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By allowing users to retrieve items from a database without revealing which
item was retrieved, Private Information Retrieval (PIR) has enabled recent
advances in anonymous communication, private streaming, and more. How-
ever, PIR is very computationally expensive, and is fundamentally limited to
having a computational cost that scales linearly with the size of the database,
limiting the scale of protocols that use it to millions of users. By adjusting
the procedure for gadget inversions, a key step in the homomorphic multipli-
cations used in PIR, we achieve a 30% speedup over existing state-of-the-art
PIR protocols and similarly reduce network costs.

1 Introduction

By allowing users to retrieve an item from a database without revealing which item was
requested to the server which contains the database, Private Information Retrieval (PIR)
has been crucial to recent advances in anonymous communication [2, 5], anonymous
streaming [15], and other privacy-preserving services.

To do this, PIR has users send a query to the server, which utilizes the query to
retrieve the desired element and send it to the client. To ensure that the query does
not reveal the requested element to the server, while still allowing the server to send
just the requested element to the client, PIR utilizes homomorphic encryption (HE)
[7, 9, 13, 21, 14] to perform operations on an encryption of the database index the client
wishes to retrieve.
Due to the large ciphertext sizes and computation times of current HE schemes, Pri-

vate Information Retrieval has large network and computational costs, preventing its
widespread adoption.
Information-theoretic PIR [11, 12] decreases these costs by assuming that multiple

non-colluding servers have a copy of the database, and having the client send a query
to each of them. However, assuming that multiple servers will not collude is often
impractical.
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Computational PIR (CPIR) makes no non-collusion assumptions, so we focus on it in
this work. Some recent advances in CPIR preprocess the database [6, 8], or have the
client pre-compute database-dependent hints [20, 19] in order to reduce the server-side
costs of PIR. These types of schemes rely on expensive, database-dependant computa-
tions being amortized over many queries. In applications such as anonymous messaging,
the database of messages can change frequently, meaning that the pre-computations
cannot be amortized.
Single-round CPIR protocols that do not perform any database or query-dependent

computations [4, 17, 1, 18] often have their computation times dominated by many large
homomorphic multiplications. Each homomorphic ciphertext has an error associated
with it, and in order for the user of a PIR scheme to successfully retrieve their desired
database element, this error cannot exceed a certain threshold. The threshold can be
increased by having larger ciphertexts, on which operations are performed more slowly.
Since the error grows multiplicatively after homomorphic multiplications, large cipher-
texts are used, resulting in slower multiplications.
To reduce this error, Spiral[17] utilizes gadget inversions to reduce the error after each

multiplication. In 3-PIR, we modify this process by increasing the base of the gadget
inversion to 3, which reduces both the cost of a gadget multiplication, and the error after
a gadget multiplication, resulting in smaller ciphertext sized being used and even more
computational savings.
So, in summary 3-PIRincreases the base of gadget inversions to 3 in order to

2 Background

We now formally introduce the homomorphic encryption used to build Private Infor-
mation Retrieval (PIR), and some details about PIR. Our work primarily focuses on
modifying Spiral [17], so this background is specific to the homomorphic operations and
PIR techniques used in it.

2.1 Homomorphic Encryption

Homomorphic encryption [7, 9, 13, 21, 14, 10] allows for operations (in this case, ad-
dition and multiplication) to be performed on encrypted elements. The schemes we
consider have their security based on ring learning with errors [16], and are based on
multiplications of elements of the ring Zq[X]/(Xn + 1).

Elements of the ring Zq[X]/(Xn+1) will be denoted with lowercase letters, and referred
to as “polynomials”. Matrices of polynomials will be denoted with uppercase letters.

The vertical concatenation of A and B will be denoted as

[
A
B

]
, and the horizontal

concatenation will be denoted as
[
A B

]
. Finally, the letters q, n, l = ⌊log2(q)⌋, and

t, will denote the parameters of homomorphic encryption; q will be referred to as the
modulus, n as the polynomial length, and t as the plaintext modulus.
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Ciphertext Representation. Every homomorphic ciphertext has some error e that is
randomly drawn from a distribution, is encrypted with some secret key s chosen by the
user, and stores a message m. A generic ciphertext is represented as the matrix.

