14-minimal and 15-minimal K do
satisfy M(K) < 1. We thus give a method that can verify M(K) < 1 for numerous ℓ-minimal K

12

at the same time, speeding up step 2(b) in Algorithm 5.3 and allowing this algorithm to become
computationally feasible.

This final algorithm Algorithm 5.4 is an optimization of Algorithm 5.3 that we actually will
implement to certify that |µ(G)| < 1 for all G on 14 or more vertices:

Algorithm 5.4. To generate a satisfactory set S satisfying M(K) < 1 for all K ∈ S:

(1) Initialize S = ∅.

(2) Generate all equivalence classes [F, e2, e3] on 14-minimal and 15-minimal 3-uniform hyper-
graphs (see Definition 5.9). For each equivalence class [F, e2, e3]:

(a) Calculate a joint probability mass function P(V ′
K , EK , CK) for the entire equivalence class

using Algorithm 5.13 (the random variables V ′
K , EK , CK are defined later).

(b) Using the values of P(V ′
K , EK , CK), try to certify M(K) < 1 for all K in the equivalence

class using Lemma 5.8. If this succeeds, let S ← S ∪ [F, e2, e3] and continue to the next
equivalence class. If this fails, proceed to (c).

(c) Initialize U = [F, e2, e3].

(d) While U is nonempty:

i. Let K be the first element in U and let U ← U\{K}.
ii. Compute M(K). If M(K) < 1, S ← S ∪ {K}.
iii. Else, Let K′ be the set of all 3-uniform hypergraphs of the form K ∪ {1 more edge}.

Let U ← U ∪ K′.

We need to define many of the pieces introduced in Algorithm 5.4 and verify correctness.

Lemma 5.5. Algorithm 5.4 generates a satisfactory set.

Proof. Any K ∈ S is only added after verifying that M(K) < 1, so the first condition in Defini-
tion 4.3 is verified. By Lemma 5.2, all hypergraphs on 14 or more vertices contain a 14-minimal
or 15-minimal hypergraph. Hence, the only hypergraphs G with v(G) ≥ 14 and such that there
does not exist K ∈ S with K ⊆ G are precisely the K in (2.d.iii), which is few enough so that
individually computing µ(G) is feasible.

Definition 5.6. Let K be a 3-uniform hypergraph. Define VK , EK , and CK to be random variables
corresponding to the number of vertices, number of edges, and maximum codegree of the random
hypergraph φ(K), where φ ∈ [3]V (K) is uniformly randomly chosen and φ(K) is as in Definition 2.3.

Suppose we knew the joint probability mass function P(VK , EK , CK) for some 3-uniform hyper-
graph K. Then, M+(K) and M−(K) could be upper bounded as follows.

Lemma 5.7. Let K be a 3-uniform hypergraph. Then,

M+(K) =
∑
H′

max
H⊇H′

cH>0

cH · P[K∗ ∼= H ′] ≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

−cH

 · P[VK = i, EK = j, CK = k],

13

and similarly

M−(K) =
∑
H′

max
H⊇H′

cH<0

|cH | · P[K∗ ∼= H ′] ≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH<0

|cH |

 · P[VK = i, EK = j, CK = k],

where ∆2(H
′) denotes the maximum codegree of any pair of vertices in H ′.

Proof. We prove the bound for M+(K); the bound for M−(K) follows identically.
We prove these bounds by noting that if K∗ ∼= H ′, then necessarily

v(K∗) = v(H ′), e(K∗) = e(H ′), ∆2(K∗) = ∆2(H
′).

Hence, we have that

M+(G) =
∑
H′

max
H⊇H′

cH>0

|cH | · P[K∗ ∼= H ′]

=
∑
i≥0
j≥0
k≥0

∑
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH | · P[K∗ ∼= H ′]

≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

 ∑
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

P[K∗ ∼= H ′]

≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

P [v(K∗) = i, e(K∗) = j,∆2(K∗) = k]

=
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

P[VK = i, EK = j, CK = k],

as desired, proving the lemma.

If we could compute P(VK , EK , CK) for multiple K simultaneously, then applying Lemma 5.7
would allow us to upper bound M(K) for all such K, potentially verifying step (2) in Algorithm 5.3
for many K at once.

It turns out that for a certain equivalence class of ℓ-minimal K (defined later in Definition 5.9),
we are almost able to compute P(VK , EK , CK) for all K in the equivalence class. More precisely,
we are able to compute a joint probability mass function P(V ′

K , EK , CK), where V ′
K is some integer

random variable satisfying

P[VK ≥ c | EK , CK] ≥ P[V ′
K ≥ c | EK , CK]

14

for all values of c and realizations of EK and CK (i.e. VK is either equal to V ′
K or statewise dominant

over V ′
K). Heuristically, the values of the V ′

K we are able to compute are very similar to the values
of VK , and so it is still highly useful in bounding M(K). We can upper bound M(K) using V ′

K

instead of VK by tweaking Lemma 5.7:

Lemma 5.8. Let K be a 3-uniform hypergraph. Let V ′
K be some integer random variable satisfying

P[VK ≥ c | EK , CK] ≥ P[V ′
K ≥ c | EK , CK] for all values of c and realizations of EK and CK .

Then,

M+(K) =
∑
H′

max
H⊇H′

cH>0

cH · P[K∗ ∼= H ′] ≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)≥i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

 · P[V ′
K = i, EK = j, CK = k],

and similarly

M−(K) =
∑
H′

max
H⊇H′

cH<0

−cH · P[K∗ ∼= H ′] ≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)≥i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH<0

|cH |

 · P[V ′
K = i, EK = j, CK = k].

In particular, in Lemma 5.8 v(H ′) = i is changed to v(H ′) ≥ i and (VK = i) is changed to
(V ′

K = i).

Proof. For clarity, we highlight the changes in each step. By Lemma 5.7,

M+(K) ≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)=i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

 · P[VK = i, EK = j, CK = k]

≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)≥i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

 · P[VK = i, EK = j, CK = k]

≤
∑
i≥0
j≥0
k≥0

max
H′

v(H′)≥i
e(H′)=j

∆2(H′)=k

max
H⊇H′

cH>0

|cH |

 · P[V ′
K = i, EK = j, CK = k],

where the last inequality is because the underlined term is non-increasing as i increases. The proof
for M−(K) follows identically.

We now present the equivalence classes of ℓ-minimal K and how to compute P(V ′
K , EK , CK).

Definition 5.9. For a ℓ-minimal 3-uniform hypergraph K, define its equivalence class [F, e2, e3]
via the following process:

1. Initialize e2 and e3 to 0.

15

2. While there exists an edge in K that contains exactly two vertices of degree 1, delete the edge
and increment e2 by 1. Then, delete any vertices that are now isolated.

3. While there exists an edge in K that contains three vertices of degree 1, delete the edge and
increment e3 by 1. Then, delete any vertices that are now isolated.

4. Set F to the resulting hypergraph.

Two hypergraphs are equivalent if their values of e2 and e3 are the same, and their F are isomorphic
to each other.

Additionally, arbitrarily fix some ordering of edge deletion as described in steps (2)-(3). Define
a 2-leaf edge of K to be an edge deleted in step (2), and a 3-leaf edge of K to be an edge deleted
in step (3).

Note that a 3-leaf edge is a connected component of size 3 at the time of its deletion, but not
necessarily a connected component of size 3 in the original hypergraph.

Lemma 5.10. Let K be an ℓ-minimal 3-uniform hypergraph, and let e = (v1, v2, v3) ∈ K be a
2-leaf or 3-leaf edge. Then, v1, v2, and v3 are each in distinct connected components in K\{e}.

Proof. We show any distinct u, v ∈ {v1, v2, v3} are disconnected in K\{e}. Let K ′ be the hyper-
graph obtained at the moment right before e is deleted when executing the process described in
Definition 5.9 on K. Since e is a 2-leaf or 3-leaf edge, at least two of v1, v2, v3 have degree 1 in
K ′. Hence, we may assume without loss of generality that degK′(v) = 1. Consider the process
described in Definition 5.9 in reverse — starting from K ′, add back the deleted 2-leaf and 3-leaf
edges until we return to K. Each 2-leaf and 3-leaf edge that is added back must also add back
at least 2 vertices, and hence cannot connect any two already existing vertices. Note that v has
degree 1 in K ′ hence all paths from v to u in K ′ go through e. Any returned edges in the reverse
process from K ′ to K cannot connect any two vertices in K ′, thus all paths from v to u in K still
go through e. Thus, v and u are disconnected in K\{e}.

Recall that by Observation 2.4, for every edge e ∈ K, the probability that e ∈ φ(K) is 5/9 for a
uniformly random coloring φ ∈ [3]V (K). For a 2-leaf or 3-leaf edge e = (v1, v2, v3) ∈ K, we have that
v1, v2, and v3 are each in distinct connected components when e is deleted by Lemma 5.10. Hence,
the realization of whether e′ ∈ φ(K) for all e′ ̸= e has no effect on the joint distribution of colors
(φ(v1), φ(v2), φ(v3)), which remains uniform. So, the probability that e ∈ φ(K) is independent
from whether or not e′ ∈ φ(K) for all other edges e′.