C =

[
a

as+ e+ tm

]
=

[
c0
c1

]
Under the ring learning with errors assumption [16], an adversary (in the case of PIR,
the server), cannot learn what the message m is, provided that q, n, and t satisfy certain
conditions, which can be checked with a RLWE security estimator [3]. Note that this
ciphertext depends on a parameter t, the plaintext modulus, and that t is an integer,
while a, s, e, and m are polynomials. To decrypt a ciphertext, the user can compute

Dec(X) = Dec

[
c0
c1

]
= c1 − sc0 = (as+ e+ tm)− s(a) = e+ tm

Then, to retrieve the message the user computes Dec(X)
t , and rounds the result the

nearest integer. We will make two important notes: firstly, the successful decryption of
the ciphertext only occurs if e < t, so it must be ensured that the error does not grow
too large during computations; and secondly, the decryption function is linear, as

Dec(aX + bY ) = aDec(X) + bDec(Y )

Adding the message of two ciphertexts X and Y can be performed by the server (which
does not have access to the secret key) by computing X+Y (matrix addition), since the
decryption function is linear. This also increases the error additively.

Multiplication. In multiplicatively homomorphic schemes such as BGV [7] and BFV
[13], the server can multiply two ciphertexts, at the cost of a multiplicative increase in
error. After successive multiplications, this causes the error to rapidly increase above t,
so to compensate some schemes set a large plaintext modulus
In the specific case of Private Information Retrieval (PIR), all multiplications consist

of multiplying a ciphertext by an encryption of 0 or an encryption of 1. Because of this,
a technique called gadget inversions is employed.

Gadget Inversions are used to reduce the amount of error after a homomorphic multi-
plication, so that error grows additive after multiplications. In a gadget multiplication,
the object which encrypts 0 or 1 no longer has the same dimensions as a ciphertext;
instead we refer to it as a query ciphertext, or query. The product of a ciphertext and
gadget ciphertext yields a ciphertext. We now outline a gadget multiplication below.

For simplicity, we denote ⌊log2 q⌋ as l, where q is the ciphertext modulus. In addition,
let

G =
[
1 2 · · · 2l

]
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If an arbitrary polynomial a’s binary representation is alal−1 . . . a1a0, such that a =
2lal + 2l−1al−1 + . . .+ 21a1 + 20a0, and each polynomial ai has coefficients that are 0 or
1, then

G−1(a) =


al
al−1
...
a1
a0


G−1

([
a
b

])
=

[
G−1(a)
G−1(b)

]
Note that by definition, G ·G−1(a) = a.
Query ciphertexts can either encrypt 0 or 1, as follows:

Enc(0) =

[
b0 b1 . . . b2l−2 b2l−1

b0s+ e0 b1s+ e1 . . . b2l−2s+ e2l−2 b2l−1s+ e2l−1

]

Enc(1) = Enc(0) +

[
G 0
0 G

]
To multiply a ciphertext C =

[
a

as+ e+ tm

]
by a query Q, we compute Q ·G−1(C).

If Q = Enc(0), then the product evaluates to

P =

[
b0 b1 . . . b2l−2 b2l−1

b0s+ e0 b1s+ e1 . . . b2l−2s+ e2l−2 b2l−1s+ e2l−1

]
·G−1(C)

=

[
b0 b1 . . . b2l−2 b2l−1

b0s+ e0 b1s+ e1 . . . b2l−2s+ e2l−2 b2l−1s+ e2l−1

]
·


c0
c1
...

c2l−2

c2l−1



=


2l−1∑
i=0

bici

2l−1∑
i=0

(bis+ ei)ci


So,

Dec(P ) =

2l−1∑
i=0

(bis+ ei)ci − s ·
2l−1∑
i=0

bici =

2l−1∑
i=0

eici

, which decrypts to 0. Since all the coefficients of ci are 0 or 1, ciei has coefficients that
are at most n times the ei, for all i. So, the error has increased additively by a number
that is at most 2ln times an error from the original error distribution.
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If Q = Enc(1), then the product evaluates to

P ′ =

(
Enc(0) +

[
G 0
0 G

])
·G−1(C)

=Enc(0) ·G−1(C) +

[
G 0
0 G

]
G−1(C)

=


2l−1∑
i=0

bici

2l−1∑
i=0

(bis+ ei)ci

+

[
a

as+ e+ tm

]
=


a+

(
2l−1∑
i=0

bici

)

as+ e+ tm+

(
2l−1∑
i=0

(bis+ ei)ci

)


So,

Dec(P ′) = e+ tm+Dec(P ) =
2l−1∑
i=0

eici

, which decrypts to the original message m, and the error in the ciphertext has again
increased by at most 2ln times a value from the original error distribution.
In a gadget multiplication, more polynomials have to be multiplied than in the ci-

phertext multiplications in other HE schemes. However, due to the decreased error from
gadget multiplications, when using them the parameters q, n, and t can be decreased,
resulting in faster computation.