Given their independence, the distribution of 2-leaf and 3-leaf edges of K that remain in K∗ is
easy to compute. Hence, we focus on computing P(VF , EF , CF), as F is the hypergraph consisting
of all non 2-leaf or 3-leaf edges in K.

It unfortunately turns out that simply iterating all ∼3v(F) colorings of F in order to compute
P(VF , EF , CF) is still computationally infeasible. However, F has structure which can be exploited.
By definition, F is an ℓ-minimal 3-uniform hypergraph with no 2-leaf or 3-leaf edges, hence all
edges in F contain exactly one vertex of degree one. Let F1, F2 partition V (F) into the sets of
vertices with degree 1 and degree at least 2, respectively. Then, every edge e ∈ F must contain
exactly 1 vertex in F1 and 2 vertices in F2.

Suppose we fix some coloring φ2 ∈ [3]F2 of the vertices in F2 and let φ ∈ [3]V (F) be a uniformly
random extension of φ2 to F . Then by Observation 2.4, the probability an edge e = (u, v1, v2) ∈
F with u ∈ F1 and v1, v2 ∈ F2 remains in φ(F) is 1/3 if φ2(v1) = φ2(v2) and 2/3 otherwise.
Furthermore, when φ2 is fixed, whether or not e ∈ φ(F) depends only on the color φ(u). Since

16

each vertex in F1 corresponds to exactly one edge, the probability that e ∈ φ(F) is independent
of any other edge in F when the coloring φ2 of F2 is fixed. Using this independence, we can
compute the joint distribution of e(φ(F)) and ∆2(φ(F)). Then, averaging these distributions over
all φ2 ∈ [3]F2 would result in the joint probability mass function P(EF , CF).

Suppose φ2 ∈ [3]F2 is a coloring of F2. In the following algorithm, we write | φ2 to denote “given
that F2 is colored as in φ2”. For example, the probability mass function P(EF , CF | φ2) represents
the joint distribution of e(φ(F)) and ∆2(φ(F)), given that φ is a uniformly random extension of
φ2 to F .

Algorithm 5.11. To compute the joint probability mass function (p.m.f.) P(EF , CF) of F :

1. Repeat steps (2)− (3) over all φ2 ∈ [3]F2, which calculate the p.m.f. P(EF , CF | φ2).

2. For every adjacent v1, v2 ∈ F2, compute the p.m.f. P
(
codegφ(F)(v1, v2) | φ2

)
. This distri-

bution is binomial, and it can be read off from the coefficients of the generating function
(2/3+x/3)codegF (v1,v2) if φ2(v1) = φ2(v2), or from those of (1/3+2x/3)codegF (v1,v2) otherwise.

3. Using the values of P
(
codegφ(F)(v1, v2) | φ2

)
for all adjacent v1, v2 ∈ F that we computed in

the previous step, compute the p.m.f. P(EF , CF | φ2) as follows:

P(EF , CF | φ2) = P

(∑
{v1,v2}⊆F2

codegφ(F)(v1, v2), max
v1,v2∈F2

codegφ(F)(v1, v2)

∣∣∣∣∣ φ2

)
.

4. Average the p.m.f.s P(EF , CF | φ2) over all φ2 ∈ [3]F2 to compute P(EF , CF):

P(EF , CF) =
1

3|F2|
·
∑

φ2∈[3]F2

P(EF , CF | φ2).

We now provide some additional explanation on the correctness of some of the steps in Algo-
rithm 5.11.

• Step 2: The codegree codegφ(F)(v1, v2) considers only the edges that contain both v1 and v2
in F . Since v1, v2 ∈ F2, the third vertex of any edge e containing both v1 and v2, which we
will call v, is in F1. Since v ∈ F1 thus e is the only edge containing v, hence the probability
that e ∈ φ(F) is independent from any other edge when the coloring of v1 and v2 are fixed.
By Observation 2.4 this probability is 1/3 if the coloring of v1 and v2 is equal and 2/3
otherwise. This follows for all edges containing both v1 and v2, hence the distribution of

P
(
codegφ(F)(v1, v2) | φ2

)
is binomial, and it can be read off of the corresponding generating

function.

• Step 3: The number of edges e(φ(F)) is equal to
∑

codegφ(F)(v1, v2). The maximum codegree
∆2(φ(F)) is equal to max(codegφ(F)(v1, v2)). The equation for P(EF , CF | φ2) follows.

• Step 4: Since φ2 : F2 → {1, 2, 3}, there are 3|F2| possibilities for φ2, and each of them are
equally likely. The equation for P(EF , CF) follows.

Computing P(VF , EF , CF) is harder. While the distribution of the number of vertices in F1 that
remain in φ(F) is easy to compute (since each vertex in F1 corresponds to exactly one edge, hence

17

this has the same distribution as EF), computing the distribution for the vertices in F2 is not as
easy.

Consider some coloring φ ∈ [3]V (F), and suppose we were told whether or not codegφ(F)(v1, v2) =
0 for every pair of vertices v1, v2 ∈ F2 which are adjacent in F . Then, we could count the number of
vertices v1 ∈ F2 that remain in φ(F): it is precisely the v1 ∈ F2 for which there exist some v2 ∈ F2

such that codegφ(F)(v1, v2) > 0. Hence, our strategy to compute P(VF , EF , CF) is to casework on
whether or not codegφ(F)(v1, v2) = 0 for each pair of vertices v1, v2 ∈ F2 which are adjacent in F
— for each case, we can precisely count the number of v ∈ F2 that remain in φ(F).

In the following algorithm, let Γ be the set of all unordered pairs of vertices {v1, v2} ⊆ F2

which are adjacent in F . Let a subset Q ⊆ Γ represent the case for which all {v1, v2} ∈ Q satisfy
codegφ(F)(v1, v2) > 0, and all {v1, v2} /∈ Q satisfy codegφ(F)(v1, v2) = 0. We write | Q to denote

“given that case Q is true”. For example, the p.m.f. P
(
codegφ(F)(v1, v2) | φ2, Q

)
represents the

distribution of codegφ(F)(v1, v2), given that φ is a uniformly random extension of φ2 to F that
satisfies case Q.

Algorithm 5.12. To compute the joint probability mass function P(VF , EF , CF) of F :

1. Repeat steps (2)− (7) over all φ2 ∈ [3]F2, which calculate the p.m.f. P(VF , EF , CF | φ2)

2. Repeat steps (3)− (6) over all Q ⊆ Γ.

3. Count the number of v ∈ F2 that are contained in some pair in Q. For the case Q, these are
the vertices in F2 that remain in φ(F). Store this count as αQ.

4. Compute the probability that case Q occurs for a uniformly random extension φ ∈ [3]V (F)

of φ2 to F , which we store as βQ. Given their independence, this is achieved by taking the
product of the probability for each individual condition of Q:

βQ =
∏

{v1,v2}∈Γ

1− (2/3)codegF (v1,v2), if φ(v1) = φ(v2) and {v1, v2} ∈ Q

1− (1/3)codegF (v1,v2), if φ(v1) ̸= φ(v2) and {v1, v2} ∈ Q

(2/3)codegF (v1,v2), if φ(v1) = φ(v2) and {v1, v2} /∈ Q

(1/3)codegF (v1,v2), if φ(v1) ̸= φ(v2) and {v1, v2} /∈ Q

.

5. For each {v1, v2} ∈ Q, compute the p.m.f. P
(
codegφ(F)(v1, v2) | φ2, Q

)
. This distribution

is a zero-truncated binomial distribution. If φ2(v1) = φ2(v2), it can be computed via the
coefficients of the generating function (2/3 + x/3)codegF (v1,v2), discarding the constant term
then normalizing the coefficients to sum to 1. Otherwise, if φ2(v1) ̸= φ2(v2), the generating
function (1/3 + 2x/3)codegF (v1,v2) is used instead.

6. Compute the p.m.f. P(VF , EF , CF | φ2, Q) using the values computed in the previous step:

P(VF , EF , CF | φ2, Q) = P

(
αQ +

∑
{v1,v2}∈Q

codegφ(F)(v1, v2),∑
{v1,v2}∈Q

codegφ(F)(v1, v2),

max
{v1,v2}∈Q

codegφ(F)(v1, v2)

∣∣∣∣∣ φ2, Q

)
.

18

7. Compute a weighted sum of P(VF , EF , CF | φ2, Q) with weight βQ over all cases Q ⊆ Γ to
obtain P(VF , EF , CF | φ2):

P(VF , EF , CF | φ2) =
∑
Q⊆Γ

βQ · P(VF , EF , CF | φ2, Q).