2.2 Private Information Retrieval

Private information retrieval (PIR) aims to retrieve a database item without revealing
which item was retrieved. Trivially, this could be done by sending the entire database to
a user, thus transmitting the desired item. However, this would result in a prohibitively
large network overhead, since the response size would be the size of the database.
So, PIR aims to decrease network costs by compressing the d-element database into

a ciphertext that contains the information of the desired database index. Traditionally,
this is done using three operations – the client can generate a query or decode a response,
and the server must have a procedure to “answer” a query by generating a response that
can be decrypted by the client. Formally, there are three procedures such that:

Query(idx) = query

Answer(query, db) = response

Decode(response) = database[index]

In practice, the answer procedure is the most expensive: in order to hide which database
element was retrieved, all database elements must be involved in the computation
process–if any element was not involved, it would leak information about the retrieved
index. Because of this, we will focus on how the server compresses the database down
to a smaller ciphertext.
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Linear Private Information Retrieval accomplishes the goal of compression using a one-
hot query Q = (c0, c1, . . . , ci, . . . , cd−1), where ci encodes a 1 for the desired database
index and 0 for all other indices. The database D = (p0, p1, . . . , pd−1) is then multiplied
by the query to produce the result R =

∑d−1
i=0 cipi. For all non-desired elements, cipi = 0

since ci = 0, and for the desired element cipi = pi as ci = 1, so this sum generates a
ciphertext encoding just the desired element.

Database

Query

p0 p1 pd-2 pd-1

X
c0

X X X
c1 cd-2 cd-1

R Result
Ciphertext

Plaintext

⋯

⋯

Figure 1: A linear PIR scheme. Note that homomorphic encryption is used so that
operations can be performed using the query values.

Two-dimensional databases can reduce the query size while maintaining a relatively
fast answer procedure, as shown in Figure 2. Formally, if we have a database D =
(p0,0, p0,1, . . . , p0,m−1, p1,0, p1,1, . . . , p1,m−1, . . . pn−1,m−1 with mn = d, then we can have
queryQ = (c0,0, c0,1, . . . c0,m−1, c1,0, c1,1, . . . c1,n−1), where both (c0,0, . . . c0,m−1) and (c1,0, . . . c1,n−1)
are one-hot vectors. Then, the result R =

∑m−1
i=0

∑n−1
j=0 c0,ic1,jpi,j is computed, and it

encodes the desired element, since all other elements are multiplied by zero.

Note that in practice this is computed as R =
∑n−1

i=0 c0,i

(∑m−1
j=0 c1,jpi,j

)
, meaning

d+ n multiplications (and not 2d) are now required to compute the result. In addition,
the two-dimensional structure means that in an m by n database, only m+ n expanded
query ciphertexts are needed instead of mn.

Database

p0,0 p0,1

X

c0,0

c0,1

p0,m-1

p1,0 p1,1 p1,m-1

pn-1,0 pn-1,1 pn-1,m-1 c0,m-1

t0

t1

tn-1

⋅

c1,0

c1,1

c1,n-1

R

Query Result

…

…

…

… … …… … … …

Figure 2: Reformatting the database into a rectangular matrix results in a smaller query
at the cost of slightly more multiplications.
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Higher Dimensions of the database eventually result in a procedure we call “folding”,
where each dimension has size two, as shown in Figure 3. Since the query for each
dimension is a one-hot vector, one of the two ciphertexts will always be an encoding of
0, and the other will always encode 1. This means one of the ciphertexts is always 1
minus the other, so in practice only one ciphertext is sent. Therefore, the query length
for a folding PIR protocol is only log2(d), and from a computational perspective 2d
multiplications are required.

p0 p1

R

Database

Query

c1

X

Response

p3 pd-4 pd-3 pd-2p2 pd-1⋯
X X X X X X X
1-c1 c1 1-c1 c1 1-c1 c1 1-c1⋯

⋯

c2

X X
1-c2 c2

X X
1-c2⋯

⋯
⋯

cl(d)

X X
1-cl(d)

⋯

Figure 3: “Folding”: each ciphertext folds the database in half

Such a scheme is partially used by Spiral [17], which has one large dimension and then
many small dimensions of size two.