8. Average P(VF , EF , CF | φ2) over all φ2 ∈ [3]F2 to obtain P(VF , EF , CF):

P(VF , EF , CF) =
1

3|F2|
·
∑

φ2∈[3]F2

P(VF , EF , CF | φ2).

Note that the description of Algorithm 5.12 provided above is rather high-level. For additional
discussion on the actual code implementation of Algorithm 5.12, please refer to Appendix C.

We now provide some additional explanation on the correctness of some of the steps in Algo-
rithm 5.12.

• Step 4: As discussed previously, the probability that e ∈ φ(F) is independent of the realization
of any other edge in φ(F) when the coloring φ2 of F2 is fixed. The probability of each
individual condition of Q is therefore independent from all other conditions. If the condition
is that codegφ(F)(v1, v2) = 0, then it happens with probability (1− p)codegF (v1,v2), where p is
the probability that some edge containing v1 and v2 remains in φ(F) (which is 1/3 if v1 and
v2 are identically colored and 2/3 otherwise by Observation 2.4). Otherwise, if the condition
is that codegφ(F)(v1, v2) > 0, the probability is 1 − (1 − p)codegF (v1,v2). The equation for βQ
follows.

• Step 5: If {v1, v2} ∈ Q, then case Q gives us that codegφ(F)(v1, v2) ̸= 0, and so the distribution
of codegφ(F)(v1, v2) is a zero-truncated binomial distribution. See the explanation given with
Algorithm 5.11 for further discussion.

• Step 6: The number of vertices v(φ(F)) is equal to the number of vertices that remain in φ(F)
from F1 plus those that remain from F2. We counted the number of vertices that remain in
F2 in Step 3 and stored it as αQ. Since degF (v) = 1 for all v ∈ F1, the number of vertices that
remain from F1 is equal to the number of edges in φ(F), which is

∑
codegφ(F)(v1, v2). For

EF and CF , see the explanation given with Algorithm 5.11. The equation for P(VF , EF , CF |
φ2, Q) follows.

• Step 7: Given φ2, each case Q occurs with probability βQ, and so we take the weighted
average with weight βQ for each case.

• Step 8: See the explanation given with Algorithm 5.11.

Once we have computed the p.m.f. P(VF , EF , CF) for F , all that remains is to consider the
remaining 2-leaf and 3-leaf edges of K.

Every 3-leaf edge that remains in φ(K) adds 3 to the vertex count v(φ(K)), 1 to the edge
count e(φ(K)), and sets the maximum codegree ∆2(φ(K)) to 1 if it was previously 0. Similarly,
every 2-leaf edge that remains in φ(K) adds at least 2 to the vertex count v(φ(K)), exactly 1
to the edge count e(φ(K)), and sets the maximum codegree ∆2(φ(K)) to 1 if it was previously
0. In particular, a 2-leaf edge remaining in φ(K) could add 3 instead of 2 to v(φ(K)), which is
why we cannot compute the exact p.m.f. P(VK , EK , CK) using this method and instead compute
P(V ′

K , EK , CK).

19

Algorithm 5.13. To compute a joint probability mass function P(V ′
K , EK , CK) for all K in an

equivalence class [F, e2, e3]:

1. Using Algorithm 5.12, compute P(VF , EF , CF).

2. Let X1, . . . , Xe2 and Y1, . . . , Ye3 be independent random variables which are 1 with probability
5/9 and 0 with probability 4/9. Xi represents the event that the ith 2-leaf edge remains in
K∗, and similarly Yi represents the event that the ith 3-leaf edge remains in K∗. Then, a
satisfactory p.m.f. P(V ′

K , EK , CK) is

P(V ′
K , EK , CK) =

P
(
VF + 2

e2∑
i=1

Xi + 3

e3∑
i=1

Yi, EF +

e2∑
i=1

Xi +

e3∑
i=1

Yi, max{CF , X1, . . . , Xe2 , Y1, . . . , Ye2}
)
.

Using Algorithm 5.13, we are now able to optimize Algorithm 5.3 to be computationally feasible.

Lemma 5.14. With cH chosen as in Table 2, and µ(G) = (−1)e(G)
∑

H cH · P[G∗ ∼= H], then
|µ(G)| < 1 for all G on at least 14 vertices.

Proof. We execute Algorithm 5.4 (see Appendix C for details) to generate a satisfactory set S. By
Lemma 5.2, the only G on 14 or more vertices for which there does not exist K ∈ S satisfying
K ⊆ G are precisely the K deleted in step (6) of Algorithm 5.4. We individually compute µ(G) for
each such G and verify that |µ(G)| < 1. Otherwise, for K,G with K ⊆ G and K ∈ S, we have

µ(G) ≤M(K) < 1,

hence proving the lemma.

We are now ready to verify our choice of cH in Table 2 against the conditions in Proposition 2.5:

Lemma 5.15. With cH chosen as in Table 2, and µ(G) = (−1)e(G)
∑

H cH ·P[G∗ ∼= H], then there
exists δ > 0 such that

1. |µ(G)| ≤ 1 whenever 1 ≤ e(G) ≤ 4

2. |µ(G)| ≤ 1− δ whenever 4 < e(G).

Proof. Together, Lemma 3.2, Lemma 4.4, and Lemma 5.14 verify Condition 1 and state that
|µ(G)| < 1 for all G with e(G) > 4. The only remaining issue is to check that such a δ > 0 exists
(i.e. there are no issues with an infinite sequence (Gi)i≥0 with lim |µ(Gi)| = 1).

We proceed by cases:

• Case 1: v(G) ≤ 7. Condition 1 is verified by Lemma 3.2. Additionally, Lemma 3.2 states
that all G in this case with v(G) > 4 satisfy |µ(G)| < 1. Since this case is finite, such a δ
exists, verifying Condition 2.

• Case 2: 8 ≤ v(G) ≤ 13. Condition 1 is verified by Lemma 4.4. Additionally, Lemma 4.4
states that all G in this case with v(G) > 4 satisfy |µ(G)| < 1. Since this case is finite, such
a δ exists, verifying Condition 2.

• Case 3: 14 ≤ v(G). Condition 1 does not apply, since a hypergraph with 4 edges has at most
4 · 3 = 12 vertices. Lemma 5.14 states that all G in this case satisfy |µ(G)| < 1. We split into
two sub cases:

20

– Case 3.1. |µ(G)| < 1 was verified in Lemma 5.14 as there existed some K ∈ S with
K ⊆ G. Then,

|µ(G)| ≤ max
K∈S

M(K) < 1.

Since S is finite, there exists δ with maxK∈S M(K) ≤ 1− δ. Hence, there exists δ with
|µ(G)| ≤ 1− δ for all G in this case, verifying Condition 2.

– Case 3.2. |µ(G)| < 1 was verified in Lemma 5.14 via an individual computation of µ(G).
Since this case is finite, such a δ exists, verifying Condition 2.

Our choice of coefficients in Table 2 has c∅ = 2(
4
3) − 1 = 15 and satisfies the constraints of

Proposition 2.5. Hence, we have proved the main result, Theorem 1.7.

Acknowledgements

Thank you to the MIT PRIMES program for making this research opportunity possible. NM was
supported by the NSF Graduate Research Fellowship and the Hertz Graduate Fellowship. Thank
you to Aaron Berger, Shu Ge, and Yufei Zhao for helpful discussions.

References

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

[BZ23] Aaron Berger and Yufei Zhao. K4-intersecting families of graphs. Journal of Combina-
torial Theory, Series B, 163:112–132, 2023.

[CGFS86] F.R.K Chung, R.L Graham, P Frankl, and J.B Shearer. Some intersection theorems for
ordered sets and graphs. Journal of Combinatorial Theory, Series A, 43(1):23–37, 1986.

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[DEF78] M. Deza, P. Erdös, and P. Frankl. Intersection properties of systems of finite sets.
Proceedings of the London Mathematical Society, s3-36(2):369–384, 1978.

[EFF12] David Ellis, Yuval Filmus, and Ehud Friedgut. Triangle-intersecting families of graphs,
2012.

[EKR61] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite
sets. Quart. J. Math. Oxford Ser. (2), 12:313–320, 1961.

[Ell22] David Ellis. Intersection problems in extremal combinatorics: theorems, techniques and
questions old and new. Surveys in Combinatorics, pages 115–173, 2022.

[FR87] Peter Frankl and Vojtech Rodl. Forbidden intersections. Transactions of the American
Mathematical Society, 300(1):259–286, 1987.

21

[Fri08] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Com-
binatorica, 28(5):503–528, 2008.

[FW81] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Com-
binatorica, 1(4):357–368, 1981.

[FW86] P. Frankl and R.M. Wilson. The erdös-ko-rado theorem for vector spaces. Journal of
Combinatorial Theory, Series A, 43(2):228–236, 1986.

[JT08] J. Robert Johnson and John M. Talbot. G-intersection theorems for matchings and
other graphs. Combinatorics, Probability and Computing, 17:559 – 575, 2008.

[Kat64] G. O. H. Katona. Intersection theorems for systems of finite sets. Acta Mathematica
Academiae Scientiarum Hungaricae, 15:329–337, 1964.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of
Symbolic Computation, 60:94–112, 2014.

[The25] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.6),
2025. https://www.sagemath.org.

[Wil84] Richard M. Wilson. The exact bound in the erdös-ko-rado theorem. Combinatorica,
4(2):247–257, 1984.

22

A The maximum size of a K5-intersecting family

In this subsection, we prove Theorem 1.8. All verification computations are scripted in C++, and
are available online at https://github.com/yunowe/tetrahedronintersectingfamilies.

Berger and Zhao [BZ23] introduced a method to uniformly bound |µ(G)| < 1 for graphs with
sufficiently many vertices, which they applied to prove Conjecture 1.4 for t = 3, 4. In particular,
their method is theoretically sufficient to prove Conjecture 1.4 for any fixed t, but in practice, it
becomes computationally infeasible for all t ≥ 5. We use their method with some optimizations
to prove Conjecture 1.4 for t = 5, and we highly recommend the reader see [BZ23] for a more
detailed explanation of the graph setting. Identically to Section 2, the proof of Conjecture 1.4 can
be reduced to the following linear program:

Proposition A.1 (Proposition 2.5 in [BZ23]). There exists a set of unlabeled graphs {H}, coeffi-
cients {cH} and δ > 0 so that for any G on n labeled vertices, we have that

µ(G) := (−1)e(G)
∑
H

cH · P[G4
∼= H]

satisfies the following conditions.

1. µ(∅) = 2(
5
2) − 1 = 1023.

2. |µ(G)| ≤ 1 for all G ̸= ∅.

3. |µ(G)| ≤ 1− δ whenever G has more than 10 edges.

Recall that as per Definition 2.1, G4 is defined as follows:

Definition A.2. For a graph G on n labeled vertices, [4]V (G) is the set of maps φ : V (G) →
{0, 1, 2, 3}, viewed as 4-colorings of V (G) (not necessarily proper). For each coloring φ : V (G) →
{0, 1, 2, 3}, φ(G) is the subgraph of G formed by deleting all monochromatic edges of G, and then
deleting all isolated vertices from the result. Then, G4 is the random graph φ(G) given by choosing
φ ∼ Unif([4]V (G)).

We first give our construction for Proposition A.1. To save space, Berger and Zhao chose the
coefficients cH to be equal on a certain equivalence class on H, defined as follows:

Definition A.3 (Definition 4.2 in [BZ23]). A block of a graph H is a maximal connected subgraph
with at least one edge and no cut vertex, which is a vertex whose removal increases the number of
connected components of H. The collection of blocks of H partitions E(H). We say two graphs
H and H ′ are equivalent and write H ∼ H ′ if the collection of blocks of H and the collection of
blocks of H ′ are equal as multisets of unlabeled graphs.

Even then, the list of cH is still very long, found in Table 3. To verify the conditions of Propo-
sition A.1, Berger and Zhao gave the following uniform bound on µ(G) for all G with sufficiently
many vertices:

Proposition A.4 (Proposition 3.5 in [BZ23]). Fix q > 0, a list {H} of unlabeled graphs on at most
n0 vertices and {cH} a list of coefficients. Then for any G on n > n0 labeled vertices, we have

∑
H

|cH | · P[G4
∼= H] ≤ max

G′⊆Kn0

 1

qk(G′)−1

∑
H

c̃H · P[G′
4
∼= H] ·max

ℓ∈Z
ℓ>n0

(
ℓ
n0

)
qℓ−n0

(ℓ−v(H)
n0−v(H)

)
 ,

23

https://github.com/yunowe/tetrahedronintersectingfamilies

where c̃H is the maximum value of |cH′ | over all graphs H ′ which may be transformed to H by re-
peatedly identifying pairs of disconnected vertices, and κ(G) is the number of connected components
of G.

We employ Proposition A.4 with a few modifications to prove Proposition A.1. In particular,
we upper bound |µ(G)| = |

∑
H cH · P[G4

∼= H]| instead of
∑

H |cH | · P[G4
∼= H].

Firstly, recall that
∑

cH · P[G4
∼= H] can be bounded via its positive and negative terms:

|µ(G)| =

∣∣∣∣∣∑
H

cH · P[G4
∼= H]

∣∣∣∣∣ ≤ max

∑
H

cH>0

cH · P[G4
∼= H],

∑
H

cH<0

−cH · P[G4
∼= H]

 .

In particular, both of the sums on the right hand side are of the original form
∑
|cH |·P[G4

∼= H],
and applying Proposition A.4 to each sum separately yields a tighter bound.

Next, in the proof of Proposition A.4 in [BZ23], Berger and Zhao weaken the constraintG′ ∈
(
G
n0

)
to G′ ⊆ Kn0 when taking the maximum, where

(
G
n0

)
is the set of labeled subgraphs of G induced by

all choices of n0 vertices from V (G). We strengthen this constraint by additionally requiring that
e(G′) ≤ e(G), which is possible because G′ ∈

(
G
n0

)
implies G′ ⊆ G and hence e(G′) ≤ e(G). Note

that the resulting bound is now no longer uniform as it now depends on e(G).
Finally, restricting Proposition A.4 to only apply to G with v(G) > n1 for some fixed n1 ≥ n0

allows us to update the ℓ > n0 constraint in Proposition A.4 to ℓ > n1. These changes yield the
following modified version of Proposition A.4:

Proposition A.5. Fix q > 0, a list {H} of unlabeled graphs on at most n0 vertices, {cH} a list of
coefficients, and an integer n1 ≥ n0. Then for any G on n > n1 labeled vertices, we have∣∣∣∣∣∑

H

cH · P[G4
∼= H]

∣∣∣∣∣ ≤ max

{
max

G′⊆Kn0
e(G′)≤e(G)

 1

qk(G′)−1

∑
H

c̃posH · P[G
′
4
∼= H] ·max

ℓ∈Z
ℓ>n0

(
ℓ
n1

)
qℓ−n0

(ℓ−v(H)
n0−v(H)

)
 ,

max
G′⊆Kn0

e(G′)≤e(G)

 1

qk(G′)−1

∑
H

−c̃negH · P[G
′
4
∼= H] ·max

ℓ∈Z
ℓ>n0

(
ℓ
n1

)
qℓ−n0

(ℓ−v(H)
n0−v(H)

)
},

where c̃posH is the maximum positive value of cH′ over all graphs H ′ which may be transformed to H
by repeatedly identifying pairs of disconnected vertices, c̃negH is the minimum negative value of cH′

over all graphs H ′ which may be transformed to H by repeatedly identifying pairs of disconnected
vertices, and κ(G) is the number of connected components of G.

We are now ready to prove the validity of our choice of cH in Table 3.

Lemma A.6. With cH chosen as in Table 3, and µ(G) = (−1)e(G)
∑

H cH · P[G4
∼= H], one has

1. µ(∅) = 1023,

2. |µ(G)| ≤ 1 whenever G has at most 10 edges, and

3. |µ(G)| ≤ 0.998 whenever G has more than 10 edges.

24

Proof. If G = ∅ then G4 is also always the empty graph, hence µ(∅) = c∅ = 1023, verifying (1).
Properties (2) and (3) are verified for all 12005168 graphs on up to 10 vertices by individually
computing µ(G) for each such graph G.

For G on 11 or more vertices, we employ Proposition A.5 with q = 4, n0 = 9, and n1 = 10.
However, there is a slight issue — a singular H in our construction in Table 3 has non-zero cH
and 10 ̸≤ 9 vertices. This graph consists of 5 disjoint edges and has coefficient 0.22. Call this
graph [5e]. To resolve this issue, we bound

∑
H cH · P[G4

∼= H] by giving separate bounds for∑
H ̸∼=[5e] cH ·P[G4

∼= H] and c[5e] ·P[G4
∼= [5e]], the former of which can be done via Proposition A.5.

We proceed by cases.

• Case 1: v(G) ≥ 11, e(G) ≤ 10. In this case, we compute Proposition A.5 with the constraint
e(G′) ≤ 10 (since e(G′) ≤ e(G) ≤ 10). Iterating over all graphs on up to 9 vertices gives that∣∣∣∣∣∣

∑
H ̸∼=[5e]

cH · P[G4
∼= H]

∣∣∣∣∣∣ ≤ 0.322.

Hence, ∣∣∣∣∣∑
H

cH · P[G4
∼= H]

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

H ̸∼=[5e]

cH · P[G4
∼= H]

∣∣∣∣∣∣+ ∣∣c[5e] · P[G4
∼= [5e]]

∣∣
≤ 0.322 + 0.22 · 1
≤ 0.999,

verifying conditions (2) and (3) for this case.