3 3-PIR

We now introduce 3-PIR, which consists of the same protocol as Spiral [17], with a
gadget procedure modified to reduce the amount of error and computation after each
multiplication.

3.1 Base-3 Gadget Decompositions

Traditionally, a gadget multiplication has

G =
[
1 2 · · · 2l

]
, and G−1 performs a binary decomposition by decomposing a polynomial into polyno-
mials with coefficients that are 0 or 1.
Instead, we let
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G3 =
[
1 3 · · · 3l

′]
, and have G−1

3 perform a balanced ternary decomposition. Specifically, if an arbitrary
polynomial a’s balanced ternary representation is al′al′−1 . . . a1a0, such that a = 3l

′
al′ +

3l−1al′−1 + . . .+ 31a1 + 20a0, where all ai are polynomials with coefficients that are -1,
0, or 1, then

G−1
3 (a) =


al′

al′−1
...
a1
a0


G−1

3

([
a
b

])
=

[
G−1

3 (a)

G−1
3 (b)

]
As before, G3 ·G−1

3 (a) = a. The advantage of this approach is that now l′ only needs
to be ⌊log3(2q)⌋ so that we can represent every possible polynomial a, which is smaller
than l = ⌊log2(q)⌋.

We define the two query ciphertexts Enc(0) and Enc(1) as before, except that they
now have l′ columns instead of l columns. These changes have two primary effects:
Firstly, to compute the product of a query ciphertext and a ciphertext, we now only

have to compute 2l′2 polynomial products instead of 2l2, since the matrices of polyno-
mials that we multiply are smaller.
Secondly, after each multiplication, the error now increases by 2l′ times an error from

the original error distribution, instead of 2l times.

4 Evaluation

We implement our protocol as clone of Spiral [17], with modifications to the gadget
process.

4.1 Per-multiplication costs

Firstly, we examine the costs of each query-ciphertext by ciphertext multiplication with
our new gadget procedure.
With the modifications of 3-PIR, computing G−1 takes more time than before, since

a trinary decomposition of the ciphertext polynomials cannot be performed with bit
shifts, as opposed to the original binary decomposition. However, as a result of the
decreased number of polynomial multiplications that need to be performed, the total
time to perform a query ciphertext by ciphertext multiplication decreases significantly.
In addition to the speedup of base-3 gadgets multiplications, 3-PIRcombines the gad-

get inversion and polynomial multiplication steps of the query ciphertext by ciphertext
multiplication into a singular step in order to reduce the number of memory accesses.
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Gadget Inversion (µs) Other Costs (µs) Total Time (µs)

Base-2 Gadget (Spiral) 560 4580 5140

Base-3 Gadget 1280 2590 3870

Optimized Base-3 Gadget * * 2850

Speedup Over Spiral 0.5x* 1.77x* 1.8x

Figure 4: The cost of performing a query ciphertext by ciphertext multiplication for
Spiral, and our scheme. All trials were run on my laptop (6-core AMD Ryzen
5 5500U, 20GB RAM, 2.10 GHz) using a single core. *Since the optimized
base-3 gadget cannot be broken down into its component steps, speedups are
reported for the non-optimized version.

This results in the “Optimized Base-3 Gadget” which is nearly 1.8x faster than the
multiplications of Spiral.

5 Conclusion

By using a modified gadget multiplication, 3-PIRprovides a concrete speedup over other
leading Private Information Retrieval schemes, without leading to larger network costs.
In the future, we would like to further optimize this protocol by

• Considering alternate gadget decomposition methods–different possibilities for the
matrix G and a corresponding function G−1 such that GG−1(a) = a.

• Modifying parameter sets to reduce ciphertext sizes

• Examining the effects of our protocol on larger databases

• Examining the effects of the revised multiplication on the time for an entire PIR
answer.
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