• Case 2: v(G) ≥ 11, e(G) ≥ 11. In this case, we compute Proposition A.5 with the constraint
e(G′) ≤ e(G) omitted (since e(G) is not bounded). Iterating over all graphs on up to 9
vertices gives that ∣∣∣∣∣∣

∑
H ̸∼=[5e]

cH · P[G4
∼= H]

∣∣∣∣∣∣ ≤ 0.897.

Note that every edge in any graph G has a 3
4 chance of remaining in G4, hence E[e(G4)] =

3
4e(G). Since G4

∼= [5e] implies e(G4) = 5, hence we can write an upper bound on E[e(G4)]
in terms of P[G4

∼= [5e]]:

5P[G4
∼= [5e]] + e(G)(1− P[G4

∼= [5e]]) ≥ E[e(G4)]

=
3

4
e(G).

Solving for P[G4
∼= [5e]] gives

P[G4
∼= [5e]] ≤ e(G)

4e(G)− 20
.

In this case e(G) ≥ 11, so P[G4
∼= [5e]] ≤ 11

24 . Now,∣∣∣∣∣∑
H

cH · P[G4
∼= H]

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

H ̸∼=[5e]

cH · P[G4
∼= H]

∣∣∣∣∣∣+ ∣∣c[5e] · P[G4
∼= [5e]]

∣∣
25

≤ 0.897 + 0.22 · 11
24

≤ 0.999,

verifying conditions (2) and (3) for this case.

This verifies our construction in Table 3, proving Proposition A.1 and hence Theorem 1.8.

26

B Coefficients cH are uniquely determined for H ⊆ K
(3)
4

We give this argument in the setting of K
(3)
4 -intersecting families of 3-uniform hypergraphs, but it

follows essentially verbatim to show that for any Kt-intersecting family of graphs, cH is uniquely
determined for any H ⊆ Kt.

Lemma B.1. For any 3-uniform hypergraph R ⊇ K
(3)
4 , we have that∑

G⊆R

µ(G) = 0.

Proof. By the definition of µ in Proposition 2.5, we wish to show that∑
G⊆R

(−1)e(G)
∑
H

cHP[G∗ ∼= H] = 0

∑
H

cH
∑
G⊆R

(−1)e(G)P[G∗ ∼= H] = 0

∑
H

cH
∑

H′∼=H

∑
G⊆R

(−1)e(G)P[G∗ = H ′] = 0.

It suffices to show the innermost summation is always 0 for a fixed subgraph H ′. Expanding
P[G∗ = H ′] gives

∑
G⊆R

(−1)e(G) |{φ ∈ [q]V (R) : φ(G) = H ′}|
|{φ ∈ [q]V (R)}|

= 0

∑
G⊆R

(−1)e(G)
∑

φ∈[q]V (R)

φ(G)=H′

1 = 0

∑
φ∈[q]V (R)

∑
G⊆R

φ(G)=H′

(−1)e(G) = 0.

It suffices to show the inner summation is always 0. Since R ⊇ K
(3)
4 , there exists an edge e ∈

R\φ(R). If e ∈ H ′, then no G satisfies the conditions of the summation. Otherwise, note each
G contributes either 1 or −1 to the sum based on the parity of e(G). We can pair up graphs of
opposite parity by pairing G with G△{e}, where △ denotes symmetric difference, hence the inner
summation is always 0, proving the lemma.

Corollary B.2. If µ(∅) = 2(
4
3) − 1, then for all G ⊆ K

(3)
4 with G ̸= ∅, we have that µ(G) = −1.

Proof. Follows immediately from Lemma B.1 with R = K
(3)
4 since µ(∅) = 2(

4
3) − 1 and |µ(G)| ≤ 1

for all G ̸= ∅.

Lemma B.3. For all H ⊂ K
(3)
4 , the value of cH is uniquely determined.

Proof. Let H1, . . . ,Hℓ be some ordering of the subgraphs H ⊂ K
(3)
4 with the property that if

Hi ⊂ Hj then i < j. Let c = (cH1 , . . . , cHℓ
) be the coefficient vector, and let

d := (µ(H1), . . . , µ(Hℓ))

27

= (2(
4
3) − 1,−1, . . . ,−1). (Corollary B.2)

Note that µ(H) is a linear combination of cH and cH′ for some set of H ′ ⊂ H, in other words,
that µ(Hi) is a linear combination of cHj with j ≤ i. In particular, the coefficient of cH in µ(H)

is non-zero for all H ⊂ K
(3)
4 . It follows that d = Ac for some lower triangular matrix A with no

zeroes on the diagonal. Hence A is invertible, and so c is uniquely determined.

28

C Additional discussion of implementation

In this section, we discuss the steps needed to translate Algorithm 5.12 into efficient C++ code,
which can be found as part of vecbound.cpp on GitHub at https://github.com/yunowe/tetrah
edronintersectingfamilies.

To be exact, vecbound.cpp implements Steps 2(a) and 2(b) in Algorithm 5.4, which invokes
Algorithm 5.12. Few enough equivalence classes fail to be bounded by Step 2(b) such that Steps
2(c) and 2(d) can be done essentially manually.

In vecbound.cpp, we represent probability mass functions as fixed-size arrays where each entry
holds the probability of a certain realization. Note that the only use of the p.m.f.s P(VF , EF , CF)
in the final algorithm Algorithm 5.4 is to eventually be used in Lemma 5.8 to bound M(K). So, if
some realization of VF , EF , CF does not contribute to the sum, then we need not consider it when
computing Algorithm 5.12. In particular, since for non-zero cH in our choice of coefficients we have
that max v(H) = 7, max e(H) = 6, and max∆2(H) = 4, we only need to consider realizations with
VF ≤ 7, EF ≤ 6, and CF ≤ 4. So, our arrays representing p.m.f.s have size (7+1)(6+1)(4+1) = 280,
which is small enough that Algorithm 5.12 and Algorithm 5.4 can run efficiently even given the
number of p.m.f.s involved in its computation.

Additionally, in vecbound.cpp, we exploit the structure of F when representing equivalence
classes [F, e2, e3] to obtain a more efficient representation. Recall that for any equivalence class
[F, e2, e3], the vertices of the 3-uniform hypergraph F can be partitioned into two sets, F1 and
F2, where each vertex in F1 has degree exactly 1 and each edge contains exactly 1 vertex in F1.
Each vertex in F1 therefore corresponds to exactly one edge in F and vice versa. In that sense,
the structure of F can be determined by only looking at the vertices in F2 and their pairwise
connections.

For some F , consider a weighted graph F ′ on the vertex set F2, where vertices u, v ∈ F ′ are
connected by an edge of weight codegF (u, v) for all u, v ∈ F2 with codegF (u, v) ̸= 0. Given the struc-
ture of all possible F discussed in the previous paragraph, the resulting weighted graphs F ′ form
a straightforward bijection with the F . Explicitly, the original hypergraph F can be reconstructed
from F ′ (which has vertex set F2) as follows: For each edge (u,w) in F ′ of weight k = weightF ′(u,w),
add k new distinct vertices x1, . . . , xk to F1, and add the k edges {x1, u, w}, . . . , {xk, u, w} to E(F).

Such a representation is highly efficient. Each vertex in F2 has degree at least 2, and each
edge has exactly 2 vertices in F2, hence |F2| ≤ e(F). Each edge corresponds to a vertex in F1,
so |F2| ≤ |F1| thus |F2| ≤ ⌊v(F)/2⌋. For the equivalence classes of 14-minimal and 15-minimal
hypergraphs, this implies that F ′ has no more than 7 vertices.

7 is a small enough number where the list of equivalence classes [F, e2, e3] of 14-minimal and 15-
minimal hypergraphs can be generated by simply iterating over all weighted graphs F ′ on 7 vertices
and checking for validity (if the corresponding hypergraph F satisfies the structural constraint of
degF (v) ≥ 2 for all v ∈ F2), then generating all possibilities for e2 and e3 such that

v(K) for some K ∈ [F, e2, e3] = v(F) + 2e2 + 3e3

= |F2|+ |F1|+ 2e2 + 3e3

= v(F ′) +
∑

v1,v2∈F ′

weight(v1, v2) + 2e2 + 3e3

= 14 or 15.

29

vecbound.cpp
https://github.com/yunowe/tetrahedronintersectingfamilies
https://github.com/yunowe/tetrahedronintersectingfamilies
vecbound.cpp
vecbound.cpp
vecbound.cpp

D Certificates

Set of edges of H cH
∅ 15.0

{(1, 2, 3)} −10.2
{(1, 2, 3), (1, 2, 4)} 0.6

{(1, 2, 3), (1, 2, 4), (1, 3, 4)} −6.6
{(1, 2, 3), (2, 3, 4), (5, 6, 7)} 4.0
{(1, 2, 5), (1, 3, 4)} 3.48

{(1, 2, 3), (1, 2, 4), (1, 2, 5)} −0.2
{(1, 2, 3), (1, 2, 5), (1, 3, 4)} −0.329
{(1, 2, 5), (1, 3, 4), (2, 3, 4)} −0.109

{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4)} 0.099
{(1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5)} −4.249
{(1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 4)} −0.13

{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5)} −0.181
{(1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (2, 3, 4)} −0.167

{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5)} −0.2
{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 5), (1, 4, 5), (2, 3, 4)} −0.155
{(1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)} −0.2
{(1, 2, 3), (1, 2, 5), (1, 3, 4), (1, 4, 5), (2, 3, 4), (2, 3, 5)} −0.175

{(1, 5, 6), (2, 3, 4)} 3.48
{(1, 2, 5), (1, 2, 6), (1, 3, 4)} 1.051
{(1, 2, 6), (1, 3, 5), (2, 3, 4)} −0.194
{(1, 2, 3), (1, 5, 6), (2, 3, 4)} −0.32

{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6)} −0.107
{(1, 2, 3), (1, 2, 5), (1, 2, 6), (1, 3, 4)} −0.142
{(1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 5)} −0.191
{(1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 4, 5)} 1.28
{(1, 2, 4), (1, 2, 6), (1, 3, 5), (2, 3, 4)} −0.151
{(1, 2, 3), (1, 2, 4), (1, 5, 6), (2, 3, 4)} 1.395
{(1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5)} −1.4
{(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)} −0.186

{(1, 2, 3), (1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 5)} −0.13
{(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5)} −0.152
{(1, 2, 3), (1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 4, 5)} −0.141
{(1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 6), (1, 4, 5)} −0.163
{(1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5), (2, 3, 4)} −0.14

{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5)} −0.139
{(1, 2, 3), (1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 4, 5)} −0.14
{(1, 2, 3), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 6), (1, 4, 5)} −0.145
{(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5), (2, 3, 4)} −0.134
{(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 3, 4)} −0.106
{(1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)} −0.104

Table 2: All values of cH for K
(3)
4 -intersecting families.

30

Blocks of H cH
∅ 1023

[(1, 2)] -1019/3
[(1, 2)], [(1, 2)] 111

[(1, 2), (1, 3), (2, 3)] -1003/3
[(1, 2)], [(1, 2)], [(1, 2)] -899/27

[(1, 2)], [(1, 2), (1, 3), (2, 3)] 919/9
[(1, 3), (1, 4), (3, 2), (4, 2)] -2939/27

[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] -6067/27
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] 37717/27

[(1, 2)], [(1, 2)], [(1, 2)], [(1, 2)] 133/27
[(1, 2)], [(1, 2)], [(1, 2), (1, 3), (2, 3)] -499/27
[(1, 2)], [(1, 3), (1, 4), (3, 2), (4, 2)] 8347/189
[(1, 4), (1, 5), (4, 3), (5, 2), (2, 3)] -5887/135

[(1, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] 6611/189
[(1, 3), (1, 4), (1, 5), (3, 2), (4, 2), (5, 2)] -130685/3213
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (2, 3)] 583/9
[(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (4, 3)] -98209/945

[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)] 129211/3213
[(1, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] -39989/189
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4)] -23363/315
[(1, 3), (1, 4), (1, 5), (3, 2), (3, 4), (4, 2), (5, 2)] 3515111/16065

[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4)] 391871/16065
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] -5050369/16065

[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)] 1378795/3213
[(1, 2)], [(1, 2)], [(1, 2)], [(1, 2)], [(1, 2)] 0.219058525

[(1, 2)], [(1, 2)], [(1, 3), (1, 4), (3, 2), (4, 2)] -7.447032798
[(1, 2)], [(1, 4), (1, 5), (4, 3), (5, 2), (2, 3)] 19.829752462
[(1, 5), (1, 6), (5, 3), (6, 2), (2, 4), (4, 3)] -20.763588549

[(1, 2)], [(1, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] -5.144376306
[(1, 2)], [(1, 3), (1, 4), (1, 5), (3, 2), (4, 2), (5, 2)] 5.365789975
[(1, 2)], [(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (2, 3)] 2.610161629
[(1, 2)], [(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (4, 3)] 15.359394228
[(1, 2), (1, 3), (2, 3)], [(1, 3), (1, 4), (3, 2), (4, 2)] 28.384304031
[(1, 4), (1, 5), (1, 6), (4, 3), (5, 2), (6, 2), (2, 3)] -31.633111537
[(1, 2), (1, 5), (1, 6), (2, 4), (2, 6), (5, 3), (4, 3)] -31.718830366
[(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 3), (6, 2)] -34.406458558

[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)] -3.580410482
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (4, 2), (5, 2), (6, 2)] 59.921749604

[(1, 2)], [(1, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] 17.290633947
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4)] 10.242928902
[(1, 2)], [(1, 3), (1, 4), (1, 5), (3, 2), (3, 4), (4, 2), (5, 2)] -19.933019061
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] 2.557057952
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (4, 3)] 15.668654541
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (5, 2), (6, 2)] -4.735028986
[(1, 2), (1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 4), (3, 5)] -55.171844856
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (4, 3), (5, 3)] -35.155678907
[(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 3), (6, 2), (2, 3)] 53.778763919
[(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2)] 10.056923024
[(1, 2), (1, 4), (1, 6), (2, 3), (2, 6), (4, 3), (4, 5), (3, 5)] -53.829709125
[(1, 4), (1, 5), (1, 6), (4, 3), (4, 5), (5, 3), (6, 2), (2, 3)] 98.671470717

[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6)] 89.214193111
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4)] -14.108776829
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (3, 4)] -37.3551175
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (4, 2), (5, 2), (6, 2)] -148.554444755
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] 39.917238773
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 4), (3, 5)] -35.36528482
[(1, 2), (1, 3), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5)] 6.740707268
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (4, 3), (5, 3)] 20.037857983
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 3), (5, 3)] -14.477823517
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 4), (3, 5), (4, 2), (5, 2), (6, 2)] -52.678728465
[(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2), (6, 3)] 40.515739774
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] -8.873652621
[(1, 2), (1, 3), (1, 4), (1, 6), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5)] -13.004890238
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (4, 3), (4, 5), (5, 3)] 125.084656438
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 5), (6, 2)] 78.085797992
[(1, 3), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (5, 4), (6, 2), (2, 4)] -22.803555394
[(1, 4), (1, 5), (1, 6), (4, 3), (4, 5), (5, 2), (6, 2), (6, 3), (2, 3)] -75.224016678

[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4)] -32.164689671
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)] -56.212896275
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5)] 60.038307571
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)] 16.570160688
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 2), (5, 2), (6, 2)] 93.376336459
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 3), (5, 3), (6, 3)] 122.456530082
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5)] 63.527494686
[(1, 2), (1, 3), (1, 4), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5), (4, 5)] -51.417654096
[(1, 2), (1, 3), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5), (5, 4)] -81.561741995
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 2), (4, 5), (6, 2)] -66.228028289
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 6), (4, 2), (4, 5), (5, 2), (6, 2)] 247.662082551
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5)] 272.36405273
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (4, 3), (4, 5), (6, 3)] -33.359264533

[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)] -107.827301827
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)] -35.977491427
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5), (4, 5)] 77.509338127
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 2), (4, 5), (5, 2), (6, 2)] 146.612857852
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 6), (4, 5)] 262.751414017
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5)] 64.400400071
[(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 6), (4, 2), (4, 5), (5, 2), (6, 2)] -121.982339169
[(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 3), (4, 5), (5, 3), (6, 3)] -276.311937294

[(1, 2)], [(1, 5), (1, 6), (5, 3), (6, 2), (2, 4), (4, 3)] 3.93446663
[(1, 6), (1, 7), (6, 3), (7, 2), (2, 5), (5, 4), (3, 4)] -9.329910321

[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 3), (5, 2), (6, 2), (2, 3)] -1.471705104
[(1, 2)], [(1, 2), (1, 5), (1, 6), (2, 4), (2, 6), (5, 3), (4, 3)] -0.586429226
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 3), (6, 2)] -0.023437291
[(1, 3), (1, 4), (3, 2), (4, 2)], [(1, 3), (1, 4), (3, 2), (4, 2)] 5.340637353
[(1, 5), (1, 6), (1, 7), (5, 3), (6, 2), (7, 2), (2, 4), (4, 3)] -2.197629808
[(1, 2), (1, 3), (2, 3)], [(1, 4), (1, 5), (4, 3), (5, 2), (2, 3)] 4.00873273
[(1, 5), (1, 6), (1, 7), (5, 4), (6, 3), (7, 2), (2, 3), (2, 4)] -12.749077358
[(1, 2), (1, 6), (1, 7), (2, 5), (2, 7), (6, 3), (5, 4), (3, 4)] -12.186170092
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (6, 3), (7, 2), (2, 5)] -12.612371159

31

[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (4, 2), (5, 2), (6, 2)] -6.959976017
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (4, 3)] 7.400013147
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (5, 2), (6, 2)] 2.68064497
[(1, 2), (1, 3), (2, 3)], [(1, 3), (1, 4), (1, 5), (3, 2), (4, 2), (5, 2)] -8.52829241
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (5, 2), (6, 2), (7, 2), (2, 3)] 26.670911137
[(1, 2)], [(1, 2), (1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 4), (3, 5)] -3.197168111
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (4, 3), (5, 3)] -2.612795464
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 3), (6, 2), (2, 3)] 4.021187155
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2)] 1.925315836
[(1, 3), (1, 4), (3, 2), (4, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] -2.158195753
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (5, 3), (6, 2), (7, 2), (2, 3)] -6.12182107
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (5, 3), (4, 3)] 5.968372145
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (6, 2), (7, 2), (2, 4)] -3.39393484
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 3), (6, 2), (7, 2)] 2.35575712
[(1, 4), (1, 6), (1, 7), (4, 2), (4, 3), (6, 3), (7, 2), (2, 5), (5, 3)] 22.779351531
[(1, 2)], [(1, 2), (1, 4), (1, 6), (2, 3), (2, 6), (4, 3), (4, 5), (3, 5)] -3.483370372
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 3), (4, 5), (5, 3), (6, 2), (2, 3)] 3.298282196
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (6, 2), (7, 2), (2, 3), (3, 5)] 1.459289617
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (4, 3)] -2.261472107
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 7), (5, 4), (6, 3)] 0.106793866
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 6), (5, 4), (7, 2), (2, 4)] -6.078454431
[(1, 5), (1, 6), (1, 7), (5, 4), (6, 3), (7, 2), (2, 3), (2, 4), (3, 4)] 16.086034404
[(1, 2), (1, 3), (1, 6), (1, 7), (2, 5), (2, 7), (3, 4), (3, 6), (5, 4)] -2.210874381
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3)] -6.096302177
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 4), (3, 6), (4, 5), (7, 2), (2, 5)] -3.83126519
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 2), (6, 3), (7, 2)] -11.788018449
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (6, 3), (7, 2), (2, 3), (2, 5)] 3.767989672
[(1, 3), (1, 6), (1, 7), (3, 4), (3, 6), (7, 2), (2, 4), (2, 5), (4, 5)] -0.251972589
[(1, 5), (1, 6), (1, 7), (5, 2), (5, 4), (6, 3), (7, 2), (2, 4), (4, 3)] 13.701287343
[(1, 5), (1, 6), (1, 7), (5, 2), (5, 4), (6, 2), (6, 3), (7, 2), (3, 4)] 5.197228796
[(1, 6), (1, 7), (6, 3), (7, 2), (2, 4), (2, 5), (4, 3), (4, 5), (5, 3)] 28.984031972
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (6, 2), (6, 3), (7, 2), (3, 5)] -6.391508691

[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6)] -3.633359793
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)] -15.860406814
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (3, 4)] 4.400109383
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (4, 2), (5, 2), (6, 2)] -3.716243735
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)] 2.489735347
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 7), (4, 3)] 0.488362482
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (5, 2), (6, 2), (7, 2)] 7.409294491
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 4), (3, 5)] 0.845958786
[(1, 2)], [(1, 2), (1, 3), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5)] 6.737126194
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (4, 3), (5, 3)] -1.491092303
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 3), (5, 3)] -2.39594656
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 4), (3, 5), (4, 2), (5, 2), (6, 2)] 0.95852221
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] 1.905006244
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (4, 3), (5, 3)] -26.893942953
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (3, 4), (3, 5)] -4.582241274
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (4, 3), (5, 3)] 0.974410173
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (4, 2), (6, 2), (7, 2)] 4.96602303
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (6, 2), (7, 2), (2, 4)] 7.331176003
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 3), (6, 2), (7, 2), (2, 3)] -15.480185334
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2), (7, 2)] -11.217781744
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2), (6, 3)] -1.749728945
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (4, 3), (6, 3), (5, 3)] 2.602315827
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 2), (5, 3), (6, 3), (7, 2)] -2.388127803
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 6), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5)] -4.25665776
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (4, 3), (4, 5), (5, 3)] 5.031871473
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 5), (6, 2)] 4.705671194
[(1, 2)], [(1, 3), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (5, 4), (6, 2), (2, 4)] 4.717895187
[(1, 3), (1, 4), (3, 2), (4, 2)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] 32.960154572
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (4, 3), (4, 5), (3, 5)] -0.176514365
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (4, 5), (6, 2), (7, 2)] 19.300201204
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 3), (6, 2), (7, 2), (2, 3)] 29.650634288
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4)] -1.842293521
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 7), (3, 6), (5, 4)] -2.567379833
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 6), (4, 2), (4, 5), (7, 2)] -13.088409408
[(1, 2), (1, 3), (2, 3)], [(1, 3), (1, 4), (1, 5), (3, 2), (3, 4), (4, 2), (5, 2)] 8.368812768
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 6), (4, 2), (4, 5), (7, 2), (2, 5)] -13.018912682
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 5), (5, 2), (6, 3), (7, 2), (2, 3)] -40.884490159
[(1, 2)], [(1, 4), (1, 5), (1, 6), (4, 3), (4, 5), (5, 2), (6, 2), (6, 3), (2, 3)] 2.010837096
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 7), (5, 4), (6, 3), (3, 4)] -1.745533978
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 5), (2, 7), (3, 4), (3, 6), (4, 5)] 2.3704569
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3)] -1.655192538
[(1, 2), (1, 3), (1, 6), (1, 7), (2, 3), (2, 5), (2, 7), (3, 4), (3, 6), (5, 4)] 3.61895855
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 3), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3)] 8.460220116
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 4), (3, 6), (4, 5), (7, 2), (2, 5)] -5.674810557
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 2), (6, 3), (7, 2), (2, 3)] -6.211243813
[(1, 2), (1, 3), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (3, 4), (3, 6), (4, 5)] 2.908276006
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 4), (3, 6), (4, 2), (4, 5), (7, 2), (2, 5)] -1.125346319
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (5, 4), (6, 3), (4, 3)] -4.177890357
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 4), (3, 6), (5, 2), (5, 4), (7, 2), (2, 4)] 4.289880719
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (5, 2), (6, 3), (7, 2)] -2.043105841
[(1, 5), (1, 6), (1, 7), (5, 2), (5, 4), (6, 3), (7, 2), (2, 3), (2, 4), (3, 4)] -3.09560784
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (5, 4), (6, 3), (3, 4)] -6.394789016
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 4), (3, 6), (5, 2), (5, 4), (6, 2), (7, 2)] -1.26960095
[(1, 2), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (6, 3), (4, 3), (4, 5), (5, 3)] 4.940706436
[(1, 4), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (6, 3), (7, 2), (2, 5), (5, 3)] 1.16373339
[(1, 6), (1, 7), (6, 3), (7, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)] -16.735165807
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 6), (2, 7), (4, 3), (4, 5), (6, 3), (3, 5)] 3.726513348
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (4, 5), (6, 2), (7, 2)] 5.208685185
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 3), (6, 2), (6, 3), (7, 2)] 19.819743359
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (6, 2), (6, 3), (7, 2), (2, 3), (3, 5)] 7.35350091
[(1, 4), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (6, 2), (6, 3), (7, 2), (3, 5)] -8.678003782
[(1, 5), (1, 6), (1, 7), (5, 3), (5, 4), (6, 2), (6, 3), (7, 2), (2, 4), (4, 3)] -21.105384688
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (5, 4), (6, 3), (7, 3)] -7.269732853
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 6), (3, 7), (5, 4), (6, 2), (7, 2), (2, 4)] -9.191699476
[(1, 5), (1, 6), (1, 7), (5, 4), (6, 2), (6, 3), (7, 2), (7, 3), (2, 4), (4, 3)] 21.890379787
[(1, 4), (1, 5), (1, 7), (4, 5), (4, 6), (5, 2), (5, 3), (7, 2), (2, 3), (3, 6)] 13.390446003
[(1, 4), (1, 6), (1, 7), (4, 5), (4, 6), (6, 3), (7, 2), (2, 3), (2, 5), (3, 5)] -7.937257869
[(1, 2), (1, 6), (1, 7), (2, 5), (2, 7), (6, 3), (6, 4), (5, 3), (5, 4), (3, 4)] -4.579823142

32

[(1, 3), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (6, 4), (7, 2), (2, 5), (5, 4)] -20.862225834
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7)] -5.295275178
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4)] 6.132325262
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 7), (3, 4)] -4.157370192
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (4, 2), (5, 2), (6, 2), (7, 2)] 34.457660612
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5)] -3.14553808
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)] -1.743579562
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 2), (5, 2), (6, 2)] -2.024741766
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (3, 4), (3, 5)] -34.582824618
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (3, 4), (3, 5)] 8.027226526
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 6), (2, 7), (3, 4), (3, 5)] -3.591018543
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 6), (2, 7), (4, 3), (5, 3)] -6.074593298
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (4, 2), (6, 2), (7, 2)] 7.557057661
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 6), (2, 7), (4, 3), (5, 3)] -12.278009904
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (4, 2), (5, 2), (6, 2), (7, 2)] -8.58231085
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 3), (5, 3), (6, 3)] -2.531033246
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (3, 4), (3, 5), (3, 6)] -16.274902414
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (4, 3), (5, 3), (6, 3)] -0.977418141
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 2), (5, 3), (6, 3), (7, 2), (2, 3)] -4.954239332
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2), (6, 3), (7, 2)] -19.27251958
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5)] 1.751643266
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5), (4, 5)] 22.871691682
[(1, 2)], [(1, 2), (1, 3), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5), (5, 4)] -0.884575764
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 4), (3, 5), (4, 2), (4, 5), (6, 2)] -5.679683441
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)], [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] -8.451611594
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (3, 4), (3, 5), (4, 5)] 4.607137164
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (4, 3), (4, 5), (5, 3)] 44.117695509
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (4, 5), (6, 2), (7, 2)] 9.892552551
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (4, 2), (4, 5), (6, 2), (7, 2)] -14.232665558
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (5, 4), (6, 2), (7, 2), (2, 4)] -10.802489588
[(1, 2)], [(1, 3), (1, 4), (1, 5), (1, 6), (3, 2), (3, 6), (4, 2), (4, 5), (5, 2), (6, 2)] 6.424094889
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 7), (3, 6), (4, 5)] -20.107616665
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4)] -6.83563532
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (3, 6), (4, 5)] -14.264866154
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (4, 5), (6, 3)] -13.890509715
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 2), (3, 6), (4, 2), (4, 5), (5, 2), (7, 2)] -14.430264559
[(1, 2)], [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5)] 21.442856095
[(1, 2)], [(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (4, 3), (4, 5), (6, 3)] -4.912223036
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 7), (3, 4), (3, 6), (5, 4)] 6.826577085
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (2, 7), (3, 4), (3, 6), (4, 5)] -0.902727802
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 5), (2, 7), (3, 4), (3, 6), (4, 5)] 5.076803039
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3)] 16.02794721
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (3, 4), (3, 6), (4, 5)] 2.891259083
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (3, 4), (3, 6), (5, 4)] 2.177864908
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3)] -5.216693345
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 4), (3, 6), (4, 2), (4, 5), (5, 2), (7, 2)] -2.279776061
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 4), (3, 6), (4, 2), (4, 5), (7, 2), (2, 5)] 13.277213773
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (5, 4), (6, 3), (3, 4)] -17.365150373
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (7, 2), (2, 4)] -6.609918649
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (5, 2), (6, 3), (7, 2), (2, 3)] 7.313575499
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 4), (3, 6), (5, 4)] 0.854411722
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 4), (3, 6), (4, 5), (5, 2), (6, 2), (7, 2)] 9.222247371
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (6, 2), (7, 2)] -4.664441246
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 2), (6, 2), (6, 3), (7, 2), (2, 3)] 0.642441935
[(1, 2), (1, 3), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (3, 4), (3, 5), (3, 6), (4, 5)] -26.301659702
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (2, 7), (4, 3), (4, 5), (6, 3), (5, 3)] -4.069212049
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (5, 2), (5, 3), (6, 3), (7, 2)] 23.254129322
[(1, 2), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (6, 3), (3, 4), (3, 5), (4, 5)] 4.653489719
[(1, 4), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (6, 3), (7, 2), (2, 3), (2, 5), (3, 5)] -9.251707121
[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (4, 5)] -1.757846699
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 6), (2, 7), (4, 3), (4, 5), (5, 3), (6, 3)] -7.169334467
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (4, 5), (6, 2), (7, 2)] -13.342591648
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 3), (2, 6), (2, 7), (4, 3), (4, 5), (6, 3), (3, 5)] -1.721213112
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (3, 6), (4, 5), (6, 2), (7, 2)] 11.317734312
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 3), (6, 2), (6, 3), (7, 2), (2, 3)] 32.218161334
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (4, 3), (4, 5), (6, 3), (3, 5)] 0.383955182
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (4, 2), (4, 5), (6, 2), (7, 2)] -25.006393632
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (5, 3), (5, 4), (6, 3), (4, 3)] 9.940971541
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (5, 4), (6, 2), (7, 2), (2, 4)] -3.905861001
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (5, 3), (6, 2), (6, 3), (7, 2)] -0.985832772
[(1, 2), (1, 3), (2, 3)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] 1.786399627
[(1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (3, 6), (3, 7), (5, 4)] 9.511790282
[(1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (4, 5), (6, 3), (7, 3)] 1.107207173
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (3, 6), (3, 7), (4, 2), (4, 5), (6, 2), (7, 2)] 2.532212926
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 6), (3, 7), (5, 4), (6, 2), (7, 2), (2, 4)] 1.023099262
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 5), (6, 2), (6, 3), (7, 2), (7, 3), (2, 3)] 0.560118735
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 5), (5, 2), (6, 2), (6, 3), (7, 2), (7, 3)] 54.232770888
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (2, 7), (5, 4), (6, 3), (7, 3), (4, 3)] 7.275893416
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 2), (4, 3), (4, 5), (6, 2), (6, 3), (7, 2), (7, 3)] 1.668157579
[(1, 5), (1, 6), (1, 7), (5, 4), (6, 2), (6, 3), (7, 2), (7, 3), (2, 3), (2, 4), (3, 4)] -3.895552977
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 3), (4, 5), (5, 2), (6, 2), (6, 3), (7, 2), (7, 3)] -9.035526087
[(1, 2), (1, 3), (1, 5), (1, 7), (2, 3), (2, 5), (2, 7), (3, 5), (3, 6), (5, 4), (6, 4)] -14.360679634
[(1, 2), (1, 4), (1, 5), (1, 7), (2, 3), (2, 5), (2, 7), (4, 5), (4, 6), (5, 3), (3, 6)] -17.00351824
[(1, 3), (1, 4), (1, 5), (1, 7), (3, 2), (3, 5), (3, 6), (4, 5), (4, 6), (5, 2), (7, 2)] 2.856552471
[(1, 2), (1, 4), (1, 6), (1, 7), (2, 3), (2, 5), (2, 7), (4, 5), (4, 6), (6, 3), (3, 5)] -9.92706055
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 2), (3, 5), (3, 6), (4, 5), (4, 6), (7, 2), (2, 5)] -6.678755687
[(1, 2), (1, 3), (1, 5), (1, 7), (2, 5), (2, 7), (3, 4), (3, 5), (3, 6), (5, 4), (4, 6)] -1.806083067
[(1, 2), (1, 3), (1, 6), (1, 7), (2, 5), (2, 7), (3, 4), (3, 5), (3, 6), (6, 4), (5, 4)] -5.291537445
[(1, 3), (1, 4), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (7, 2), (2, 5)] 31.528228871
[(1, 2), (1, 5), (1, 6), (1, 7), (2, 5), (2, 7), (5, 3), (5, 4), (6, 3), (6, 4), (3, 4)] -19.605870676
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 4), (3, 5), (3, 6), (5, 2), (5, 4), (6, 4), (7, 2)] -17.779946422
[(1, 3), (1, 6), (1, 7), (3, 2), (3, 4), (3, 5), (3, 6), (6, 4), (7, 2), (2, 5), (5, 4)] 1.160776335
[(1, 4), (1, 6), (1, 7), (4, 3), (4, 5), (4, 6), (6, 3), (7, 2), (2, 3), (2, 5), (3, 5)] 6.814864507
[(1, 5), (1, 6), (1, 7), (5, 2), (5, 3), (5, 4), (6, 3), (6, 4), (7, 2), (2, 3), (3, 4)] -18.164073663
[(1, 4), (1, 5), (1, 6), (1, 7), (4, 5), (4, 6), (5, 3), (6, 2), (7, 2), (7, 3), (2, 3)] -1.93399586
[(1, 5), (1, 6), (1, 7), (5, 3), (5, 4), (6, 2), (6, 4), (7, 2), (7, 3), (2, 3), (2, 4)] 33.092504473
[(1, 2), (1, 4), (1, 7), (2, 3), (2, 7), (4, 3), (4, 5), (4, 6), (3, 5), (3, 6), (5, 6)] -13.82812206
[(1, 3), (1, 5), (1, 6), (1, 7), (3, 2), (3, 7), (5, 4), (5, 6), (6, 4), (7, 2), (2, 4)] -22.159791554

Table 3: Values of cH for K5-intersecting families.

33

	Introduction
	Reduction to a linear program
	A construction for mu
	Verifying 3-uniform hypergraphs G with v(G) <= 7

	Verifying 3-uniform hypergraphs G with 8 <= v(G) <= 13
	Verifying 3-uniform hypergraphs G with v(G) >= 14
	The maximum size of a K5-intersecting family
	Coefficients c_H are uniquely determined for H ⊆ K34
	Additional discussion of implementation
	Certificates

